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Abstract. Functional near-infrared spectroscopy (fNIRS) estimates the functional oscillations of oxyhemoglobin
and deoxyhemoglobin in the cortex through scalp-located multiwavelength recordings. Hemoglobin oscillations
are inferred through temporal changes in continuous-wave (CW) light attenuation. However, because of the
diffusive multilayered head tissue structures, the photon path is longer than the source–detector separation,
complicating hemoglobin evaluation. This aspect is incorporated in the modified Beer–Lambert law where the
source–detector distance is multiplied by the differential pathlength factor (DPF). Since DPF estimation requires
photons’ time-of-flight information, DPF is assumed a priori in CW-fNIRS. Importantly, errors in the DPF spec-
trum induce hemoglobin cross talk, which is detrimental for fNIRS. We propose to estimate subject-specific
DPF spectral dependence relying on multidistance high-density measurements. The procedure estimates the
effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced
scattering. Since DPF depends on the scattering-to-absorption ratio, EAC limits the spectral dependence
assumption to scattering. This approach was compared to a standard frequency-domain multidistance pro-
cedure. A good association between the two methods (r 2 ¼ 0.69) was obtained. This approach could estimate
low-resolution maps of the DPF spectral dependence through large field of view, high-density systems, reducing
hemoglobin cross talk, and increasing fNIRS sensitivity and specificity to brain activity without instrumentation
modification. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.3.035005]
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1 Introduction
The most common application of near-infrared (NIR) light
for studying the human brain is functional near-infrared spec-
troscopy (fNIRS).1,2 By shining constant [continuous-wave
(CW)] NIR (∼650 to 950 nm) light into the scalp and by meas-
uring the diffuse reflectance at different wavelengths (λ), CW-
fNIRS allows us to study cortical changes in oxyhemoglobin
(O2Hb) and deoxyhemoglobin (HHb) concentrations. These
changes are caused by a variety of physiological events (e.g.,
pulse wave propagation within the head structure, periodic
changes in vein pressure induced by respiration, and changes
in arterial pressure induced by oscillations in baroreceptors
and chemoreceptor reflex control systems, i.e., Mayer waves)
including local vasodilatation and hyperemia induced by neural
activity (neurovascular coupling phenomenon).3 This means
that, similar to functional magnetic resonance imaging (MRI),
which measures blood oxygen-level-dependent effects, fNIRS
allows estimation and inference of brain activity.4,5 To retrieve
hemoglobin modulations through scalp-located measurements,
models of light propagation through head structures are
required. In fact, due to the diffusive nature of biological struc-
tures in such spectral range, NIR light propagation through
tissues is a complex process.6–9

Standard CW-fNIRS links light modulations to hemoglobin
oscillations through a simplified model, defined as the modified
Beer–Lambert law (MBLL).10 The MBLL is an exponential law
that links the measured light to hemoglobin through the extinc-
tion coefficients (substance absorption per unit concentration) at
the wavelengths employed and the effective distance traveled by
the photons to reach the detection point. Importantly, the effec-
tive distance traveled by the photons in diffusive media is not
equal to the source–detector geometrical distance. In fact,
because of the scattering of photons in the tissue, the effective
distance is several times the interoptode distance (between four
and seven times longer) and, importantly, it changes as a func-
tion of light wavelength. This characteristic is incorporated in
the MBLL by estimating the effective distance through simple
multiplication between the geometrical distance and a scalar that
is defined as the differential pathlength factor (DPF). Whereas
the extinction coefficients are specific for the given substance
and are tabulated,11 the DPFs are dependent on the composi-
tion and microscopic and macroscopic structures of the tissue
investigated; they show variability among subjects and head
regions.12

Since empirical estimation of DPF requires photons’ average
time-of-flight information,13 DPF is assumed a priori in CW
recordings, often not accounting for intersubject and interhead
region variability, or accounting only for a limited portion of
variables affecting DPF (e.g., subject age). In fact, to provide
quantitative estimations of DPF, photons’ average time-of-flight
information is required. This information can be assessed either
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through photons’ distribution of time of flight (or temporal point
spread function), acquired through time-domain technology,14

or through light phase shifts, acquired through frequency
domain multidistance (FDMD) technology.15 However, these
technologies are complex and expensive, and they are far less
common than CW technology, particularly for functional neuro-
imaging applications.

Importantly, whereas an error in the average value of DPFs
among different wavelengths influences the reconstructed oscil-
lation amplitudes of hemoglobin forms, an error in the spectral
dependence of DPF produces hemoglobin forms cross talk when
applying MBLL.16 This aspect can be detrimental for fNIRS,
because of the different, often opposite, behavior of O2Hb and
HHb during local neural activity.

Another quantitative optical parameter linked to DPF is the
effective attenuation coefficient (EAC). EAC quantifies the light
exponential rate of attenuation and it is approximately a function
of the product of absorption and reduced scattering (i.e., it is
proportional to the geometric mean of absorption and reduced
scattering).17,18 Since DPF is approximately a function of the
ratio of reduced scattering and absorption, it is possible to
express the DPF as a ratio of reduced scattering and EAC.
This means that, by measuring the EAC, the effect of absorption
on DPF can be empirically accounted for, reducing the a priori
assumption of DPF to the reduced scattering coefficient. Thus,
assuming the spectral dependence of DPF, the a priori assump-
tions are reduced to the spectral dependence of reduced scatter-
ing. This is interesting because

1. it is possible to estimate the EAC by measuring CW
light attenuation as a function of distance without the
need of photons’ time-of-flight information; and

2. reduced scattering coefficient changes as a function of
wavelength are generally less variable than absorption
changes.

In fact, whereas absorption spectra depend on the chromo-
phores, and which chromophores show peculiar spectral fea-
tures and which concentrations can vary among tissues and
subjects, once scattering is determined at a given wavelength,
several equations have been developed to describe its spectral
characteristics. For example, a simple linear decay at increasing
wavelength is described in the literature and is commonly em-
ployed in commercial systems to retrieve tissue saturation from
multiwavelength analysis of the EAC.19 Thus, if the approxima-
tion describing wavelength dependence of scattering is correct,
it is possible to estimate the DPF wavelength dependence from
EAC estimates, ultimately dampening the problem of hemoglo-
bin cross talk in CW-fNIRS introduced by an erroneous DPF
spectrum assumption.

