
Adaptive algorithm utilizing
acceptance rate for eliminating noisy
epochs in block-design functional
near-infrared spectroscopy data:
application to study in attention
deficit/hyperactivity disorder children

Stephanie Sutoko
Yukifumi Monden
Tsukasa Funane
Tatsuya Tokuda
Takusige Katura
Hiroki Sato
Masako Nagashima
Masashi Kiguchi
Atsushi Maki
Takanori Yamagata
Ippeita Dan

Stephanie Sutoko, Yukifumi Monden, Tsukasa Funane, Tatsuya Tokuda, Takusige Katura, Hiroki Sato,
Masako Nagashima, Masashi Kiguchi, Atsushi Maki, Takanori Yamagata, Ippeita Dan, “Adaptive algorithm
utilizing acceptance rate for eliminating noisy epochs in block-design functional near-infrared
spectroscopy data: application to study in attention deficit/hyperactivity disorder children,”
Neurophoton. 5(4), 045001 (2018), doi: 10.1117/1.NPh.5.4.045001.



Adaptive algorithm utilizing acceptance rate for
eliminating noisy epochs in block-design functional
near-infrared spectroscopy data: application to study
in attention deficit/hyperactivity disorder children

Stephanie Sutoko,a,* Yukifumi Monden,b,c Tsukasa Funane,a,b Tatsuya Tokuda,d Takusige Katura,a Hiroki Sato,a
Masako Nagashima,b Masashi Kiguchi,a Atsushi Maki,a Takanori Yamagata,b and Ippeita Dand,e

aHitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
bJichi Medical University, Department of Pediatrics, Shimotsuke, Japan
cInternational University of Health and Welfare, Department of Pediatrics, Shiobara, Japan
dChuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
eJichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, Japan

Abstract. Functional near-infrared spectroscopy (fNIRS) signals are prone to problems caused by motion arti-
facts and physiological noises. These noises unfortunately reduce the fNIRS sensitivity in detecting the evoked
brain activation while increasing the risk of statistical error. In fNIRS measurements, the repetitive resting-
stimulus cycle (so-called block-design analysis) is commonly adapted to increase the sample number.
However, these blocks are often affected by noises. Therefore, we developed an adaptive algorithm to identify,
reject, and select the noise-free and/or least noisy blocks in accordance with the preset acceptance rate. The
main features of this algorithm are personalized evaluation for individual data and controlled rejection to maintain
the sample number. Three typical noise criteria (sudden amplitude change, shifted baseline, and minimum inter-
trial correlation) were adopted. Depending on the quality of the dataset used, the algorithm may require some
or all noise criteria with distinct parameters. Aiming for real applications in a pediatric study, we applied this
algorithm to fNIRS datasets obtained from attention deficit/hyperactivity disorder (ADHD) children as had
been studied previously. These datasets were divided for training and validation purposes. A validation process
was done to examine the feasibility of the algorithm regardless of the types of datasets, including those obtained
under sample population (ADHD or typical developing children), intervention (nonmedication and drug/placebo
administration), and measurement (task paradigm) conditions. The algorithm was optimized so as to enhance
reproducibility of previous inferences. The optimum algorithm design involved all criteria ordered sequentially
(0.047 mM mm of amplitude change, 0.029 mM mm∕s of baseline slope, and 0.6 × interquartile range of outlier
threshold for each criterion, respectively) and presented complete reproducibility in both training and validation
datasets. Compared to the visual-based rejection as done in the previous studies, the algorithm achieved
71.8% rejection accuracy. This suggests that the algorithm has robustness and potential to substitute for visual
artifact-detection. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.5.4.045001]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) noninvasively
measures the product of concentration changes of cerebral
hemoglobin (oxygenated∕O2Hb and deoxygenated/HHb) and
optical length using two or more near-infrared spectra (650
to 950 nm).1–4 It measures blood-related signals that indirectly
correspond to brain activation (i.e., neurovascular coupling
theorem).5,6 After>20 years of development,7 fNIRS has gained
much attention in broad applications including studies of neuro-
psychiatry and cognition in infants and children.8–10 Compared
to other functional imaging techniques, it shows significant
advantages in terms of system flexibility (without confinement
or head restrainers) and motion tolerability since probes are

tightly adhered on the scalp.11–13 However, pediatric studies
have shown that infants and children sometimes become rest-
less, thus causing probe detachment and unavoidable occurrence
of motion artifacts. As the name implies, this is especially
true for studies of children with attention deficit/hyperactivity
disorder (ADHD).

The issue of detecting and removing motion artifacts has
been extensively studied; however, there is no golden approach
to detect and remove them. Although direct and complete data
rejection might be infeasible due to limited and insufficient sam-
ple number,14 motion correction techniques with supplementary
measurements or corrective algorithms also pose technical
limitations in measurement and insufficient practicability in
analysis.15–18 Implementing an additional system or devices
to detect motions (e.g., an accelerometer) on infants or children
can complicate the measurement system and induce inconven-
ience for subjects, which can result in higher probability that
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motion artifacts will occur. Moreover, correction algorithms14,19–21

such as filtering (e.g., wavelet, Kalman), regression–interpolation
[e.g., spline,22 adapted hemodynamic response function (HRF)
model], and component reduction require estimated parameters
that seemingly lead to noise over-fitting and severe modification
of signal waveform.

