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Abstract. Connectivity impairment has frequently been associated with the pathophysiology of attention-deficit/
hyperactivity disorder (ADHD). Although the connectivity of the resting state has mainly been studied, we expect
the transition between baseline and task may also be impaired in ADHD children. Twenty-three typically devel-
oping (i.e., control) and 36 disordered (ADHD and autism-comorbid ADHD) children were subjected to connec-
tivity analysis. Specifically, they performed an attention task, visual oddball, while their brains were measured by
functional near-infrared spectroscopy. The results of the measurements revealed three key findings. First, the
control group maintained attentive connectivity, even in the baseline interval. Meanwhile, the disordered group
showed enhanced bilateral intra- and interhemispheric connectivities while performing the task. However, right
intrahemispheric connectivity was found to be weaker than those for the control group. Second, connectivity and
activation characteristics might not be positively correlated with each other. In our previous results, disordered
children lacked activation in the right middle frontal gyrus. However, within region connectivity of the right middle
frontal gyrus was relatively strong in the baseline interval and significantly increased in the task interval. Third,
the connectivity-based biomarker performed better than the activation-based biomarker in terms of screening.
Activation and connectivity features were independently optimized and cross validated to obtain the best per-
forming threshold-based classifier. The effectiveness of connectivity features, which brought significantly higher
training accuracy than the optimum activation features, was confirmed (88% versus 76%). The optimum screen-
ing features were characterized by two trends: (1) strong connectivities of right frontal, left frontal, and left parietal
lobes and (2) weak connectivities of left frontal, left parietal, and right parietal lobes in the control group. We
conclude that the attentive task-based connectivity effectively shows the difference between control and dis-
ordered children and may represent pathological characteristics to be feasibly implemented as a supporting
tool for clinical screening. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.4.045013]
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1 Introduction
Attention-deficit/hyperactivity disorder (ADHD), which is
characterized by symptomatic inattention and hyperactivity/
impulsivity, is diagnosed in early childhood to adolescence,1

and ADHD is labeled as one of the most prevalent neurodeve-
lopmental disorders.2 When Faraone et al.3 suggested compa-
rable prevalence rates across populations and argued against an
ADHD hypothesis as a cultural construct,4 Polanczyk et al.5

suggested that geographical differences in prevalence rates are
caused by the methodological characteristics rather than the
associated perspective of culture. Despite the common appli-
cation of standard guidelines [e.g., the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)
and the International Classification of Diseases, Eleventh

Revision], discrepancies in diagnoses based on the guidelines
were found.6,7 These findings have triggered the need for a
paradigm shift from behavioral-based assessment to biomarker
evaluation for clinically supporting more objective diagnosis
and even prognosis.8,9

Genetic and molecular markers have been investigated;10–13

however, invasive intervention (e.g., drawing blood) might
hinder the clinical practicability of those biomarkers for
longitudinal prognostic monitoring in particular. As we come
to understand the pathophysiology underlying ADHD, the
relationship between causal variables and disease outcomes
can be clearly interpreted and suggests the use of more valid
biomarkers.9 Even though confounding and diverse environ-
mental factors should not be neglected, due to abnormal
cognitions and behaviors, ADHD and other neuropsychiatric
disorders are frequently associated with brain impairments due
to abnormal cognitions and behaviors.14 Therefore, neuroimag-
ing-based biomarkers, with advantages in understanding brain
structures, functions, and networks, have recently gained
popularity.15,16
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As a neuroimaging technique with high spatial resolution,
functional magnetic-resonance imaging (fMRI) provides abun-
dant information about brain features, including anatomical
structure (e.g., cortical thickness, surface area, and volume),
activation, and networks [e.g., functional connectivity (FC),
graph-theory parameters, and regional homogeneity].17,18 The
prominence of FC among other features in diagnosing ADHD
had been evidenced.19 A high discrimination rate (80% to 86%)
between ADHD and healthy children and adults was demon-
strated on the basis of resting-state (RS) fMRI data.20 To develop
accurate and robust diagnostic biomarkers, large and aggregate
ADHD datasets (containing characteristic and RS fMRI data)
with sample numbers greater than 900 subjects have been
collected.21 Depending on the selected features and classifiers,
classification accuracy for typically developing (TD) and (sub-
types) ADHD children was widely distributed (i.e., respectively,
37.44% to 60.51% and 49.79% on average). On the other hand,
classification accuracy was improved (to 62.52%) by excluding
imaging data and solely using characteristic data such as age,
gender, handedness, and full-scale intelligence quotient (IQ).22

The robustness of RS connectivity features was then argued.
The lack of robustness might be caused by the low quality of
measurements on children (30% to 50% failure rate) due to
motion artifacts.23,24

Functional near-infrared spectroscopy (fNIRS) was intro-
duced more than 20 years ago25 to measure the change in con-
centration of cerebral hemoglobin (which is closely related to
the brain’s metabolic activity).26 By offering higher temporal
resolution, better motion tolerance, and less measurement bur-
den on claustrophobic subjects than fMRI, fNIRS is feasible for
measurements on children. Due to moderate spatial resolution
and the limited probe number of fNIRS, activation analysis was
likely more approachable than network analysis. However, due
to the demand of subject-friendly measurements for broader
populations (i.e., infants and children) and clinical purposes, the
potential of network analysis using fNIRS was thoroughly
investigated. High similarity between RS FCs of bilateral pri-
mary motor regions obtained from simultaneous fMRI and
fNIRS measurements has been reported.27 Moreover, the inter-
modal similarity in diverse regions was evaluated, and a high
correlation between fNIRS and fMRI signals (even in the distant
regions as incorporated within an RS network) was shown in
Ref. 28. In addition, reliability and reproducibility of multiple
intrasubject measurement29,30 and various instrumentations31

were assessed. These studies provide prominent evidence of the
usability of fNIRS in regard to network analysis.32 Despite hav-
ing advantages of less task demand and valuable FC informa-
tion, the RS task encounters problems related to test-retest
reliability.33 Asking subjects to perform certain tasks may min-
imize uncontrollable variances; however, only a limited number
of task-based connectivity studies have been done.