Chiarelli et al.20 recently proposed a methodology for meas-
uring EAC which relies on high-density CW-fNIRS recordings.
The procedure measures the log light decay with distance
employing common uncalibrated fNIRS systems. The algorithm
is based on dampening the effects of variability in source inten-
sity and optode-to-scalp coupling by measuring signals at
several distances with many source–detector couples (channels,
few tens). Specifically, light intensity is first estimated from
high-frequency signal-to-noise ratio (SNR) in each channel,
and, after, EAC is estimated as the slope of the log intensity
of light reaching the detector as a function of source–detector
distance through linear regression, providing an accurate and

unbiased EAC estimate. Indeed, the algorithm requires a
high-density optical array to work; however, based on the rapid
development and increased usage of high-density CW-fNIRS
systems, this approach could be useful in fNIRS to provide
reliable estimates of hemoglobin oscillations through CW
recordings.

In this paper, a validation of this approach is presented.
Specifically, a measurement on the forehead of several subjects
was performed employing a high-density, multidistance optical
array and frequency-domain technology. Employing the algo-
rithm described in Ref. 20, EAC was estimated from the uncali-
brated CW component of the frequency-domain signal. The
estimated EAC and DPF spectral dependencies were then com-
pared to the results obtained employing standard FDMD
measurements, where EAC was estimated from the phantom
calibrated log light decay with distance, whereas DPF was esti-
mated from the calibrated light phase shift with distance.21

Finally, the performances of the proposed procedure were
assessed in the in-vivo fNIRS recordings acquired on the fore-
head from an independent sample of subjects. The subjects
performed a mathematical task that supposedly induced func-
tional activity in the frontal cortex.

2 Methods

2.1 Modified Beer–Lambert Law, Differential
Pathlength Factor, and Effective Attenuation
Coefficient

In the first approximation, the CW wavelength-dependent dif-
fuse reflectance can be modeled using the MBLL as10

EQ-TARGET;temp:intralink-;e001;326;419IðλÞ ¼ IoðλÞe−μaðλÞdDPFðλÞþG; (1)

where IðλÞ is the measured wavelength-dependent diffuse
reflected light intensity, IoðλÞ is the injected light, μaðλÞ is the
absorption coefficient of the probed tissue, d is the geometrical
source–detector distance, DPFðλÞ is the differential pathlength
factor, and G is a medium- and geometry-dependent constant.
Equation (1) can be rewritten as

EQ-TARGET;temp:intralink-;e002;326;321OODðλÞ ¼ − ln

�
IoðλÞ
IðλÞ

�
¼ μaðλÞdDPFðλÞ − G; (2)

where ODðλÞ is defined as the optical density. If multiple chro-
mophores contribute to the total absorption μaðλÞ, it is possible
to further rewrite Eq. (2) as

EQ-TARGET;temp:intralink-;e003;326;243ODðλÞ ¼ − ln

�
IoðλÞ
IðλÞ

�
¼

Xn
i¼1

½εiðλÞCi�dDPFðλÞ − G; (3)

where n is the number of chromophores, εiðλÞ is the extinction
coefficient at the given wavelength for the i’th substance, and Ci
is the substance concentration. When the extinction coefficients
εiðλÞ are known, and the measurements are treated differentially
in time, the factor G cancels out and Eq. (3) reduces to

EQ-TARGET;temp:intralink-;e004;326;139ΔODðλÞ ¼
Xn
i¼1

½εiðλÞΔCi�dDPFðλÞ; (4)

where Δ indicates the time-dependent changes. Standard fNIRS
systems generally employ a dual wavelength probing to measure
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O2Hb and HHb, which, in first approximation, are the only
absorbing compounds that show time-dependent modulations.
Equation (4) can be rewritten as
EQ-TARGET;temp:intralink-;e005;63;719"
ΔODðλ1Þ
ΔODðλ2Þ

#
¼ d ·

"
εO2Hb

ðλ1ÞDPFðλ1Þ εHHbðλ1ÞDPFðλ1Þ
εO2Hb

ðλ2ÞDPFðλ2Þ εHHbðλ2ÞDPFðλ2Þ

#

×
�ΔO2Hb

ΔHHb

�
: (5)

The above equation needs to be inverted in real scenarios, where
concentrations of hemoglobin are derived from empirical mea-
surements of ΔOD:
EQ-TARGET;temp:intralink-;e006;63;608�ΔO2Hb

ΔHHb

�
¼ 1

d

"
εO2Hb

ðλ1ÞDPFðλ1Þ εHHbðλ1ÞDPFðλ1Þ
εO2Hb

ðλ2ÞDPFðλ2Þ εHHbðλ2ÞDPFðλ2Þ

#−1

×

"
ΔODðλ1Þ
ΔODðλ2Þ

#
: (6)

The 2 × 2 matrix inversion yields:
EQ-TARGET;temp:intralink-;e007;63;515�ΔO2Hb

ΔHHb

�
¼

1

d
1

½εO2Hb
ðλ1ÞεHHbðλ2Þ− εHHbðλ1ÞεO2Hb

ðλ2Þ�DPFðλ1ÞDPFðλ2Þ

×

"
εHHbðλ2ÞDPFðλ2Þ −εHHbðλ1ÞDPFðλ1Þ
−εO2Hb

ðλ2ÞDPFðλ2Þ εO2Hb
ðλ1ÞDPFðλ1Þ

#"
ΔODðλ1Þ
ΔODðλ2Þ

#
:

(7)

Notice that the a priori parameters of the above equation are the
extinction coefficients ofO2Hb and HHb at the two wavelengths
εiðλÞ and the DPFs at the two wavelengths. Both the geometrical
interoptode distance d and the changes in optical densities ΔOD
are measured empirically.