In the conventional method, motion artifacts are recognized
by researchers through the visual observation of sudden and
discontinuous signal changes. This recognition may be adjusted
while trying to maintain the sufficient sample number; hence
we introduced a concept to adaptively identify and reject
motion-affected signals in this paper. This concept emphasized
the automatic trade-off potential between personal noise level
and rejection control rate. By initially setting the acceptable
rejection rate, one or more pre-established noise criteria (see
Sec. 2) were serially arranged as an artifact evaluator. Particular
criteria causing excessive rejections were neglected and the arti-
fact detection–rejection was controlled by the remaining criteria.
We performed a simulation using a synthetic noisy signal to con-
firm our concept. We then used studied fNIRS datasets23,24 mea-
sured in typically developing (TD) children and those with
ADHD in order to assess the algorithm feasibility. The former
corresponds to the general situation of fNIRS measurements of
children. On the other hand, the latter represents technically
challenging but executable situation as fNIRS has turned out
to be one of the preferable techniques to evaluate ADHD
patients with a restless characteristic.25–28 Both training and
validation steps tried to optimize the reproducibility of group
analysis result and rejection accuracy. The dynamic relationship
among criteria type-parameters was explored in this adaptive
algorithm.

2 Materials and Methods

2.1 Datasets

We used previous datasets collected for studies of neuropharma-
cological effects in children with ADHD. Details regarding the
experimental protocol are described elsewhere;23,24 however,
we summarize related information as follows. Right-handed
subjects were classified into two datasets as presented in detail
in Fig. 1.23,24 All ADHD children were clinically diagnosed
using the DSM-IV criteria and age-matched TD children
were referred to as controls. All ADHD children were nonmedi-
cated naive and had been treated using either methylphenidate
(MPH) or atomoxetine (ATX) medication. In the Wechsler
Intelligence Scale of Children—Third Edition (WISC-III), the
full IQ scores of subjects were all over 70. The pharmacological
effects were assessed in randomized, double-blind, placebo-con-
trolled, and crossover studies. Medication and placebo admin-
istrations were only performed in ADHD children, not in TD
children. Therefore, TD children underwent only a measurement
session while ADHD children completed four sessions—before/
after medication and before/after placebo intakes.

Measurements were performed using the multichannel
fNIRS system ETG-4000 (Hitachi Medical Corporation,
Japan) with two wavelengths of near-infrared spectra (695 and
830 nm). Eight emitters and seven detectors were alternately
positioned on a probe holder (3 × 5 arrangement) and two probe
holders (one for each hemisphere) were put on the head covering
both the hemispheres of lateral prefrontal and inferior parietal
cortices in accordance with previous studies.29–33 The measure-
ment site (also known as the channel) was located in the middle

of the emitter and the detector, resulting in 22 channels for each
probe holder. Probe position was digitized for all subjects after
the first measurement session, and the channel coordinates were
spatially registered to MNI space.34–39 A measurement session
consisted of six repetitive series of baseline, instruction, and
stimulus periods lasted for about 5 min in total. The stimulus
involved two tasks called visual-based oddball (OB) and
go/no-go (GNG) to examine subject competences in sustained
attention and inhibitory function, respectively.10,23,24,40,41 A sub-
ject was assigned to perform either an OB or GNG task. Both
tasks were created and subject responses were collected by
E-Prime 2.0 (Psychology Software Tools).

These studies were approved by the Ethics Committees of
Jichi Medical University Hospital and the International
University of Health and Welfare. All subjects provided written
parent consent. These studies were designed in accordance with
the latest version of the declaration of Helsinki. The collabora-
tion between Jichi Medical University Hospital and Hitachi, Ltd.
was reviewed by an internal board at Central Research
Laboratory, Hitachi, Ltd.

2.2 Preprocessing and Activation Analysis

Signal preprocessing was done on the MATLAB-based software
Platform for Optical Topography Analysis Tools (POTATo,
Hitachi Ltd., Research and Development).42 To begin with,
the detected optical density data were converted into the product
of hemoglobin concentration change and optical path length,43,44

which we define as ΔCO2Hb, ΔCHHb, and ΔCHb-total in mM mm
because of the variation of path length over brain regions.45 This
calculation is based on the modified Beer–Lambert law as
described elsewhere.43,46 Obtained continuous ΔC signals
were preprocessed with a first-degree polynomial fitting and
band-pass filter using cut-off frequencies of 0.01 and 0.8 Hz
to remove baseline drift and heartbeat pulsation, respectively.
By adapting the block design, continuous signals were compart-
mentalized into six epochs similar to the number of repetitive
series of baseline, instruction, and stimulus. An epoch included
13 s of prestimulus (10-s baseline and 3-s instruction), 24 to 25 s
of stimulus, and 13 s of poststimulus periods. These epochs
served as the input for the rejection algorithm. After applying
the rejection algorithm, the baseline amplitudes of the remaining
epochs were normalized to zero before performing the activation
analysis. Activation was defined in a channel-wise manner as
the average of the remaining epochs during the activated period
(i.e., 4 s after stimulus onset to the end of the stimulus).