Activation analysis based on fNIRS measurement of TD and
ADHD populations has been examined under various task per-
formances (e.g., inhibition control, attention response, and ver-
bal fluency).34–37 According to those measurements, ADHD
children showed significantly less activation in task-dependent
regions of interest (ROIs). For example, higher right inferior
frontal gyrus/middle frontal gyrus (IFG/MFG) and bilateral-
temporal activations were observed in TD children during
inhibition38 and facial expression39 tasks, respectively. We are
currently interested in investigating the differences in attentive
FCs based on fNIRS measurements on TD and ADHD children

during the visual-oddball (OB) tasks. Analysis of FC is expected
to be crucial in explaining the relationships between cognitive
functions, ROIs [e.g., right IFG/MFG and right supramarginal
gyrus (SMG)/angular gyrus (ANG)],35,40 and networks. Further-
more, the association between FCs and activation was evaluated.
As RS networks are known to be dynamic and time varying,41–43

task-evoked FC might be anticipated as being distinct, namely,
in between task transitions (i.e., baseline and task). Furthermore,
the feasibility of task-based FC for clinical screening biomarker
was explored, assessed, and compared to the activation
biomarker.

2 Materials and Methods

2.1 Data Acquisition

Thirty-seven children, who met the ADHD criteria specified
in DSM-5, participated in the experiment on attention control.
The children were nonmedicated naïve, and among them, 22 (19
boys; 9.5� 2.0 years old) and 15 (12 boys; 9.9� 2.1 years old)
were prescribed methylphenidate (MPH) and atomoxetine
(ATX), respectively. Autism spectrum disorder (ASD) symp-
toms were observed in 21 of the ADHD children, and they were
designated as ASD-comorbid ADHD children. One of the chil-
dren, a 9-year-old girl, was excluded from the analysis due to her
comorbidity condition with epilepsy. Both the ADHD children
and the ASD-comorbid ADHD children were defined as the
disordered group. Furthermore, 23 TD children (15 boys; 9.8�
1.9 years old) joined the experiment as the control group. The
full-scale IQ of all subjects was assessed according to the
Wechsler Intelligent Scale of Children—Third Edition. All sub-
jects received detailed prior explanations, and their guardians
signed their informed consent. The subjects were subjected to
fNIRS measurements by clinical doctors at Jichi Medical
University Hospital (Tochigi, Japan) with the approval of the
Ethics Committee of Jichi Medical University Hospital. The
measurement data were obtained according to the regulations of
the Internal Review Board of the Central Research Laboratory,
Hitachi, Ltd. and Chuo University. The current data originally
came from two datasets—MPH- and ATX-prescribed ADHD
datasets. These datasets had been used, analyzed, and reported,
either completely or partly, in our previous publications with
different purposes (i.e., brain activation in group analysis and
development of a signal processing method).35,40,44

2.2 Experimental Design and Measurement

The experimental design was based on a double-blind, placebo-
controlled, cross-over study. It entailed two measurement ses-
sions (4 to 30 days apart) under pre- and postadministration con-
ditions in each session. The order of medication and placebo
administration for each subject was randomized. Because all the
disordered-group children were nonmedicated naïve, any pread-
ministration conditions were imposed after the subjects were not
given their medications for 2 to 4 days (i.e., wash out). The
effect of the medication or placebo was evaluated 1.5 h after
administration. The current study aims to develop a screening
biomarker; therefore, only the preadministration data of the first
measurement session in the disordered group were used in the
current classification analysis. Neither the medication nor the
placebo was administered to the control group. This setup
resulted in a single-time measurement for each TD child.
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An attention task, the OB task, was performed. The OB task
required the subjects to respond by pressing one of two (blue or
red) buttons when shown a specific visual stimulus (e.g., pic-
tures of animals). There were two stimulus types: standard and
target. The occurrence of target to standard stimulus was equiv-
alent to the ratio 1:4. To create a baseline (i.e., control condi-
tion), subjects were asked to react in the same manner (e.g.,
always press the blue button) regardless of the visual stimulus.
The frequency at which the stimulus was displayed was 1 Hz;
accordingly, both baseline and task intervals lasted for 25 s. The
total measurement time was about 6 to 7 min with six and seven
repetitions of task and baseline intervals, respectively. The
experimental design is explained in more detail elsewhere.35,40,44

Behavioral performances have been previously reported.35,40

The control group revealed a lower error of omission (i.e., sub-
ject failed to press any button when target stimuli were dis-
played) than the disordered group (two-sample t-test;
p < 0.05; degree of freedom ðDFÞ ¼ 28 to 42). Furthermore,
the reaction time of correct response was faster in the control
group (two-sample t-test; p < 0.05; DF ¼ 28 to 42).
However, there was no significant difference in terms of error
of commission (i.e., subjects failed to press a correct button
when target stimuli were displayed) between the control and dis-
ordered groups (two-sample t-test; p ≥ 0.05; DF ¼ 28 to 42).
The effects of medication on behavioral performance have also
been previously described in detail.35,40

A dual-wavelength fNIRS system (ETG-4000; wavelengths:
695 and 830 nm; Hitachi Medical Corporation, Tokyo, Japan)
was used for measuring the change of cerebral hemoglobin dur-
ing the OB task. A 3 × 5 plane probe (consisting of eight emit-
ters and seven detectors) was used. The measured region was
approximately located between the emitter and the detector (sep-
arated by a distance of 3 cm). Two plane probes were placed on
the bilateral prefrontal-to-parietal cortices, which were covered
by 44 channels in accordance with the procedure described
by Nagashima et al.,35,40 as shown in Fig. 1. Three-dimensional
(3-D) channel spaces were digitized and then spatially registered
on the standard Montreal Neurological Institute atlas.45,46

2.3 Signal Preprocessing and Feature Extraction

fNIRS measurement data were preprocessed on the MATLAB®-
based platform (platform for optical topography analysis
tools).47 The change in transmitted light intensity was converted

into signals reflecting changes in concentrations and optical
path length (ΔC · L) of oxygenated, deoxygenated, and total
hemoglobin (O2Hb, HHb, and Hb-total) using the modified
Beer–Lambert equation.26,48 Channel-wise signals with low
quality (signal-to-noise ratio <10 dB) were eliminated.
Channels with a high number of time-point data (outliers across
channels) affected by extremely high- or low-signal amplitudes
(outlier amplitudes; ΔC · L > μþ 3σ ∨ ΔC · L < μ − 3σ; μ
and σ are average and standard deviation of all channels, respec-
tively) were also rejected. Due to these criteria, 12% to 12.5% of
total channels were eliminated. The remaining channel-wise sig-
nals were linearly fitted and filtered (finite impulse response:
0.01 to 0.8 Hz) to remove disruptive baseline and cardiac pul-
sation. Thereafter, activation and FC analyses were applied on
filtered signals.