Equation (7) can be rewritten by extracting from the 2 × 2

inverted matrix one of the two DPFs, as follows:
EQ-TARGET;temp:intralink-;e008;63;314�ΔO2Hb

ΔHHb

�
¼

1

d
1

½εO2Hb
ðλ1ÞεHHbðλ2Þ − εHHbðλ1ÞεO2Hb

ðλ2Þ�DPFðλ1Þ

×

2
64 εHHbðλ2Þ − εHHbðλ1ÞDPFðλ1Þ

DPFðλ2Þ

−εO2Hb
ðλ2Þ εO2Hbðλ1ÞDPFðλ1Þ

DPFðλ2Þ

3
75
"
ΔODðλ1Þ
ΔODðλ2Þ

#
: (8)

Notice from the above equation that, whereas the absolute value
of one of the two DPFs acts by equally modulating the ampli-
tudes of the oscillations of the two hemoglobin forms given
ΔODs, the ratio of the two DPFs is involved in the weighted
difference of the ΔODs to retrieve the two hemoglobin forms'
oscillations. Thus, an error in the ratio of DPFs produces cross
talk between the two hemoglobin forms. This dual wavelength
DPF ratio concept is generalizable to the multiwavelength spec-
tral dependence of the DPF.

Another quantitative parameter when dealing with diffusive
media is the EAC often labeled in the literature as μeffðλÞ. Here,
μeffðλÞ expresses the light exponential rate of attenuation caused

by the interaction of absorption and diffusion. When d is suffi-
ciently large (above 10 to 15 mm), light attenuation in a diffu-
sive medium is proportional to the factor e−μeff ðλÞd, where d is the
geometrical interoptode distance. With reference to Eq. (1), DPF
and μeff can be linked through the following equation:

EQ-TARGET;temp:intralink-;e009;326;697DPFðλÞ ¼ ∂μeffðλÞ
∂μaðλÞ

: (9)

In the simplifying assumption of dealing with an infinite homo-
geneous medium, the EAC can be expressed as

EQ-TARGET;temp:intralink-;e010;326;632μeffðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðλÞμ 0

sðλÞ;
p

(10)

where μaðλÞ is the absorption coefficient and μ 0
sðλÞ is the

reduced scattering coefficient.22 Combining Eqs. (9) and (10),
it is possible to obtain

EQ-TARGET;temp:intralink-;e011;326;565DPFðλÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sðλÞ
μaðλÞ

s
: (11)

The above equation can be rewritten by expressing the DPF as a
function of μeffðλÞ as

EQ-TARGET;temp:intralink-;e012;326;492DPFðλÞ ¼ 3

2

μ 0
sðλÞ

μeffðλÞ
or DPF ¼ 1

2

μeffðλÞ
μaðλÞ

: (12)

As introduced previously, the variability in DPF as a function
of wavelength is particularly important. When considering only
two wavelengths, this means assessing the ratio of DPFs. The
ratio can then be expressed as
EQ-TARGET;temp:intralink-;e013;326;404

DPFðλ1Þ
DPFðλ2Þ

¼ μ 0
sðλ1Þ

μ 0
sðλ2Þ

μeffðλ2Þ
μeffðλ1Þ

or

DPFðλ1Þ
DPFðλ2Þ

¼ μaðλ2Þ
μaðλ1Þ

μeffðλ1Þ
μeffðλ2Þ

: (13)

The first of the two equations presented in the above equation is
of interest. If, in the first approximation, a linear decay with
wavelength in the reduced scattering coefficient is assumed as

EQ-TARGET;temp:intralink-;e014;326;299μ 0
sðλÞ ¼ μ 0

sðλ0Þð1 − hλÞ; (14)

where h is a constant representing the intensity of the linear
decay (i.e., slope), then the first equation in Eq. (13) can be
rewritten as

EQ-TARGET;temp:intralink-;e015;326;235

DPFðλ1Þ
DPFðλ2Þ

¼ ð1 − hλ1Þ
ð1 − hλ2Þ

μeffðλ2Þ
μeffðλ1Þ

¼ C
μeffðλ2Þ
μeffðλ1Þ

: (15)

This means that, if the approximation describing wavelength
dependence in reduced scattering is correct, it is possible to esti-
mate the DPF spectral dependence from EAC.

2.2 Effective Attenuation Coefficient Computation

EAC values were computed employing the algorithm reported in
Ref. 20, where the procedure was described in detail. The algo-
rithm estimates the EAC based on the slope of the log signal as
a function of source–detector distance. In fact, using the sim-
plifying assumption that the head can be approximated by a
semi-infinite, homogenous medium with zero boundary
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conditions,23 the CW light signal IðdÞ at a distance d is linked to
the EAC (μeff ) through the following equation:

EQ-TARGET;temp:intralink-;e016;63;730 ln½IðdÞd2� ¼ k − dμeff ; (16)

where k is a factor that depends on μeff but does not depend on
distance and is affected by source power, detector efficiency, and
optode-to-scalp coupling, and μeff is the EAC defined as

EQ-TARGET;temp:intralink-;e017;63;666μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðμa þ μ 0

sÞ
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s

p
; (17)

if it is assumed μa ≪ μ 0
s (as it normally is in the head tissue in

the NIR range).
In real recordings, the SNR of the signal can be linked to

light intensity impinging on the detector as

EQ-TARGET;temp:intralink-;e018;63;588I ∝ SNR2: (18)

The above equation holds if noise is mainly due to quantum/shot
noise [which is true if the amount of light detected is not
extremely low and the SNR is computed using frequencies
much higher than the physiological signal spectral range
(i.e., f > 10 Hz)].20

The SNR of the signal is defined as

EQ-TARGET;temp:intralink-;e019;63;491SNR2 ¼ 1

var
h
iðtÞ
iavg

i ; (19)

where var is the variance operator, iðtÞ is the electrical signal
recorded by the photodetector in the spectral range of interest
(f > 10 Hz), and iavg is the average electrical signal.

Thus, Eq. (16) can be rewritten as

EQ-TARGET;temp:intralink-;e020;63;395 lnðSNR2d2Þ ¼ k − dμeff : (20)

Employing SNR in the above equation dampens the recordings
problem of having different sensitivities and operation voltages
of different detectors.