2.3 Design of Rejection Algorithm

The algorithm was constructed in accordance with the following
two processes: (1) noise identification and (2) rejection
judgment.

Noise identification. We adopted three typical noise criteria
(Fig. 2). Criterion 1 controlled sudden increases/decreases in
signal amplitude with recovery failure to the initial amplitude
level. The time needed for recovery became longer as the
changes in amplitude became greater. To identify this kind of
noise, the algorithm calculated the amplitude change between
two sampling points (0.1 s) and marked the onset and ending
time when signal amplitude rose above a threshold level. The
algorithm then recognized the base levels of the signal ampli-
tude before and after the over-threshold change (e.g., 1-s inter-
val). If the amplitude base level was shifted over 0.2 mM mm,
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recovery failure was detected and acknowledged as noise (and
vice versa). Although noise detected by criterion 1 is likely
caused by motion artifacts, criterion 2 managed physiological
noises mainly due to spontaneous low-frequency oscillations.
These oscillations produce spurious signals47–49 during the base-
line and stimulus intervals. Because assessing stimulus interval
likely introduced assumptions such as HRF; therefore, the algo-
rithm only examined the baseline slopes (e.g., 10-s prestimulus
and 3-s instruction intervals, 13 s in total) using linear fitting
estimation. If the baseline slopes are greater than the threshold,
those epochs will be labeled as noisy epochs. We believe that
noisy epochs have low similarity with other epochs. Hence,
criterion 3 evaluated correlation among epochs. For example,
in order to understand the relationship between epoch 1 and
each of the other epochs, the algorithm summed the correlation

between epoch 1 and each of the other epochs. If epoch 1 had
noises, the correlation summation was low. Epochs having
outlier correlation sums were defined as noisy epochs. Outlier
range was determined depending on a threshold defined by
an adaptive constant × interquartile range (IQR). In a holistic
manner, both criteria 1 and 2 examine noise level according
to the global threshold across a subject, whereas criterion 3
specifically controlled the personal threshold.

Rejection judgment. As mentioned above, the main concepts
of the current algorithm were personalized evaluation and
controlled rejection. In conventional noise rejection methods,
the judgment driven by only the fixed threshold would lead
to excessive rejection. We would like to avoid the data loss
while maintaining the objectivity of noise identification and
rejection. Therefore, the algorithm proposed that the rejection

Fig. 1 Subject and measurement information.
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judgment was based on both dataset and individual noise levels.
The algorithm process design is shown in Fig. 3 in detail.
(1) The algorithm identifies that the presence of noisy epochs
according to the above criteria. (2) The algorithm calculates
how many epochs remain after rejection. (3) The algorithm
inspects whether the number of remaining epochs was greater
than or equal to the acceptance rate, which corresponds to the
minimum expected value of remaining epochs. (4) The algo-
rithm executes the rejection if process 3 is met. Otherwise,
the algorithm terminates the rejection if the above condition
(i.e., process 3) is unmet; however, it still records detected
noisy epochs. (5) The algorithm applies the next noise criterion
only on the remaining/nonrejected epochs. Processes 1 to 5 are
repetitively performed until all set criteria have been examined.
Epochs are ranked depending on the occurrence of nonrejected
noisy epochs (hereafter noise levels). Furthermore, this ranking
is rechecked. If the number of remaining epochs is greater than
the acceptance rate and some remaining epochs have been iden-
tified as noisy epochs, the rejection proceeds in accordance with
the epoch noise level ranking. The rejection continues until the
number of remaining epochs is equal to the acceptance rate. This
algorithm design tries to introduce a fuzzy approach, in which
the epochs are labeled not only as noisy or noise-free but also as
less noisy epochs. Simply put, the algorithm attempts to reduce
noise rejection to a tolerable level while maintaining the least
noisy epoch and sufficient epoch number.

2.4 Dataset Characteristic and Quality

For better performance, the algorithm required the optimization
of parameters including the criteria thresholds and the accep-
tance rate. Before doing so, we evaluated the occurrence prob-
ability of noise in accordance with the above criteria in the real
datasets to determine the parameter ranges. Figure 4(a)–4(c)
shows the real dataset characteristics in all channels and signal
types (i.e., ΔCO2Hb and ΔCHHb). There was no remarkable effect
from the preprocessing in criteria 2 and 3 [Figs. 4(b) and 4(c);
blue and red histograms for without and with preprocessing,
respectively]. However, preprocessing affected the distribution
of two sampling-point differences with greater kurtosis and
smaller standard deviation. According to the characteristic
observation, the optimization limits for criteria 1 to 3 were
selected as 95% and 97.5% of the one- and two-tail accumula-
tive distributions, respectively. Therefore, the optimization
ranges for criteria 1 and 2 were 0.01 to 0.05 mM mm with
0.001 in steps, and 0 to 3 × IQR with 0.1 in steps for criterion
3. Furthermore, the distribution of signal-to-noise ratio [SNR;
Eq. (1) in dB] was evaluated to represent the quality of datasets.
Figure 4(d) shows the distribution of SNR in raw datasets with
negative skewness calculated as follows:

EQ-TARGET;temp:intralink-;e001;326;103SNR ¼ 20 × log10
μΔCðtÞ→t activation

σΔCðtÞ→t baseline

; (1)
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Fig. 2 Noise criteria.
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where tactivation is the activation interval from 4 s after stimulus
onset to stimulus end and tbaseline is the period from 10 s before
stimulus to stimulus onset. The datasets have been analyzed in
prior studies and the information of visual rejection was known.
On the basis of the visual rejection result, around 35% of sam-
ples used all epochs (i.e., six) without any rejection, >60% of
data underwent either one- or two-epoch rejections, and <1% of
data had three remaining epochs.