2.3.1 Activation analysis

Continuous signals were compartmentalized on the basis of 13,
25, and 13 s for pretask, task, and posttask, respectively
[Fig. 2(a)]. Therefore, six epochs with shorter temporal signals
(51 s) were obtained from a continuous channel-wise signal.
Motion artifacts might uncontrollably distort the epoch data,
so motion-affected epochs were rejected. Specifically, the occur-
rence of motion artifacts (e.g., spikes) was recognized by the
interepoch dissimilarity in the channel data.44 The dissimilarity
was quantified using the summation of interepoch correlations.
Compared to other epochs (which can be caused by motion arti-
facts), epochs with significantly low-correlation summation
(nonparametric outlier;�3 interquartile range) are likely to have
distinct waveforms.49 Those epochs were then excluded from
further analysis. An epoch was rejected in maximum [6.86%
of total channels; Fig. 2(b)]. Epoch rejection was uniform for
O2Hb and HHb. The baseline of motion-free epochs was cor-
rected to eliminate redundant drifts (i.e., the first 10 s of the
epochs). Subsequently, motion-free epochs were averaged for
each channel [Fig. 2(c)]. The activation analysis was performed
by averaging the epoch data (O2Hb and HHb) from 17 to 38 s
[dark yellow-colored interval in Fig. 2(c)].

2.3.2 FC analysis

Rejecting motion-affected epochs and averaging motion-free
epochs accordingly minimizes noises and improves data quality

Fig. 1 Probe placement on bilateral hemispheres. A plane probe consisted of eight emitters (red circles)
and seven detectors (yellow squares). Two plane probes measured 44 regions, namely, channels (num-
bered black circles). A channel was approximately located between an emitter and a detector that were
separated by 3 cm.
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[Fig. 2(c)]. However, that method is impractical for FC analy-
sis because the temporal information will be neglected.
Therefore, instead of epoch data, time-point data affected by
motion artifacts (e.g., spikes) were eliminated. Spikes were
detected by the sudden change (>0.1 mM · mm) in two time-
point data (0.1 s) and removed from continuous signals
[Fig. 3(a)]. Extremely high- or low-signal amplitudes were fre-
quently observed pre- and postspikes. Therefore, time-point
data with outlier amplitudes were also eliminated [Fig. 3(b)].
Rejection of time-point data was uniform for O2Hb and HHb
(24.0%� 14.6%). To understand the dynamics of connectivity,
the continuous signal was temporally categorized into baseline
(green-colored) and task (yellow-colored) intervals. Those
interval signals were then concatenated for each category
[Figs. 3(c) and 3(d) for baseline and task, respectively].50

Interchannel connectivity was evaluated using Pearson’s cor-
relation (r) for the entire measurement, baseline, and task inter-
vals of O2Hb and HHb signals.

2.4 Classification Analysis

Both activation and connectivity magnitudes were treated as
potential classification (i.e., screening) features. Because low-
quality and noisy data were excluded, the number of available
features for each subject might be varied. The availability of fea-
tures should be sufficient and balanced in both control and

disordered groups. Therefore, features with low availability
(<50%) and high discrepancy of group availability (>10%) were
disregarded in the following classification analysis.

The classification analysis was performed and optimized fol-
lowing the process flow summarized in Fig. 4. Because the sam-
ple number in this study was limited compared to the number of
maximum available features (44 × 43∕2 and 44 for connectivity
and analysis features, respectively), the risk of overfitting and
the curse of dimensionality might be elevated. Therefore, feature
selection and cross-validation analysis were also accommodated
in this classification analysis to avoid those risks. Features were
selected according to the stepwise-forward approach, namely,
adding features one-by-one.51 Exhaustive feature selection
(i.e., all possible feature combinations) might be beneficial in
regard to classification performance; however, the computa-
tional training time would be impractical, particularly in the case
of connectivity features. By considering the trade-off between
computational training time and classification performance,
we chose the stepwise-forward selection. Features were also
cross validated by the k-fold (fivefold) cross-validation method
(approx. 1:2 ratio of control to disordered subjects in both train-
ing and test subsets).

For the first step, a single feature [Fig. 4(a)] was statistically
evaluated (two-sample t-test) in order to clarify the feature trend
for each group in the training subsets (e.g., the control group
tended to exhibit greater feature magnitude than the disordered

Fig. 2 Signal preprocessing for activation analysis. (a) Continuous signals (red plots; all channels) were
divided into six shorter signals, namely, epochs. An epoch data included 13, 25, and 13 s of pretask, task
(yellow-colored), and posttask intervals, respectively. Spikes were detected at the beginning and end of
measurement (black arrows). (b) Furthermore, motion-affected epochs were identified and rejected in a
channel-wise manner. (c) Motion-free epochs were then averaged for each channel. Channel-wise acti-
vation values were obtained by averaging the epoch data from 17 to 38 s (dark yellow-colored interval).
Green- and gray-colored intervals indicate baseline and instruction intervals.
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group) [Fig. 4(b)]. Supervised classification analysis was per-
formed afterward by varying the thresholds of feature magnitude
(e.g., in steps of 0.001) and discriminating subjects according to
feature trends (e.g., subjects with feature magnitudes greater
than a threshold were classified as the control group, and vice
versa) [Fig. 4(c)]. Specificity (i.e., the true control subjects) and
sensitivity (i.e., the true disordered subjects) were then com-
puted. The thresholds giving the highest summation of specific-
ity and sensitivity [Fig. 4(d)] were then used to evaluate the test
subsets [Fig. 4(e)]. This process was repeated for any other sin-
gle feature. Among all features, the feature that contributed to
the highest summation of cross-validated and averaged accura-
cies in both training and test subsets was selected [Fig. 4(f)].
Classification accuracy is defined as the correct classification
rate from the total number of subjects in a subset. For the second
step, the previously selected feature was combined with another
single feature [Fig. 4(g)]. If two or more features were com-
bined, those features would be averaged. Averaged connectivity
is defined as the inverse of averaged Fisher-z transform.
Averaged features were used to classify the training subsets.
Validation was subsequently carried out in the test subsets.
All possible combinations of two features involving the previ-
ously selected feature were evaluated. Among all combinations,
the two-feature combination giving the highest summation of
cross-validated and averaged accuracies in both training and test
subsets was selected. The third step aimed to find the best per-
forming combination of three features and so on.