The variability in the optode-to-scalp coupling, generally
accounted for through calibration procedures in quantitative
NIRS, is instead dampened on uncalibrated recordings by
employing many (few tens) source–detector couples (optical
channels) for a single EAC computation and through linear
regression employing a least-squares approach. The high
numerosity of source–detector couples allows reducing the
confidence interval of the estimated EAC (slope of the regres-
sion), within acceptable ranges (few point percentage, refer to
Ref. 20). Notice that this approach works within the assumption
of statistical independence between injected light sources power
and distance from detectors.

2.3 Participants

A total of 21 healthy adults (6 females) between the ages of 25
and 40 years were recruited for the study that compared the
developed procedure to a standard DPF evaluation based on
calibrated FDMD. A different sample of six healthy adults (two
females), in a similar age range (ages between 25 and 37 years),
were further recruited to assess the performances of the algo-
rithm when applied to real fNIRS recordings. All participants
were Caucasian. The study was conducted in agreement with
the principles described in the Declaration of Helsinki and it was

approved by the Research Ethics Board of the local university.
Informed consent form was signed by all participants before the
experiment and they were able to withdraw from it at any time.

2.4 Optical Recordings and Experimental Design

Optical data were acquired with a multichannel frequency-
domain oximeter (ISS Imagent™, Champaign, Illinois)
equipped with 32 laser diodes (16 emitting light at 690 nm
and 16 emitting light at 830 nm) and 4 photomultiplier tubes
(PMTs). Time-division multiplexing was employed so that each
detector picked up light from 32 different sources at different
times within a multiplexing cycle. The sampling rate was
39.0625 Hz. NIR light was carried to the scalp using single optic
fibers (0.4-mm core) and from the scalp back to the PMTs using
fiber bundles (3-mm diameter). The fibers were held in place
using custom-built optical probe. The probe had an optical array
geometry constituted of four rows (at a distance of 5 mm) of one
detector and four dual-wavelength sources at a distance from the
detector of 20, 25, 30, and 35 mm. The total area covered by the
optical probe was 700 mm2 [Fig. 1(a)]. All source–detector cou-
ples were measured and employed for further analysis for a total
of 64 dual-wavelength channels with an interoptode distance
ranging from 20 to 46 mm. For comparison with the FDMD
procedure, the subjects were requested to rest on an examination
table. For FDMD calibration, signals were first acquired on the
optical phantom for 1 min. The phantom had optical parameters
equal to: μa ¼ 0.0107 mm−1 μ 0

s ¼ 0.97 mm−1 for 690 nm, μa ¼
0.0103 mm−1 μ 0

s ¼ 0.90 mm−1 for 830 nm, and refraction index
at both wavelengths η ¼ 1.4. Soon after, data were acquired on
the subjects’ forehead for another 1 min. The probe was held in
place by an operator [Fig. 1(b)].

Fig. 1 (a) Schematic representations of the optical probe employed in
the study. The probe was constituted of an optical array of four rows
(at a distance of 5 mm) of one-detector, four dual-wavelengths
sources at a distance from the detector of 20, 25, 30, and 35 mm.
All source–detector couples were recorded for a total of 64 channels
with an interoptode distance ranging from 20 to 46 mm. (b) Example of
an in-vivo measurement. The probe was held in place during the
recording by an operator. (c) Simulation of the average light sensitivity
of the 64 channels of the optical probe when located on the forehead.
The simulation employed a FEM simulation based on a structural MRI
of one participant in the study. The channels’ average sensitivity is
displayed up to an attenuation of 60 dB (1000 times) from its maxi-
mum value. The probe investigated a localized portion of the head.
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The fNIRS data were acquired with the same optical probe
located on the same head location but on different subjects.
The experimental paradigm included eight blocks. Each block
was constituted of a 20-s prestimulus period (rest); a task phase,
lasting a maximum of 32 s, and a poststimulus recovery phase,
lasting 20 s. The task consisted of responding to three consecu-
tive arithmetic subtractions (five digits number minus three
digits number, e.g., 17;233 − 271 ¼ 16;962, 16;962 − 271 ¼
16;691, and 16;693 − 271 ¼ 16;420). Each subtraction was
presented for 5 s, and the participants were asked to choose the
proper answer from a list of four possible results. A maximum
of 7 s was allowed to respond and guess the correct subtraction
value. The stimulation was developed using Psychtoolbox.24

The execution of the mathematical task supposedly induced
functional brain activity in frontal cortex, right under the area
where the high-density optical probe was located.25

Figure 1(c) displays a simulation assessing the average light
sensitivity of the 64 channels of the optical probe when located
on the forehead. The simulation employed a finite element
method (FEM) approach.26 FEM simulation was performed
based on a structural MRI of one participant in the study. The
channels’ average sensitivity is displayed up to an attenuation of
60 dB (1000 times) from its maximum value. The probe inves-
tigated a localized portion of the head.

2.5 Data Analysis

The effect of errors in DPF was estimated through a simulated
dual-wavelength estimation of functional hemoglobin oscilla-
tions. Event-related O2Hb and HHb temporal changes were
simulated by convolving an impulse function (depicting stimu-
lation) with the canonical hemodynamic response function.27

A maximum positive change in O2Hb of 3 μM and a negative
change in HHb of 1 μM were assumed. These hemoglobin
oscillations are quantitative comparable with those obtained
in vivo.28 Here, ΔODs were calculated through the MBLL
assuming two wavelength recordings at 690 and 830 nm, with
an interoptode distance of 30 mm and DPFs of 6 and 5, respec-
tively. The effect of errors in the DPFs was estimated by

inverting the MBLL employing wrong DPFs values, with a
maximum percentage error in the DPFs of 20%.