2.5 Simulation of Random Epoch Rejection

To confirm our method, we performed a simulation analysis
with random epoch rejection. First, the artificial signals were
generated in the following two ways:

1. Synthetic noise-free model (Fig. 5). An HRF [hðtÞ,
Fig. 5(a)] was created on the basis of the gamma
function50 [Eq. (2)] with parameters τ and n as 1.08
and 3, respectively

EQ-TARGET;temp:intralink-;e002;63;98hðtÞ ¼
�
t
τ

�
n−1 eð−t

τÞ
ðn − 1Þ!τ : (2)

The HRF was then convolved with the boxcar function
[i.e., bðtÞ, Fig. 5(b)] adapting the block-design stimulus as
our real datasets (i.e., six trials, 25 to 26 s of pre- and poststi-
mulus, and 24 to 25 s of stimulus intervals). The boxcar ampli-
tude was varied (μ ¼ 0.14 to 0.3; σ ¼ 0 to 0.16; and μ

σ ¼ 0.85, 1,
2) to reflect the variances of stimulus response. The mean of the
boxcar amplitude was selected in the 0.14 to 0.30 range reflect-
ing the characteristics of real datasets. The variation of μ

σ was
determined following the average (i.e., 0.85) and maximum
(i.e., 2) values of μ

σ in the real TD data with positive activations.
A physiological task-independent component was added as
random Gaussian noises with 0 mean and 1∕6 standard
deviation with fourth-order Butterworth filtering, in the range
of 0.08 to 0.15 Hz [i.e., pðtÞ, Fig. 5(d)].51 To represent machine
noises, random Gaussian noises with 0 mean were also added
[i.e., mðtÞ, Fig. 5(e)]. The machine noise variance was adjusted
to simulate the SNR parameter. SNR parameter was varied from
−40 to 20 dB with an interval of 2 dB. Therefore, the artificial
signals [i.e., fðtÞ, Fig. 5(f)] were the combination of normalized
hðtÞ � bðtÞ [Fig. 5(c)], pðtÞ, and mðtÞ.

2. In the synthetic noise models (Fig. 6), noises were
added as spikes and epoch baseline shifting. Spikes
were generated by convolving the rebound step func-
tion [sðtÞ, Fig. 6(b)] with the first derivative of the
gamma function. To represent a nonrecovery spike,
the first derivative gamma function [h 0ðtÞ, Fig. 6(a)]
was modified as follows:
EQ-TARGET;temp:intralink-;e003;326;440

h 0ðtÞ ¼ fh 0ðtÞt¼1→maxt h 0ðtÞ; ½2 × h 0ðtÞt¼maxt h 0ðtÞ→end�
−maxt h 0ðtÞg: (3)

The peak spike was varied within 0.14 to 0.48, and the spike
direction could be either positive or negative. Epoch baseline
shifting was simulated by adding either a positive or negative
slope (μ ¼ 0.025 mMmm∕s, σ ¼ 0 to 0.025 mMmm∕s) in
the baseline interval [wðtÞ, Fig. 6(c)]. The number of noises
(six at max. as epoch number), noise-type occurrences, and
temporal locations were randomized. Those noises [Fig. 6(d)]
were then computed together with convolved HRF-boxcar
functions [hðtÞ × bðtÞ], physiological [pðtÞ], and machine
[mðtÞ] noises. This resulted in the artificial task-response
signal [fðtÞ, Fig. 6(g)].

Both artificial signals (i.e., with and without synthetic noise
models; N ¼ 1000 for each SNR variation) were preprocessed
[see. 2.2, Figs. 5(g) and 6(h)] and the epochs were extracted.
Epoch baselines (i.e., first 10 s) were normalized to zero
amplitude [Figs. 5(h) and 6(i)]. To understand the relationship
between the false negative rate (β) and rejection number, ran-
dom epoch rejection (e.g., 0 to 4 trial rejection) was performed
afterward. Furthermore, the significance (t-test) of epoch
activation (i.e., average amplitude of signal 4 s after stimulus
onset to end of stimulus) was evaluated in each artificial signal.
Because the hemodynamic response change was set to be >0 on
average, the detected insignificance presented the probability of
a false negative rate.

2.6 Algorithm Feasibility

Algorithm feasibility was assessed in both artificial signals with
synthetic noise models and real ADHD datasets. A dataset

Fig. 3 Algorithm process design.
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(N ¼ 98) containing artificial signals (μσ ¼ 1) was constructed
on the basis of the SNR distribution in the real dataset. The
rejection algorithm was then applied to the artificial dataset
using all noise criteria with associated optimization threshold
ranges and acceptance rate by three epochs. This acceptance
rate was set because three epochs were the lower boundary of
remaining epochs in the real datasets. All criteria were used in
this simulation because the artificial signals were created in
accordance with these noise criteria. The criteria thresholds
were optimized to obtain the lowest false negative rate from
noisy artificial signals. Furthermore, the false negative rate and
HRF recovery were compared between the results of optimum
algorithm parameters and typical process without any rejection.