The computation for adding features one-by-one was contin-
uously done. In order to minimize computational time, when the

stepwise summation of training and test accuracies was 10%
lower than the highest accuracy as currently obtained [5% of
significance level for each of the training and test accuracies;
Fig. 4(h)], the computation would be terminated [Fig. 4(i)].
Optimum features are defined as the combination of features
giving the highest summation of training and test accuracies.
Classification performance in terms of connectivity and of acti-
vation features was then compared to evaluate the potential of
the screening biomarker.

In obtaining the best classification performance, the effec-
tiveness of the stepwise method was evaluated and compared
to three others: best-performing single, significant between-
groups, and all available features. The selected feature at the first
step of stepwise classification was used in the method of best
performing single feature. Meanwhile, significant features with
the major between-group trend (e.g., significantly higher activa-
tion or stronger connectivity in the control group, and vice
versa) were selected for the method of significant between-
group features. For a standard comparison, no feature selection
(i.e., usage of all features) was applied on the method of all
available features.

3 Results

3.1 Group Effect in Functional Connectivity

Subject-averaged connectivity (Fisher-z transform) in the entire
measurement, baseline, and task intervals is shown in Fig. 5.
O2Hb connectivities [Figs. 5(a) and 5(b)] were well correlated
(r ≥ 0.7; Fig. S1 in the Supplemental Material) to HHb

Fig. 3 Signal preprocessing for connectivity analysis. (a) Sudden amplitude changes (>0.1 mM · mm;
spikes) in two time-point data (0.1 s) were detected and rejected from the continuous signals (red plots).
Motion artifacts also affected pre- and postspikes resulting in extremely high- or low-signal amplitudes
(i.e., outlier amplitudes). (b) Time-point data with outlier amplitudes were also eliminated. (c) Seven base-
line (green-colored intervals) and (d) six task (yellow-colored intervals) signals were concatenated. Gray-
colored intervals indicate instruction intervals.
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connectivities [Figs. 5(c) and 5(d)]. During the baseline interval
[Figs. 5(a2)–5(d2)], within region connectivity of O2Hb and
HHb was observed in the right MFG for both the control and
disordered groups. The control group showed slight increases
in interhemispheric connectivity during the task [Figs. 5(a3) and
5(c3)]. Meanwhile, bilateral intra- and interhemispheric connec-
tivities were found to increase during the task performed in the
disordered group [Figs. 5(b3) and 5(d3)]. Unaffected within
region connectivity of the right MFG was observed during the
task in the control group. Significant task-evoked increases of
connectivity were observed in the disordered group. This result
may suggest that the control group relatively maintained the
attentive connectivity, even in the baseline interval. Statistical
results of interinterval [one-sample t-test; p < 0.05 (uncor-
rected); DF ¼ 10 to 22 for the control group; DF ¼ 17 to 35 for
the disordered group; DF depends on each feature availability]
are shown in Fig. S2 in the Supplemental Material.

Between-group differences in right intra- and interhemi-
spheric connectivity during the baseline interval were observed
[Figs. 5(a2) versus 5(b2) and 5(c2) versus 5(d2)]. The control
group exhibited strong connectivity in right MFG and left MFG-
right middle temporal gyrus (MTG). Furthermore, connectivity
comparisons for the control and disordered groups revealed sig-
nificances in bilateral intrahemispheric connectivities for the
entire measurement [Figs. 5(a1) versus 5(b1) and 5(c1) versus
5(d1)] and task [Figs. 5(a3) versus 5(b3) and 5(c3) versus 5(d3)]
intervals. The control group showed stronger right intrahemi-
spheric connectivity than the disordered group; yet, strong left
intrahemispheric connectivity was revealed in the disordered
group. Statistical results of intergroup (two-sample t-test;
p < 0.05 (uncorrected); DF ¼ 29 to 57; DF depends on each
feature availability) connectivity are shown in Fig. S3 in the
Supplemental Material. In summary, the strong right intrahemi-
spheric connectivity was consistently observed in the control
group during all intervals.

3.2 Optimization of Feature Selection

Training (void boxplots) and test (patched boxplots) accuracies
during cross-validation (i.e., fivefold) for three ways of selecting
features, i.e., best performing single feature (red boxplots), sig-
nificant between-group features (blue boxplots), and all avail-
able features (black boxplots), are compared in Fig. 6. The
results imply that combining all available features would not
bring better performance compared to selecting fewer features,
particularly in training subsets. This trend may be caused by
mixing varied feature trends of groups. The significant
between-group features used uniform group trends. For exam-
ple, significantly higher activation features in the control group
than in the disordered group were selected. The comparison
between performances of the best performing single feature and
the significance between-group features were shown to be insig-
nificant in both training and test accuracies. The next question
came up: whether the performance of optimized feature selec-
tion was superior to the best performing single feature and sig-
nificant between-group features.