Calibrated estimations of the EACs and DPFs were acquired
through combining phantom and in-vivo recordings. Calibration
coefficients were evaluated on the optical phantom by measur-
ing the average CWs and phase shifts as a function of inter-
optode distance d and by adjusting their value to Icalib and
Phcalib to obtain the known phantom EACs and DPFs. The four
rows were independently calibrated through the following
equations:29

EQ-TARGET;temp:intralink-;e021;326;642

∂ lnðIcalibðλÞd2Þ
∂d

¼ dμeff_phantomðλÞ; (21)

and

EQ-TARGET;temp:intralink-;e022;326;578

∂ lnðPhcalibðλÞÞ
∂d

¼ DPFphantomðλÞω
v

; (22)

where ω is the modulation frequency of the recording system
and v is the speed of light in the medium v ¼ c∕η, where η
is the refraction index. Calibrated DPFs and EACs were esti-
mated in vivo by applying the correction coefficients on the mea-
sured CWs and phase shifts. Each subject DPFs and EACs were
estimated based on the average value across the different opto-
des’ rows. An example of calibrated CWs and phase shift signals
for a particular row of the optical probe as a function of inter-
optode distance are reported in Fig. 2(a).

Uncalibrated estimates of EAC were obtained employing
Eq. (21). The optical CW intensities were normalized and
high-pass filtered above 10 Hz (fifth order, zero-lag, and
Butterworth digital filter). The SNR was estimated over the
in-vivo recording period of 1 min. The approach reported in
Ref. 20 computes the EAC for each channel (source–detector
pair) using subsets of channels near (neighbors) to the channel
being estimated (within the neighborhood radius distance) in a
multidistance configuration.

Fig. 2 (a) Example of calibrated CWs and phase shift signals for a particular row of the optical probe as
a function of interoptode distance. Least-square regression line is also reported. (b) Example of the
uncalibrated CW high-frequency SNR as a function of interoptode distance for all the 64 channels
employed. Least-square regression line is also reported. The absolute slope of the regression represents
the estimated EAC [Eq. (20)].
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Because of the intrinsic variability introduced by source
power, detector efficiency, and optode-to-scalp coupling, at a
fixed source–detector distance range, the more channels
employed in a single EAC computation from uncalibrated
recordings the smaller the EAC confidence interval. Based on
extensive analysis reported in Ref. 20, a numerosity of channels
(source–detector couples) of few tens is sufficient to reduce the
confidence interval of EAC to few points’ percentage.

In this study, a large neighborhood radius was employed to
include all of the 64 source–detector couples in the EAC com-
putation. An example of computation of EAC employing the
uncalibrated procedure is reported in Fig. 2(b). The EAC values
for all the 64 channels can be considered the EAC value of the
area investigated by the optode layout (central forehead region)
for the given wavelength [Fig. 1(c)].

Interestingly, because EAC is estimated from experimental
evaluation of the SNR, the EAC confidence interval tends to
be a monotonic decreasing function not only of the number
of channels employed in EAC computation but also of the signal
integration time (at a given sampling frequency). Indeed, signal
variability and hence EAC can be estimated at a shorter integra-
tion time compared to the 1-min time window employed for
further analysis in this study. Hence, to better highlight and
investigate the EAC dependence on integration window, the
variability of the EAC estimate as a function of integration time
was also evaluated.

An among-subjects comparison between calibrated FDMD
and uncalibrated EAC was performed to assess the developed
algorithm performances; Further, the differences between cali-
brated and uncalibrated ratio of DPFs (spectral dependence of
DPFs when considering two wavelengths) were assessed and
compared to the expected values extracted from an equation
model that estimated DPF based on light wavelength and sub-
ject’s age.10

Moreover, an analysis reporting the effect of assuming differ-
ent constants C [Eq. (15), i.e., different spectral dependencies of
reduced scattering] on the unexplained amount of the among-
subjects variance of the DPF spectral dependence was reported
to address the validity of the assumptions of the work and the
stability of the proposed approach.

Finally, fNIRS data were analyzed to assess the procedure
performance in real fNIRS recordings. Raw CW signals were
converted into ΔODs, movement corrected,30 downsampled
to 4 Hz, and bandpass filtered between 0.01 and 0.5 Hz to high-
light functional activity (fifth order, zero-lag, and Butterworth
digital filter). Hemoglobin oscillations were estimated from
ΔODs at the two wavelengths through the MBLL. Importantly,
hemoglobin oscillations were evaluated based on the three
different procedures for estimating DPFs. The first procedure
assumed equal values of DPF at the two wavelengths employed
(DPF830;690 ¼ 6, DPF ratio ¼ 1), the second procedure esti-
mated DPFs for both wavelengths based on Ref. 10, and the
third procedure assumed the absolute value of one of the two
DPF from Ref. 10, whereas the other was extracted based on
the DPF ratio retrieved by the algorithm developed. Block-
average oscillations in O2Hb and HHb induced by the math-
ematical task were assessed from 5 s prior to 40 s after the task
onset. The performance of procedures in estimating the DPF
was assessed by comparing the reconstructed amplitudes of
task-induced functional responses of O2Hb and HHb among the
different algorithms. Channels showing the strongest functional
activation were selected for the analysis.

3 Results
Figure 3(a) reports an example of simulated hemodynamic
response to an event-like stimulation. The classical temporal
characteristics of functional activity are visible. Original O2Hb

and HHb oscillations are reported with continuous lines,
whereas the reconstructed O2Hb and HHb oscillations are
reported with dashed lines. The reconstructed signals (i.e.,
dashed lines) were evaluated by inverting the MBLL with the
introduction of an error of 10% in the dual-wavelength spectral
dependence of DPFs. Figure 3(b) reports a colormap image
where color represents the error in the absolute ratio of O2Hb
and HHb as a function of the error in DPFs for the two wave-
lengths employed in the simulation. The figure clearly shows
that hemoglobin cross talk is introduced only when there is a
modification in the wavelength–DPF ratio, i.e., the spectral
dependence of DPF is altered. Notice that the errors in the
DPFs introduced in the simulation are compatible with errors
that can be easily performed in-vivo when a priori values of
DPFs are assumed without considering intersubject and inter-
head region variability. These errors clearly show a possible
hemoglobin cross talk of the same order of magnitude of the
error in the DPF ratio.