Being different from the artificial dataset with controlled syn-
thetic noise models, the prominent noise characteristics were
unknown in the real datasets. Therefore, the algorithm applica-
tion in the real datasets was optimized using four parameters:
(1) acceptance rate (e.g., three and four epochs as lower boun-
daries), (2) number of criteria (e.g., single, two, and three
criteria), (3) type of criteria (e.g., criteria 1, 2, and 3), and
(4) criteria threshold (Fig. 7). Three and four epochs were
selected as the range of acceptance rate because three epochs
were the minimum number of remaining epochs in the real data-
sets, and >35% of ADHD data remained four epochs after vis-
ual rejection. In order to compare the concept of the current
algorithm, conventional method without rejection limit was
also performed with a varied number of criteria, type of criteria,

and criteria threshold. In addition, we considered the possibility
of task-dependent noise level. One task may be more prone to
noise than another task. Therefore, the acceptance rate could be
set differently in accordance with the task. All optimization
parameters are summarized in Table 1.

While the algorithm optimization in the artificial dataset was
oriented to increase HRF recovery, the algorithm optimization in
the real datasets aimed to reproduce the former statistical results
(Table 2) using the same datasets. According to previous stud-
ies,23,24,40,41,52–55 the attention and inhibition stimulus commonly
brought significant activation defined as the increase of ΔCO2Hb

(i.e., averaged amplitude of 4 s, end of stimulus) in the right
inferior frontal gyrus/middle frontal gyrus (IFG/MFG), espe-
cially for TD children. Unlike cases for TD children, the
IFG/MFG activation in ADHD children without medication
was null. Administration of both MPH and ATX effectively
modulated the IFG/MFG activation. Placebo was also adminis-
tered; however, the IFG/MFG activation remained unchanged
and greater effects were found in medicated conditions.
Statistical inference was clarified as the observed significance
(α ¼ 0.025; one-tail sample t-test). For example, optimization
would be done well if no significance (p ≥ 0.025) was found
in preadministration (i.e., average of premedication and prepla-
cebo) and postplacebo ADHD data and positive activation
(p < 0.025) was significantly observed in postmedication and
intermedication ADHD data (see Table 2; column of training
dataset I). Intermedication was described as medicated minus

Fig. 4 Dataset characteristics: difference of (a) two sampling points, (b) epoch baseline slope,
(c) dispersion of interepoch correlation sum, and (d) quality.
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placebo-administered effects (i.e., postminus premedication/
placebo).

The algorithm was examined in three steps: (1) training in
ADHD children samples (dataset I), (2) validation in ADHD
children samples with different medications and performed
tasks (dataset II), and (3) validation in TD children (datasets
I and II) as a contrast sample. Successful validation likely indi-
cated the feasibility of the algorithm across populations, tasks,
and kinds of medication. Initially, each step was processed
independently during optimization. However, the robustness
of the algorithm parameters was also necessary to evaluate
the capability of the algorithm for handling all datasets. Thus,
the robustness analysis was performed sequentially by optimiz-
ing parameters that satisfied 100% reproducibility or produced
the highest reproducibility in the training dataset. The algorithm
parameters were called robust only if complete (i.e., 100%)
reproducibility was obtained by the same parameters for all
datasets. Figure 8 shows the manner in which independent
and sequential optimizations were performed. In addition to
the reproducibility of statistical inferences, the rejection accu-
racy (true positive and true negative between visual and current
algorithm rejections) was investigated.

Because ΔCO2Hb is more pronounced compared to ΔCHHb

signals 56–58 and the former results focused only on ΔCO2Hb

results,23,24 the algorithm optimization was performed on
ΔCO2Hb signals at IFG/MFG as a region-of-interest. To confirm

the applicability of the algorithm in other signals, the rejection
accuracy was also evaluated in ΔCHHb and ΔCHb-total signals
using the optimum parameters. However, the visual rejection
process concerned only on O2Hb signals. Therefore, the com-
parison between visual and adaptive rejection algorithms (see.
Sec. 2.7) was performed following the rejection of ΔCO2Hb

epochs for all signal types including ΔCHHb and ΔCHb-total.

2.7 Rejection Performances Through Visual
Observation and Current Adaptive Algorithm

In order to evaluate the potential of the adaptive rejection algo-
rithm to substitute for the visual rejection method, the rejection
performances were compared to each another. The following
three factors were examined. (1) We compared the temporal cor-
relation (i.e., Pearson correlation) of resulting waveforms after
visual and adaptive algorithm rejections. We also conducted an
analysis of variance (ANOVA) in these temporal correlation
coefficients to assess the feature of signal types (ΔCO2Hb,
ΔCHHb, and ΔCHb-total) in algorithm performances. (2) The
Spearman’s rank correlation of activation value after visual
and adaptive algorithm rejections was also examined. The
high correlation obtained indicated that both visual and adaptive
algorithm rejections resulted in a similar tendency in activation
value. However, the offset of activation value resulting from
visual and adaptive algorithm rejections should be taken into