Stepwise training and test accuracies during the optimization
of classification analysis are visualized in Fig. 7. There were
four points highlighted from the optimization results. First, the
training accuracies of activation features were significantly
lower compared to connectivity features in all intervals
[O2Hb and HHb; 76% versus 88% on average; one-way analysis
of variance (ANOVA); Fð3;16Þ ¼ 30.2 to 33.8; η2 ¼ 0.85 to 0.86;
p < 0.001]. Second, there was no significant effect of used fea-
tures on the test accuracies [one-way ANOVA; Fð3;16Þ ¼ 2.2 to
2.3; η2 ¼ 0.3; p > 0.05]. The variability of test accuracy evalu-
ated using activation features was relatively high. Third, among
connectivity intervals, low training accuracy was observed in
O2Hb connectivity features during the entire measurement inter-
val [Fig. 7(b1); one-way ANOVA; Fð5;24Þ ¼ 4.2; η2 ¼ 0.47;
p < 0.01]. Fourth, HHb connectivity features from the entire
measurement interval presented higher training and test accura-
cies than those for O2Hb connectivity features [Figs. 7(b1) ver-
sus 7(b2); two-sample t-test; tð8Þ ¼ 2.7 to 7.7; Cohen’s d ¼ 1.7
to 4.9; p < 0.05]. In general, these results demonstrate the effec-
tiveness of connectivity features in group classification com-
pared to activation features. Although using a great number
of features can contribute to better classification performance,
high classification analysis using connectivity features was less
likely to be caused by the large number of used features (12 to

Fig. 4 Process flow of classification analysis. The classification
analysis was carried out independently for each activation and con-
nectivity feature. For the first step, (a) a single feature was used to
classify groups. (b) The feature was statistically evaluated to under-
stand group-wise trends. (c) The thresholds of feature were varied
and applied on the training subsets. (d) Selection of optimum thresh-
old was done based on the highest summation of specificity and sen-
sitivity. (e) The optimum threshold was cross validated in the test
subsets. (f) The best performing feature with the highest summation
of cross-validated and averaged accuracies in both training and test
subsets was carried on to the succeeding stepwise selection. In the
second step, (g) the best performing combination of two features was
selected using the same procedure (b)–(f). Therefore, the selected
features would be added one-by-one for each step. (h) If the trend
of summation accuracy was decreasing, (i) the classification analysis
would be terminated.
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17 versus 8 to 23 features for activation and connectivity, respec-
tively). On the basis of these results, we focused on connectivity
features afterward.

To address the question mentioned above, we compare the
performance (i.e., training and test accuracies) in terms of best
performing single feature, significant between-group features,
and optimum features, as shown in Table 1. The optimum fea-
tures attained significantly higher training accuracies [one-way
ANOVA; Fð2;12Þ ¼ 8.28 to 48.5; η2 ¼ 0.58 to 0.89; p < 0.01].
No significant benefit of optimum selection was observed in the
test accuracy [one-way ANOVA; Fð2;12Þ ¼ 1.2 to 3.5; η2 ¼ 0.17

to 0.37; p > 0.05]. However, the performance of optimum fea-
tures showed relatively lower standard deviations of test accu-
racy than those for best performing single feature and significant

between-group features (Table 1; red- and blue-patched box-
plots in Fig. 6). This result suggests that feature selection is
an important step.

3.3 Performance of Optimum Combination
Features

Features were optimized on the basis of the summation of train-
ing and test accuracies. However, well-performing features and
classifiers should be able to provide high specificity and sensi-
tivity (i.e., measure of separability). Imbalanced specificity and
sensitivity measures could indicate substantial differences in
group feature variances. Therefore, we also evaluated specificity
and sensitivity in both training and test subsets. As varying

Fig. 5 Channel-wise O2Hb [(a) and (b)] and HHb [(c) and (d)] connectivity maps across subjects
(r̄ , inverse of averaged Fisher-z transform) for control [(a) and (c)] and disordered [(b) and (d)] groups.
The connectivity was computed in three intervals: (a1)–(d1) entire measurement, (a2)–(d2) baseline, and
(a3)–(d3) task. Channels coming from the same region based on probability of spatial registration are
categorized adjacently. Bilateral (L for left; R for right) cortical areas: ANG, IFG, MFG, MTG, PoCG,
precentral gyrus (PrCG), SMG, and STG.
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Fig. 6 Comparisons of training (void boxplots) and test (patched boxplots) accuracies during cross-
validation (i.e., fivefold) in the case of three ways of selecting features: best performing single feature
(red boxplots), significant between-group features (blue boxplots), and all available features (black box-
plots). Comparisons were assessed for (a) activation connectivity features in the (b) entire measurement,
(c) baseline, and (d) task intervals for (a1)–(d1) O2Hb and (a2)–(d2) HHb. Brackets indicate significant
differences between two methods (two-sample t -test; p < 0.05; DF ¼ 8).

Fig. 7 Stepwise optimization of classification analysis to obtain the highest training (magenta and cyan
for O2Hb and HHb, respectively) and test (red and blue for O2Hb and HHb, respectively) accuracies in
(a) activation, connectivity features in the (b) entire measurement, (c) baseline, and (d) task intervals
for (a1)–(d1) O2Hb and (a2)–(d2) HHb. Scattered points represent the averaged accuracies across
cross-validated subsets; neighboring patches are associated with the standard error of accuracies.
Dashed lines indicate the highest summation of cross-validated and averaged training and test
accuracies.
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thresholds of feature magnitude, averaged receiver operating
curves (ROCs) over five times of training are shown in
Fig. 8. Results of specificity, sensitivity, and area under ROC
are tabulated in Table 2. Among connectivity intervals, the task
HHb connectivity presented the highest specificity [one-way
ANOVA; Tukey–Kramer post hoc analysis; Fð5;24Þ ¼ 14.7;
η2 ¼ 0.75; p < 0.001] and the lowest sensitivity [one-way
ANOVA; Tukey–Kramer post hoc analysis; Fð5;24Þ ¼ 8.2;
η2 ¼ 0.63; p < 0.001]. Areas under ROC [one-way ANOVA;
Fð5;24Þ ¼ 5.3; η2 ¼ 0.52; p < 0.01] and differences between
specificity and sensitivity [one-way ANOVA; Fð5;24Þ ¼ 4.48;
η2 ¼ 0.48;p < 0.01] were also significantly affected by connec-
tivity intervals. Boxplots of optimum O2Hb and HHb

connectivity features are shown in a group-wise manner (Fig. 9).
The trends of optimum O2Hb and HHb connectivities were dif-
ferent. Weak O2Hb [Figs. 9(b1) and 9(c1)] and strong HHb
[Figs. 9(b2) and 9(c2)] connectivities were observed in the con-
trol group. From the training steps, the optimum thresholds of
averaged connectivity (inverse of averaged Fisher-z transform)
were found to be around 0.2 to 0.3. Specificity and sensitivity of
all connectivity intervals in the test subsets were comparable to
each other [one-way ANOVA; Fð5;24Þ ¼ 0.4 to 1.7; η2 ¼ 0.07 to
0.26; p > 0.05]. However, a difference between O2Hb and HHb
connectivity performances was found in the entire measurement
interval [two-sample t-test; tð8Þ ¼ 2.58; Cohen’s d ¼ 1.6;
p < 0.05]. According to this result, the use of either baseline