Figure 4 shows correlation plots and associated Bland–
Altman plots31 reporting the uncalibrated versus calibrated
EAC values. Figure 4(a) reports the 690-nm wavelength,
whereas Fig. 4(b) reports the 830-nm wavelength. Significant
correlations between the calibrated and uncalibrated EACs for

Fig. 3 (a) Example of the simulated functional brain activation
induced by an event stimulation as measured by fNIRS. The continu-
ous line reports the original O2Hb and HHb oscillations, whereas the
dashed line depicts the estimated O2Hb and HHb oscillations when
inverting the MBLL with errors in DPFs. (b) Colormap image showing
the error in the absolute ratio of O2Hb and HHb as a function of the
error in DPFs at the two wavelengths employed in the simulation.
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both wavelengths were obtained (r ¼ 0.94, p ¼ 1.4 · 10−10 for
690 nm and r ¼ 0.85, p ¼ 9.0 · 10−7 for 830 nm). For both
wavelengths, the slope was not significantly different from 1
(p ¼ 0.40 for 690 nm and p ¼ 0.41 for 830 nm). The calibrated
versus uncalibrated EAC differences were always within the
acceptance criteria of Bland–Altman plot, except for one sub-
ject. The average among subjects’ EAC difference was not
significantly different from 0 (t ¼ 1.77, df ¼ 20, p ¼ 0.09 for
690 nm and t ¼ −0.99, df ¼ 20, p ¼ 0.33 for 830 nm).

Figure 5 reports among-subject average (and related standard
error) EAC estimation variability [standard deviation (STD)]
with respect to 1-min integration time (%) as a function of inte-
gration time window. A clear monotonic decrease with integra-
tion time occurs, with an average variability ranging from about
4% at a 1 s to about 1% at 32-s integration time. This means that
EAC can indeed be estimated at a fast pace at the expense of a
loss of confidence in its actual value (reduced number of points
in SNR evaluation). However, decreasing the integration time
window does not drastically increase the confidence interval
of EAC estimate, in theory allowing fast evaluation of EAC.

Figure 6 reports the correlation plot and associated Bland–
Altman plot between the DPF ratio at the two wavelengths of
interest computed from absolute DPF measurements from cali-
brated FDMD phase analysis and uncalibrated EAC-based com-
putation. The EAC-based DPF ratio estimation was obtained
with an optimized scattering-related constant C [Eq. (15)] of
0.76 (refer to Fig. 7). Bland–Altman plot shows the consistency
of the two evaluation procedures with no between measurement
difference on average (t ¼ 0.91, df ¼ 20, p ¼ 0.38). The

correlation plot also reports the expected DPF ratio estimated
employing an equation model commonly used in fNIRS analy-
sis that estimates the subjects’ DPFs based on light wavelength
and subjects’ age.10

Fig. 4 Correlation plots and associated Bland–Altman plots reporting the uncalibrated versus the cali-
brated EAC values for (a) 690-nm wavelength and (b) 830-nm wavelength.

Fig. 5 Among-subject average (and related standard error) EAC esti-
mation variability (STD) with respect to 1-min integration time (%) as a
function of integration time window.
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Figure 7 reports the analysis of the effect of assuming differ-
ent C constants [Eq. (15)] in the proposed algorithm. In fact,
since the correct ratio of DPFs (measured through calibrated
light phase delay) was known, it was possible to estimate the
residual variance [variance in the across-subject DPF ratio or
root mean square error (RMSE)] of the model, and to compare
that to the original variance (or STD) of the real DPF ratio. The
experimentally measured across-subject variability (STD) of the
real DPF ratio was 0.15 (15%). The model reduced the unex-
plained variance of the ratio (RMSE between real and predicted
values) at a minimum of ∼0.04 (4%) at a constant C of 0.76
(value used for Fig. 6 analysis). Below and above this value,
the algorithm’s performance, as assessed by the RMSE metric,
decreased.

Figure 8 reports the results from real fNIRS experiments in
which the performance of the developed algorithm was

compared to procedures where a constant wavelength depend-
ence of DPF was assumed or a priori values of DPFs from a
published equation model were selected.10 Figure 8(a) displays
the classical functional responses to the task in selected highly
activated channels of the optical probe for each of the six sub-
jects who underwent the experiment. Interestingly, for all the
subjects examined, an increase in the positive amplitude of
O2Hb and a negative amplitude of HHb is visible, when sequen-
tially applying equal DPF values between wavelengths, the a
priori equation model, and the developed procedure. To sta-
tistically quantify the improved performances of the developed
algorithm, the maximum amplitudes of the absolute oscillation
of O2Hb and HHb were extracted from each subject and pro-
cedure. Figure 8(b) shows the boxplots depicting the percentage
increase in absolute maximum response in hemoglobin with
respect to assuming equal DPFs between wavelengths when the
developed algorithm and the a priori equation model were
employed. With respect to assuming constant DPF, when apply-
ing the developed EAC-based algorithm, an average positive
increase in maximum O2Hb oscillations during task of 26.9%
(t ¼ 5, df ¼ 5, p ¼ 0.004) and a negative increase in maximum
HHb oscillations of 7.4% (t ¼ 1.44, df ¼ 5, N.S.) were
obtained. When applying the a priori equation model, an aver-
age positive increase in O2Hb of 10.7% (t ¼ 7.24, df ¼ 5,
p ¼ 8 × 10−4) and a negative increase in HHb of 1% (t ¼ 0.58,
df ¼ 5, p ¼ N:S:) were obtained. Interestingly, when compar-
ing the EAC-based procedure with the equation model, a further
positive increase in O2Hb of 16.2% (t ¼ 3.58, df ¼ 5, p ¼
0.015) and a negative increase in HHb of 6.4% (t ¼ 1.67,
df ¼ 5, p ¼ N:S:) were obtained.

4 Discussion
Correct estimation of DPF spectral dependence is crucial in CW-
fNIRS, since errors in the evaluation of its spectrum creates
cross talk in the retrieval of O2Hb and HHb modulations from
light recordings (Fig. 3). This cross talk can be detrimental for
fNIRS since it is well known that O2Hb and HHb have very

Fig. 6 Correlation plot and associated Bland–Altman plot considering the ratio of the DPFs at the two
wavelengths of interest computed from calibrated absolute DPFs and uncalibrated EAC measurements.
The correlation plot also reports the expected ratios between DPFs estimated, employing an equation
model commonly used in CW-fNIRS analysis that estimates the DPFs based on light wavelength and
subject age.