Fig. 5 Generation of artificial signal without synthetic noisemodels. (a) HRF is convolvedwith the (b) box-
car function resulting in (c) task-related hemodynamic response signal. The fNIRS synthetic signal is
composed of the (c) task-related signal, (d) physiological, and (e) machine noises. After (g) preprocess-
ing, (h) the epoch interval from continuous signal is extracted. Gray areas represent the stimulus interval.
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Fig. 7 Optimization parameters including acceptance rate, number and type of criteria, and criteria
threshold

Fig. 6 Generation of artificial model with synthetic noise models—spikes created by convolving the
(a) first derivative HRF (b) with rebound step function and (c) epoch baseline shifting. (d) All noise models
are composed together with task-related signal, (e) physiological, and (f) machine noise, and (g) resulting
in fNIRS synthetic signal. After (h) preprocessing, (i) the epoch interval from continuous signal is
extracted. Gray areas and black arrows represent the stimulus interval and modeled noises, respectively.
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Table 1 Combination list of optimization parameters.

Combination

Oddball task GNG task

Acceptance rate Number and type of criteria Acceptance rate Number and type of criteria

Three
epochs

Four
epochs None Criterion 1 Criterion 2 Criterion 3

Three
epochs

Four
epochs None Criterion 1 Criterion 2 Criterion 3

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓

12 ✓ ✓ ✓ ✓

13 ✓ ✓ ✓ ✓

14 ✓ ✓ ✓ ✓ ✓ ✓

15 ✓ ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓

17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓

19 ✓ ✓ ✓ ✓

20 ✓ ✓

21 ✓ ✓ ✓ ✓ ✓ ✓

22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

23 ✓ ✓ ✓ ✓

24 ✓ ✓ ✓ ✓ ✓ ✓

25 ✓ ✓ ✓ ✓ ✓ ✓

26 ✓ ✓ ✓ ✓ ✓ ✓

27 ✓ ✓

28 ✓ ✓ ✓ ✓

29 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

30 ✓ ✓ ✓ ✓ ✓ ✓

31 ✓ ✓ ✓ ✓ ✓ ✓

32 ✓ ✓ ✓ ✓

33 ✓ ✓ ✓ ✓ ✓ ✓

34 ✓ ✓ ✓ ✓

35 ✓ ✓ ✓ ✓
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consideration. Thus (3) statistical testing (one-sample t-test) was
performed to assess whether a significant difference was found
in activation values computerized by the two rejection methods.
These comparisons were carried out for each sample type (i.e.,
TD, ADHD, preadministration, ADHD postmedication, and
ADHD postplacebo) and each dataset (GNG or oddball tasks).
Furthermore, these comparisons might be presented for each
signal type if the result of the ANOVA was found significant.

3 Results

3.1 False Negative Rate and Algorithm Application
in the Artificial Dataset

Figure 9 shows the effect of SNR, synthetic noise models, acti-
vation variance, and random epoch rejection on the statistical

power (π; 1 − β). According to the results, there were five
notable observations. First, a low SNR brought low statistical
power and a high false negative rate. Second, the statistical
power reached a plateau as SNR improved more than −10 to
−5 dB. Third, the occurrence of synthetic noise models (dotted
lines in Fig. 9) decreased the statistical power particularly in a
moderate-to-high SNR signal. Fourth, a high ratio between acti-
vation mean and standard deviation increased the statistical
power, and an adequate power (i.e., 80%) could be obtained
by less epoch samples. For example, five epochs [solid cyan
line Fig. 9(a); a epoch rejection at maximum] were required
at least to meet 80% power as μ

σ was 0.85. However, when μ
σ

was set to 2, three epochs [solid green line Fig. 9(c); three
epochs rejection at maximum] at minimum were sufficient to
produce 80% power. Fifth, excessive rejection randomly per-
formed did reduce the statistical power. In low SNR signals,
lack of all effects on the statistical power was likely caused
by dominating machine noises. Through this simulation, we
confirmed that small epoch samples could not inflate a false neg-
ative rate if the rejection was done accurately and sufficiently,
the signal quality was considerably high, and the activation
phenomenon was prominent with low standard deviation.

In the next simulation, we optimized the algorithm by apply-
ing noisy artificial signals. We found the false negative rate (β)
after algorithm rejection to be lower than that without any rejec-
tion (18% < 34%). Figure 10 shows the HRF recovery result.
The rejection of noisy epochs using the algorithm presented
a better HRF recovery where the averaged signal (i.e., red
plot in Fig. 10) was closely aligned with the HRF function
(i.e., black plot in Fig. 10). Without any rejection, the HRF
model could not be similarly retrieved particularly in the
decreased activation amplitude. This was likely caused by the

Table 2 Significances of right IFG/MFG activation as training and
validation targets.

Feasibility steps 1 Training
2 ADHD
validation 3 TD validation

Samples 22 ADHD
(dataset I)

16 ADHD
(dataset II)

22 ADHD
(dataset I)

16 ADHD
(dataset II)

Preadministration p ≥ 0.025 p ≥ 0.025 p < 0.025 p < 0.025

Postmedication p < 0.025 p < 0.025 — —

Postplacebo p ≥ 0.025 p ≥ 0.025 — —

Intermedication p < 0.025 p < 0.025 — —

Fig. 8 (a) Independent and (b) sequential optimizations for evaluating the robustness of algorithm’s
parameters.
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frequent occurrence (77%) of spikes severely affecting the
baseline.