Table 1 Training and test performance (mean ± standard deviation) comparisons of three methods of feature selection (best performing single
feature, significant between-group, and stepwise optimization) in O2Hb and HHb connectivities.

FC (entire measurement) FC (baseline) FC (task)

O2Hb HHb O2Hb HHb O2Hb HHb

Training subsets

Single feature 77.1� 1.7% 80.5� 3.5% 76.5� 3.0% 79.7� 6.1% 81.4� 1.7% 83.4� 2.9%

Significant
features

78.0� 1.3% 78.0� 3.0% 78.0� 1.8% 78.4� 1.8% 79.7� 3.0% 78.0� 2.6%

Stepwise
selection

84.7� 1.0% 89.8� 1.1% 86.5� 2.5% 88.2� 3.3% 89.7� 2.6% 89.9� 2.5%

F ð2;12Þ ¼ 48.5
p < 0.001

F ð2;12Þ ¼ 25.9
p < 0.001

F ð2;12Þ ¼ 24.0
p < 0.001

F ð2;12Þ ¼ 8.28
p < 0.01

F ð2;12Þ ¼ 23.5
p < 0.001

F ð2;12Þ ¼ 24.6
p < 0.001

Test subsets

Single feature 73.9� 13.5% 76.3� 14.0% 75.2� 8.4% 71.4� 27.2% 78.5� 10.4% 80.3� 21.1%

Significant
features

76.5� 4.9% 77.0� 9.5% 72.4� 8.7% 71.5� 9.5% 75.2� 15.8% 77.0� 9.5%

Stepwise
selection

82.8� 2.2% 88.2� 4.0% 85.6� 7.9% 89.2� 11.7% 90.4� 9.6% 90.6� 9.6%

F ð2;12Þ ¼ 1.49
p > 0.05

F ð2;12Þ ¼ 2.24
p > 0.05

F ð2;12Þ ¼ 3.50
p > 0.05

F ð2;12Þ ¼ 1.63
p > 0.05

F ð2;12Þ ¼ 2.13
p > 0.05

F ð2;12Þ ¼ 1.20
p > 0.05

Fig. 8 ROCs denoting specificity and sensitivity of training classification as varying thresholds of opti-
mum O2Hb (red curves) and HHb (blue curves) connectivity features from the (a) entire measurement,
(b) baseline, and (c) task intervals.
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or task connectivity features (O2Hb and HHb) for group clas-
sification is preferable.

The optimum connectivity features are projected on a brain
template in Fig. 10. Both O2Hb and HHb optimum connectivity
showed characteristics of interhemispheric connectivity. High
O2Hb and HHb connectivities in the control group were clearly
denoted by connectivities of right frontal, left frontal, and left
parietal lobes [Figs. 10(a), 10(b2), and 10(c2)]. Meanwhile, high
O2Hb connectivity in the disordered group was observed at con-
nectivities of left frontal, left parietal, and right parietal lobes. In
the entire measurement interval, the optimum connectivity
nodes of O2Hb and HHb were overlapped [79% to 91% over-
lapped channels; Figs. 10(a1) and 10(a2)] in the right MFG,
right MTG, right IFG, right postcentral gyrus (PoCG), left
SMG, left superior temporal gyrus (STG), and left ANG.

Meanwhile, mutual connectivity (i.e., vertex) of left ANG
(channel 9) with right PoCG (channel 29) and right MTG (chan-
nel 30) was observed. This mutual connectivity was also con-
sistently found in optimum HHb connectivity features from the
baseline and task intervals [Figs. 10(a2), 10(b2), and 10(c2)].

4 Discussion
The current study evaluated and compared the effectiveness of
attention-related brain activation and connectivity features as
ADHD (with and without ASD-comorbid) screening bio-
markers. Task-based connectivity might be less popular than
RS connectivity analysis due to high task demand complicating
measurements; however, a symptomatic-related task (e.g., the
OB attention task) is likely to be more explainable and control-
lable, particularly in regard to studying disordered groups.

Table 2 Training performances of optimum O2Hb and HHb connectivity features from the entire measurement, baseline, and task intervals in
terms of specificity, sensitivity, and area under ROC (mean ± standard deviation).

FC (entire measurement) FC (baseline) FC (task)

Statistic resultO2Hb HHb O2Hb HHb O2Hb HHb

Specificity 69.5� 2.3% 82.4� 4.1% 74.3� 7.8% 78.6� 5.7% 83.0� 6.5% 95.6� 2.5%a F ð5;24Þ ¼ 14.7 p < 0.001

Sensitivity 94.4� 1.9% 94.5� 1.9% 94.4� 1.9% 94.5� 1.9% 94.3� 3.2% 86.2� 4.1%a F ð5;24Þ ¼ 8.2 p < 0.001

Area under ROC 78.5� 2.1% 83.6� 2.2% 79.9� 3.6% 86.2� 2.8% 84.5� 3.7% 85.3� 3.4% F ð5;24Þ ¼ 5.3 p < 0.01

aThe highest specificity and the lowest sensitivity obtained among all connectivity intervals [one-way ANOVA; Tukey–Kramer post hoc analysis;
F ð5;24Þ ¼ 8.2 to 14.7; p < 0.001].