Fig. 7 Effect of assuming different C constant [Eq. (15)] in the pro-
posed algorithm on the RMSE of estimated DPF ratio with respect
to the FDMD within the experimental data sample.
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different (often opposite) evoked functional responses induced
by neural activity. In fact, the sensitivity to functional brain
activity in fNIRS is often assumed when there is an anticorre-
lation between the two hemoglobin forms.32

However, DPF has to generally be assumed a priori in CW-
fNIRS. Although several works that attempted to provide reli-
able tabulated values or equation models of DPF to be employed
for CW-fNIRS measurements,10,21 the intersubjective variability
and DPF dependence on a large number of factors, such as age,
sex, head region,33 and disease, make it particularly challenging
to provide reliable estimation. Although it is not possible to
quantitatively evaluate DPF from standard CW-fNIRS record-
ings because of the lack of photons’ time-of-flight information,
in this paper a procedure to estimate DPF spectral dependence
was presented. Multidistance measurements of the EAC (which
is a function of the product of absorption and reduced scattering)
from high-density CW-fNIRS recordings was employed to
empirically estimate DPF (which is a function of the ratio of
reduced scattering and absorption) spectrum by limiting the a
priori assumption to the spectral dependence of reduced scatter-
ing, which is generally more predictable than absorption spec-
trum. This aspect requires further commenting. Indeed, the well-
known decrease in wavelength of the DPF is strictly associated
with the (also well-known) decrease in reduced scattering coef-
ficient with wavelength; if, for example, reduced scattering is
assumed constant with wavelength, an opposite trend of DPF

spectrum is expected (i.e., DPF increases with wavelength).
In fact, biological tissues are generally more absorbing at shorter
wavelength (because of HHb, melanin, etc.); this aspect, com-
bined with the effect of absorption of reducing the average
time-of-flight of photons in tissues [absorption coefficient as
denominator in Eq. (11)], causes an increase in DPF with wave-
length when a constant reduced scattering is assumed. In reality,
the decrease with wavelength of reduced scattering [nominator
in Eq. (11)] is stronger than the increase in absorption [denom-
inator of Eq. (11)] causing the experimentally found decrease of
the DPF with wavelength. However, the average effect of
reduced scattering and absorption on the expected value of
DPF must be conceptually uncoupled from the across-subject,
across-head region variabilities that they induce. In fact,
although some of the variance of the across-subject, across-head
region DPF spectrum indeed cannot be explained without a
direct assessment of reduced scattering, a good portion of the
variance can be accounted for with measures of EAC. The basic
idea of the work is that the behavior of reduced scattering as a
function of wavelength is more predictable than absorption. The
assumption of fixing the spectral dependence of reduced scatter-
ing is in fact commonly employed in pulse oximeters (which are
generally calibrated in vivo)34 and multidistance tissue oxi-
meters that measure tissue oxygenation index19 through spatially
resolved spectroscopy (i.e., that estimate tissue saturation from
EAC measurements).

Fig. 8 Results from the real fNIRS experiments in which the performance of the developed algorithmwas
compared to procedures where a constant wavelength dependence of DPF was assumed or a priori
values of DPFs from published equation model were selected.10 (a) Classical functional responses
to the task in selected highly activated channels of the optical probe for each of the six subjects that
underwent the experiment. (b) Boxplots depicting the percentage increase in absolute maximum
response in hemoglobin with respect to assuming equal DPFs between wavelengths when the devel-
oped algorithm and the a priori equation model were employed.
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The DPF spectral dependence was investigated on a homo-
geneous population (with age between 25 and 40 years) of the
same ethnicity (Caucasian), on the same head region (forehead),
to assess the intrinsic intersubjective variability which, in gen-
eral, cannot be summarized by a single equation accounting for
light wavelength and subject age. By using a commonly em-
ployed equation for estimating scattering dependence [Eq. (14)],
it has been possible to obtain a reliable estimate of the DPF
change with wavelength (Fig. 6), from EAC measurements
[r ¼ 0.83, Eq. (15)]. Notice that this result corroborated the
assumptions of the procedure developed. In fact, the 69% of the
variance was explained employing the assumption of a linear
association between variables [well-defined constant C in
Eq. (15)]. This means that, in the population examined, the
across-subject variability in the constant C is not introducing
a large effect on the total across-subject variance of DPF ratio.

However, there are indeed limitations to the proposed
approach. In fact, reduced scattering and absorption contribute
to the DPF in a multiplicative and not in a summation manner.
This means that, the across-subject, across-head region variance
explained by the two coefficients cannot be uncoupled in a
simple summation of effects. This results in the fact that, if
the across-subject, across-head region constant C is highly
incorrect, the predicted ratio of DPF can be highly incorrect,
introducing an error which is higher than the original across-
subject, across-head region variability. An analysis reporting the
effect of assuming different C constants in the algorithm is
reported in Fig. 7. In fact, since the correct ratio of DPFs (mea-
sured through calibrated light phase delay) was known, it was
possible to estimate the residual variance (variance in the across-
subject DPF ratio or RMSE) of the model, and to compare that
to the original variance (or STD) of the real DPF ratio. The mea-
sured across-subject variability (STD) of the real DPF ratio was
0.15 (15%), which could induce a same order of magnitude
hemoglobin cross talk. The developed procedure reduced the
unexplained variability (RMSE) of the ratio at a minimum of
0.04 (4%) at a constant C of 0.76. Notice that for a range of
C values between 0.66 and 0.86, the model still reduced the
unexplained variance with respect to the original variance of
the data. This means that, for this dataset, the model helped
to improve the DPF ratio estimate with respect to chance. A
C constant between 0.66 and 0.86 encompasses a large portion
of variability in the drop of reduced scattering. Notice, however,
that below and above this value, the model worsens the result
compared to chance. This effect is introduced by the multipli-
cation of the coefficient involved in the DPF ratio evaluation.
This means that, although the experimentally established C
coefficient should not vary substantially as a function of subjects
and head regions, it would be helpful in future work to system-
atically map across-regions and across-subject variability of the
C coefficient to help and reduce the across-subjects’ across-head
regions’ unexplained variance in the DPF ratio of the procedure
to a minimum. This would result in introducing a hybrid
approach where a combination of a priori assumption on C con-
stant and experimentally evaluated EAC might improve the pre-
diction accuracy of DPF spectral dependence with respect to a
completely a priori assumption on DPFs.