3.2 Optimization of Algorithm Parameters

Figure 11 shows the results obtained for independent and
sequential optimization. The x-axis indicates the combination
of various algorithm parameters (e.g., acceptance rate, number
and type of criteria, Table 1), whereas the y-axis illustrates the
cumulative reproducibility level (i.e., summation of reproduc-
ibility level of training, ADHD validation, and TD validation
datasets, 300% in total). Independent optimization with the
maximum acquired reproducibility level was defined as
black, red, and blue bar-plot for training, ADHD validation,
and TD validation datasets, respectively. The cumulative repro-
ducibility results of sequential optimization are shown in the
gray bar-plot. According to Fig. 11, 26 combinations were
able to completely reproduce statistical inferences (i.e., four tar-
gets, Table 2) of training dataset (black bar-plot). However, we
found that the reduced reproducibility in the ADHD validation
dataset (red bar-plot) was satisfied by seven combinations. The
optimization performance was then improved in the TD valida-
tion dataset (blue bar-plot), in which all combinations achieved
complete reproducibility. This result implied that the noise level
and type might be different across datasets.

Fig. 9 Rejection of random trials in simulated signals without (solid lines) and with (dotted lines) synthetic
noise models in three ratios (μσ of activation) values: (a) 0.85 as similar as the average of real datasets
(i.e., TD children with positive activation), (b) 1, and (c) 2 as the highest value in the real datasets of TD
children. Colors—blue, green, red, cyan, and magenta indicate different rejection numbers up to four,
three, two, one, and none rejected trials, respectively.

Fig. 10 Recovery of HRF function (black plot) in the noisy simulated
signals using the rejection algorithm (red plot). Blue plot indicated the
average of noisy simulated signal without any rejection. Shaded
patches represent the standard deviation.

Fig. 11 Optimization result for each algorithm combination (x -axis) aiming the complete reproducibility
(y -axis) in all training (black bar), ADHD validation, (red bar), and TD validation (blue bar) as performing
both independent and sequential optimizations (gray bar).
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Despite this, we still found that independent optimization
could result in complete reproducibility (i.e., 300%) for all data-
sets such as in combinations 8, 9, 15, 16, 17, and 29. However,
only combinations 8, 15, and 29 (asterisks in Fig. 11) could
apply the same criteria threshold for all datasets because of com-
plete reproducibility in sequential optimization. On the other
hand, the optimum criteria thresholds of combinations 9, 16,
and 17 were limited in particular datasets. Therefore, combina-
tions 8, 15, and 29 were more robust compared to combinations
9, 16, and 17. Even though both combinations 8 and 29 used all
criteria (see Table 1), acceptance rate was uniformly set for all
datasets in combination 8 as three epochs, whereas combination
29 employed different acceptance rates for datasets I and II
(i.e., four and three epochs, respectively).

In order to compare the performance among combinations 8,
15, and 29, the rejection accuracy was evaluated using robust
criteria’s thresholds. The rejection accuracy of datasets I and II
was 67.2% and 64.2%, respectively, using combination 8.
Combination 15 performed slightly worse than combination 8
with accuracies of 66.3% and 62.3% for datasets I and II, respec-
tively. The rejection accuracy of combination 29 was superior to
that of combinations 8 and 15; 74.5% and 69.2% in datasets I
and II, respectively. Depending on the rejection accuracy, com-
bination 29 was a more optimum (i.e., complete reproducibility
and higher rejection accuracy) algorithm than combinations 8
and 15. Therefore, the results shown hereafter were analyzed
using combination 29. The complete reproducibility of sequen-
tial optimization using combination 29 was acquired by setting
criteria thresholds as 0.047 mM mm of amplitude change (cri-
terion 1), 0.029 mMmm∕s of baseline slope (criterion 2), and
0.6 × IQR of correlation outlier (criterion 3). Using the optimum
thresholds, we examined the rejection accuracy in ΔCHHb and
ΔCHb-total signals. In dataset I, we found rejection accuracy sim-
ilar to that of ΔCO2Hb with 76% and 77% for ΔCHHb and
ΔCHb-total signals, respectively. The performance similarity
was also confirmed in dataset II, in which the use of ΔCHHb

ΔCHb-total signals presented rejection accuracies of 75.6% and
69%. These results suggested the applicability of algorithm
for any signal types.