Fig. 9 Distributions of optimum (a1)–(c1) O2Hb (red boxplots and scatters) and (a2)–(c2) HHb (blue box-
plots and scatters) classifying features from the connectivities (inverse of averaged Fisher-z transform) of
(a) entire measurement, (b) baseline, and (c) task intervals in the control (filled scatters and void boxplots)
and disordered (void scatters and patched boxplots) groups. Specificity (true control group; mean ± stan-
dard deviation) and sensitivity (true disordered group; mean ± standard deviation) values for the test
subsets were obtained using the thresholds (i.e., cut-off) optimized in the training subsets.
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Although the activation analysis had been well known and ana-
lyzed further as potential biomarkers in ADHD screening52 and
differential comorbidity diagnosis,49 the connectivity analysis
unveils an alternative horizon of explaining intra- and interre-
gion relationships. According to our comparison results, the
connectivity feature performed well in classifying groups with
higher training and test accuracies than the activation features.
Combining the practicability of fNIRS, we do hope that the cur-
rent study contributes to a more accurate and verifiable screen-
ing biomarker.

4.1 Attentive Activation and Connectivity of
Disordered Children

Other modalities, such as electroencephalogram and fMRI, have
been used to interpret attentive activation during OB tasks.
Human and animal (i.e., monkey) studies on both visual and
auditory OB tasks showed transient event-related activation in
the bilateral MFG, inferior parietal lobe, and inferior part of the
posterior cingulate gyrus.53,54 Tamm et al.55 investigated the dif-
ference in brain activations of healthy and ADHD adolescents
measured using fMRI during the OB task. Healthy adolescents
exhibited bilateral activation along the frontal (MFG and IFG)
to superior parietal (PoCG, SMG, and ANG) lobes as well as
posterior cingulate cortex and putamen. Even though the IFG
and right anterior/mid-cingulate cortex were activated, those
activations were minor compared to those of healthy subjects,
and ADHD adolescents had significantly impaired activations
on the bilateral parietal lobes, right precuneus, and thalamus.
Abnormality of the cingulo-frontal-parietal network in

ADHD patients has also been highlighted.56,57 Dysfunctions
of the right superior–inferior parietal lobes were also observed
in ADHD children during a mental rotation task that required
spatial working memory.58

Kiehl et al.59 demonstrated that spatially diverged activity
(i.e., adaptive reflexive processing), which was less likely
required for performing a task, was observed even in the case
of a low-load task such as the OB task. This finding may cor-
respond to strategic adaptation to any upcoming stimulus.
Task-evoked activation of healthy adults found during fMRI
measurement was distributed in the bilateral frontal-temporal-
parietal-occipital lobes of cortical and subcortical systems.
The relatively minor activation of ADHD subjects to healthy
controls might also imply the disability of adaptive reflexive
processing.

We previously reported the results of activation analysis on
the currently used datasets.35,40 The results revealed impaired
activation in the right MFG/IFG and the SMG/ANG for the
disordered group. Those ROIs were well aligned with previ-
ously reported ones. However, we could not obtain activation
information during the baseline interval because the principle
of activation analysis is solely comparing between baseline and
task-evoked changes. By performing the connectivity analysis
for both baseline and task intervals, we found that the high con-
nectivity within the right MFG might not be an OB-evoked
response. Within region connectivity of the right MFG had
already been strong in the baseline interval. Note that the sub-
jects were required to uniformly and repetitively respond (i.e.,
press the blue button) to any visual stimulus during the baseline
interval. Despite the significant activation increase in the task

Fig. 10 Optimum (a1)–(c1) O2Hb and (a2)–(c2) HHb classifying features from the connectivities of
(a) entire measurement, (b) baseline, and (c) task intervals projected to the brain template. Channel
colors are varied according to the region probability such as ANG, IFG, MFG, MTG, PoCG, PrCG,
SMG, and STG. Meanwhile, the thickness of connectivity lines indicates t -values of control–disordered
comparison (two-sample t -test). Thicker lines represent stronger probability of control–disordered
differences (alternative hypothesis H1: control connectivity is greater than disordered connectivity).
Solid connectivity lines [major vertices in (a), (b2), and (c2)] visualize the trend of high connectivity
in the control group; dashed-connectivity lines [major vertices in (b1) and (c1)] denote the trend of high
connectivity in the disordered group.
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interval,35,40 the right MFG connectivity remained almost
unchanged for the control group. This finding suggests that
channels within the right MFG were synchronized to focus
attention and respond to the visual stimulus; as such, connectiv-
ity and activation characteristics might not be positively corre-
lated to each other.

The control group did not show increases of task-evoked
connectivity as massive as the disordered group did. This result
reveals that the control group relatively maintained the attentive
connectivity during baseline and task intervals. According to the
obtained task connectivities, task-evoked connectivity of the
right MFG was found to increase in the disordered group but
not in the control group. However, these connectivity increases
were apparently unable to accommodate the lack of brain acti-
vation, as previously reported.35,40 The disordered group may
have the ability to control the attentive connectivity when per-
forming tasks; however, within connectivity of the right MFG
(and right intrahemispheric connectivity) were found to be
weaker than those for the control group.

The results of hypoactivation and aberrant attention circuitry
were consistent with the previous studies—except for the find-
ing of relatively high and increased within region (right MFG)
connectivity, which has barely been described in ADHD studies.
We argue that the within MFG connectivity might be a result of
chronic neuromodulation by stimulant (e.g., MPH and amphet-
amine) and/or nonstimulant (e.g., ATX) medication. Note that
the disordered group was in a premedicated condition; however,
none of the subjects were medicated naïve. Long-term MPH ad-
ministration (i.e., one year) brought improved behavioral perfor-
mances in the test of variables of attention.60 Spencer et al.61

reviewed 29 studies related to the psychostimulant effect on the
brain and showed the effect of structural and functional altera-
tion suppression relative to unmedicated subjects. However,
longitudinal monitoring from medicated naïve status to after
treatment is required to verify this argument.

4.2 Effectiveness of Connectivity Features
as a Screening Tool

Although activation analysis offers information about increased
regional blood flow and dismisses temporal information, con-
nectivity analysis identifies functionally synchronized regions
with unknown activation significances. Activation and connec-
tivity analyses have advantages and disadvantages; thus combin-
ing both analyses will ideally and comprehensively interpret
brain activation and networks. The characteristics of activation
and networks may potentially be used for screening disordered
subjects from TD children.