Importantly, the subject-based spectral dependence of DPF
was not predicted employing a general equation that estimates
the DPF based on wavelength and subject age as the only
parameters.10 However, notice that the results presented in this
paper are not in disagreement with the procedure and results

reported in Ref. 10. In fact, the general equation for predicting
DPF relies on expressing the DPF, at a certain wavelength, as a
function of age only, not accounting for possible other sources
of variance. Moreover, whereas this equation might be accurate
in predicting the DPF value, the error of prediction of the ratio of
DPF as a function of wavelength (i.e., the spectral dependence)
can be amplified. In this paper, because of the small age range
examined, the possible residual variance not accounted for by
the equation model was investigated. This means that an
orthogonal dimension of the DPF spectral dependence variabil-
ity was examined. Interestingly, the almost constant ratio of DPF
within the population retrieved by the equation model was in
fact exactly equal to the across-subject average value found
employing the proposed approach, further corroborating this
hypothesis. For example, it would be possible to fix one
DPF employing the general equation of Ref. 10 (to provide
quantitative estimation of hemoglobin concentrations oscilla-
tions), and to estimate the other DPF through the described
approach. Indeed, the two approaches should be defined as com-
plementary. In fact, this rationale was also applied for the real
fNIRS validation of the approach.

Importantly, the fNIRS results confirmed the utility of the
developed algorithm. In fact, among subjects significant
increases in the functional task-induced hemoglobin oscillations
were obtained employing the developed procedure with respect
to both assuming constant wavelength dependence of DPF and
employing a priori values of DPFs. The increase in the retrieved
functional activity ranged from 16.2% to 26.9% for O2Hb and
was highly statistically significant. The increase in functional
activity of HHb ranged from 6.4% to 7.4% and, although not
being statically significant, its trend was clear. The lower effect
of the procedure on HHb could be associated with a lower SNR
of HHb with respect to O2Hb. Notice that, these increases in
retrieved functional oscillations were not derived from a simple
scaling of the functional response, but they were actually asso-
ciated with an increase in the SNR of the fNIRS measurement.

Interestingly, the EAC estimation used for DPF spectral
dependence computation was extracted through uncalibrated
CW-fNIRS recordings based on a method20 that relied on
accounting for the variability in detector sensitivity and optode-
to-scalp coupling based on large number of multidistance
high-density optical channels and statistical procedures. In fact,
the EAC estimates reported here were evaluated employing a
high-density configuration featuring overlapping channels.
The optical probe covered a small region of the forehead; thus,
it provided a local estimate of the metric of interest [forehead,
Fig. 1(c)] and was not assumed to provide a whole-head esti-
mate. The purpose of this work was to demonstrate the capabil-
ities and performances of the developed algorithm in providing
local estimate of the metric of interest without assuming the
retrieved value to be valid for the whole head. An accurate map-
ping of the EAC across the head is beyond the scope of the
reported work. By employing large field-of-view high-density
optical array, this algorithm could be employed in a straight-
forward manner to provide whole head maps by subdividing
the optical probe in multiple head regions and by iterating the
procedure within different portions of the optical probe (in sim-
ilarity with Ref. 20).

This algorithm opens the possibility of estimating EAC (and
DPF spectral dependence), on standard CW-fNIRS recordings
with the only requirements of having a large number of optodes
in a high-density configuration. Notice that, whereas the high
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number of optodes is required for proper statistical analysis and
a high confidence in the retrieved EAC values, the high density
is required to provide sufficient localization to the EAC and DPF
ratio estimations limiting possible partial volume effects. For
example, in the current study, 64 channels over an area of
∼700 mm2 were employed for a single EAC computation; thus,
the underlying assumption of the procedure is that the EAC spa-
tial changes within the investigated area are minor. Although it
is known that DPF changes as a function of brain region,33 these
changes should be sufficiently smooth to employ such a multi-
channel algorithm relying on sufficient optode density.

Another interesting application of the developed approach
would be to study the time-varying properties of DPF spectral
dependence as a function of functional brain activity. In fact,
brain activity indeed causes changes to the baseline optical
parameters of several point percentages that influence DPF and
are typically overlooked.35 These changes might by assessed by
the developed procedure through a sufficiently short integration
time window of the algorithm. For this reason, the stability of
the estimated EAC as a function of integration time was evalu-
ated. As displayed in Fig. 7, EAC estimation variability (STD)
decreases with integration time from about 4% at a 1-s integra-
tion to about 1% at 32-s integration time. This means
that EAC can be estimated at a fast pace at the expense of a loss
of confidence in its actual value. However, decreasing the inte-
gration time window does not drastically modify the confidence
in its value, in theory allowing fast evaluation of EAC.

Because of the rapid development of high-density systems
for diffuse optical tomography analysis of functional brain activ-
ity through CW-fNIRS, the procedure opens the possibility to
provide quantitative evaluation of baseline optical properties
that can be useful for correct estimation ofO2Hb and HHb oscil-
lations in the brain. Correct estimation O2Hb and HHb func-
tional oscillations increases fNIRS SNR and reduces false
positives and false negatives36 in the evaluation of brain activity
with fNIRS.

5 Conclusion
In this paper, a procedure that estimates the spectral dependence
of DPFs in CW-fNIRS was validated. Although it is not possible
to quantitatively estimate DPF from CW light measurements, by
employing uncalibrated high-density recordings, it is possible
to evaluate the rate of decay of light as a function of distance
(quantity defined EAC) and to limit the a priori assumption of
DPF to reduced scattering. Because reduced scattering spectral
dependence is more predictable than absorption, this procedure
can be useful to dampen hemoglobin cross talk in fNIRS
induced by erroneous DPF spectral dependence, ultimately
increasing the reliability and usefulness of fNIRS in investiga-
tion of brain functional activity. Importantly, if a high-density
optode configuration is provided, this procedure does not
require alteration of the CW-fNIRS recordings.
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