In the current study, we confirmed the effectiveness of con-
nectivity features as screening biomarkers. We focus on the lim-
ited sample number and significant gap in the number of
available features: the number of available connectivity features
was more than 15 times that of available activation features.
When the number of features exceeds the number of samples,
a machine learning approach (e.g., a support vector machine)
might be more prone to the risk of overfitting. Therefore, we
selected a simple threshold-based classification that quantified
a combination of features into a single classification parameter
(i.e., across features average).

The effectiveness of connectivity features was shown not
only in the optimum condition but also in the training perfor-
mances of a single feature and significant between-group fea-
tures [Figs. 6(a) versus 6(b), 6(c), 6(d)]. This result suggested

that, compared to activation features, the connectivity features
are more likely to have prominent group-related information
(i.e., high intergroup variance) that contributes to high classifi-
cation performance. Sole activation features evaluated in medi-
cated naïve ADHD and ASD-comorbid ADHD children were
insufficient to construct a differential diagnostic biomarker.49

Therefore, we proposed and introduced the MPH-evoked acti-
vation as a differential classification feature (accuracy of 82%).
Nevertheless, administration of medication (even to suspected
ADHD children) may be less appropriate, particularly in the
case of screening. In light of that perspective, we attempted
to develop screening biomarkers on the basis of medication free.
The current classification result using unmedicated task connec-
tivity has already been able to offer a classification accuracy of
about 88%. This finding has optimized connectivity features in
the least burden condition for both control and disordered
children.

During the stepwise feature selection, we optimized the use
of several connectivities, resulting in the best classification accu-
racy. Compared to the disordered group, the control group
showed stronger connectivities of right frontal, left frontal, and
left parietal lobes [Figs. 10(a), 10(b2), and 10(c2)], and revealed
weaker connectivities of left frontal, left parietal, and right pari-
etal lobes [Figs. 10(b1) and 10(c1)]. We found that the connec-
tivity between the left ANG (BA 39), right PoCG (BA 3/1/2),
and right MTG (BA 21/22) was one of the most robust classi-
fication features and had previously been reported to be involved
in the attention network.55,59

In the baseline and task intervals, the optimum O2Hb con-
nectivity features were different compared to the optimum
HHb connectivity features [Figs. 10(b1) versus 10(b2) and
10(c1) versus 10(c2)]. The optimum O2Hb connectivity features
dominated the group classification based on connectivities of
left frontal, left parietal, and right parietal lobes (control < dis-
ordered groups); meanwhile, connectivities of right frontal, left
frontal, and left parietal lobes (control > disordered groups)
characterized the optimum HHb connectivity features. These
differences were caused by the differently selected feature trend
at the first optimization step. We manipulated the first selection
using the trend of stronger O2Hb connectivity in the control
group, and we confirmed the similarities between optimum
O2Hb and HHb connectivity features (data not shown).

4.3 Resting State versus Task-Based Connectivity

Although performing tasks on disordered children heightened
the failure risk due to the inability of the children in performing
the task, previous studies consequently focused on measure-
ments of children during RS. The feasibility of performing
RS in a great sample number had been confirmed as the com-
pletion of an ADHD database from three continents.21 The
abnormalities on fronto-striatal, fronto-default, and sensorimo-
tor networks were defined as proposed pathophysiological mod-
els of ADHD related to the default mode network.62–64

Castellanos et al. reported decreased FC between the anterior
cingulate and precuneus/posterior cingulate cortices, whereas
Tian et al.65 oppositely observed significant FC between the
anterior cingulate and extensive regions of thalamus, cerebel-
lum, insula, and brainstem in ADHD subjects. These disagree-
ments were likely caused by the analytical reason (i.e., antiphase
correlation and seed selection) and divergent maturity level
(adolescents versus adults).66 Furthermore, symptomatic ADHD
severity may influence brain signal variability.67
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According to previous attempts on the development of RS
connectivity as a screening tool, the classification performance
was unsteady, ranging from 37% to 86%.20,21,68 The fMRI meas-
urement quality and existence of profound RS connectivity char-
acteristic were then questioned. Therefore, we pursued a
different approach on task-based connectivity by controlling the
task positive network (i.e., attention network). The current clas-
sification result showed superior performance than previously
reported classifications on the basis of RS connectivity, despite
unmatched symptomatic severity level, comorbidity, and sub-
type conditions. Thus task-based connectivity features measured
using fNIRS may be considered as a substitute for or comple-
ment to RS connectivity features for screening purposes.

4.4 Limitations

The current study has two limitations. First, the FC-based
screening biomarker was optimized and drawn from a small
sample number. Due to the small samples, we combined ADHD
and ASD-comorbid ADHD children with different acceptabil-
ities of MPH and ATX. In addition, we could not guarantee
the absence of overfitting despite our effort to minimize the risk
of overfitting. Further verification in the cohort study is
necessary.69,70 Second, the stepwise feature selection had a
drawback of irreversible selection. Validating small test subsets
might result in coincidental high performance. Mistakenly
selected features even in a step could influence the whole feature
combination. Therefore, we also set the training performance as
one of the optimization criteria. Even though our current results
showed well-performed selection and optimization with high
classification accuracy and a robust attention network, mutual
information-based methods might be advantageous in regard
to extracting profound characteristics with less risk of incorrect
selection.

5 Conclusion
We investigated attentive task-based connectivity (measured by
fNIRS) in control and disordered groups and found that the con-
nectivity showed changes during the transition of baseline-to-
task, especially in the disordered group. Although the activation
of the right MFG was impaired in the disordered group, within
region connectivity of the right MFG was found to increase in
the task interval. However, intergroup differences were still
found, since the disordered group lacked right intrahemispheric
connectivity (e.g., within region of MFG) during the baseline
and task intervals. The effectiveness of connectivity over acti-
vation features for the purpose of a screening biomarker was
confirmed. The classification using connectivity features
resulted in a high performance with an accuracy of about
88%. With further verification of the effectiveness of connectiv-
ity features using a greater number of samples, we expect prac-
tical application of task-based connectivity as a robust clinical
biomarker.
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