3.3 Rejection Comparison Between Visual and
Adaptive Algorithm

Even though the adaptive rejection algorithm was able to
completely reproduce all statistical inferences in all datasets
with rejection accuracy about 70%, a comparison between
visual observation and the adaptive rejection algorithm was
comprehensively required. Waveforms (ΔCO2Hb, ΔCHHb, and
ΔCHb-total) resulting from visual and adaptive algorithm rejec-
tions were temporally correlated. In prior experiments, we
evaluated whether the signal types (ΔCO2Hb, ΔCHHb, and
ΔCHb-total) brought significantly different correlation coeffi-
cients or not using Fisher z-transformation (i.e., neglecting
ρ ¼ 1). ANOVA results showed no influence of signal type
toward correlation in datasets I (F ¼ 0.74, p > 0.05, and
DF ¼ 2) and II (F ¼ 0.02, p > 0.05, and DF ¼ 2). Therefore,
the comparison indices were presented separately for each sam-
ple type (i.e., TD, ADHD preadministration, ADHD postmedi-
cation, and ADHD postplacebo) and each dataset (GNG or
oddball tasks) regardless signal types. Figure 12 shows the
boxplots of temporal correlations between the visual and
algorithm results. Even though there were several outliers
(i.e., the plus mark in Fig. 12), the median of correlation
coefficient (r) for all sample groups was greater than 0.70
(rmedian ¼ 0.88� 0.06). The maximum value 1 was also
found, indicating that both visual observation and the adaptive
algorithm rejected the same epochs. Furthermore, subject-aver-
age waveforms were compared in the raw data without any
rejection and processed data using visual observation and the
adaptive rejection algorithm as shown in Fig. 13. No obvious
noise appeared in averaged waveforms for all sample groups
in dataset I [Figs. 13(a1)–13(d1)]; however, preadministration
and postplacebo ADHD samples of dataset II showed noisy
averagedΔCO2Hb andΔCHHb waveforms in the raw data [arrows
pointing to brown and black plots in Figs. 13(b2) and 13(d2)].
After performing visual rejection in dataset II, noise in postpla-
cebo ADHD was successfully suppressed, yet a high amplitude
change was still found in preadministration after stimulus inter-
val [arrow pointing to magenta and cyan plots in Fig. 13(b2)].
The noise of preadministration ADHD samples in the dataset II

Fig. 12 Box-plot of temporal correlation (ρ) between waveforms resulted by visual and adaptive algo-
rithm rejections in datasets I (OB; filled boxes) and II (GNG; void boxes). Plus mark indicates data having
substantial differences toward median value.
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[arrow pointing to red and blue plots in Fig. 13(b2)] was also
observed after performing the adaptive rejection algorithm.
Although the great dip [arrow pointing to magenta plot in
Fig. 13(c2)] was observed in the baseline of postmedication
ADHD samples in dataset II after visual rejection, the adaptive
algorithm controlled by criterion 2 (shifted baseline) removed
those noises. However, we observed a highly negative amplitude
change in postmedication ADHD samples after the stimulus
interval [arrow pointing to red plot in Fig. 13(c2)]. This ampli-
tude decrease was seemingly seen in the raw data and visual
rejection process with less amplitude change.

Figure 14 shows the relationship between activation values
resulting from visual and adaptive algorithm rejections. All cor-
relation coefficients were significant (Spearman’s rank correla-
tion, p < 0.01). This confirmed that adaptive algorithm rejection
brought about a similar tendency as that for visual rejection.
However, several data were visually assessed as having great
offsets from the diagonal line between visual and adaptive algo-
rithm rejections, as shown in the arrows of Fig. 14. Furthermore,
we statistically evaluated the offset from the diagonal line. The
results showed that there were no significant differences (paired
sample t-test, p ≥ 0.05, Cohen’s d ¼ 0.03 to 0.23) between
those offset values against zero in all datasets.

4 Discussion
This study aimed to achieve an approach in managing noisy
fNIRS data by adaptively identifying and rejecting noises in
individual data. We also introduced the concepts of acceptance
rate (i.e., minimum rejection rate) and quantitative data ranking
depending on noise level to determine rejections and maintain

the statistical sample number. By applying those concepts, the
noise identification was not limited by the preset noise criteria
and yet became more versatile in interpreting noises on an indi-
vidual data scale. To evaluate the feasibility of our idea, we per-
formed a simulation of synthetic noisy signals and used datasets
previously analyzed (i.e., ADHD-TD datasets) to tune the
rejection algorithm while aiming to reproduce former statistical
inferences. We prepared three noise criteria (sudden amplitude
change with recovery failure, extremely high/low baseline’s
slope, and low interepoch correlation) and determined the
acceptance rate (i.e., ≥three, four epochs). Afterward, the rejec-
tion algorithm selected the noise criteria to be adopted and
parameters based on data-driven optimization. Our algorithm
of personal rejection control was proven effective through the
simulation result. The algorithm demonstrated the advantages
in HRF recovery and achieving a low false negative rate in
the artificial dataset with varied noise severity (i.e., SNR).
The algorithm application in the real datasets successfully
found robust sets of rejection criteria for all sample groups
(i.e., different population, condition, and interference). They
were sudden amplitude change with recovery failure by
0.047 mM mm, extremely high/low baseline’s slope above
0.029 mMmm∕s, and low interepoch correlation summation
value below 0.6 × IQR. Even though three noise criteria were
made available, the usage of noise criteria in determining rejec-
tion depended on individual noise level and data characteristic.
One or more criteria might be excessively strict in performing
data rejection; therefore, the remaining criteria or even the con-
sideration of data noise ranking handled the rejection. The adap-
tive rejection algorithm achieved the complete reproducibility of
former statistical inferences and similar performance compared

Fig. 13 Subject-averaged waveforms without any rejection (ΔCO2Hb, brown and ΔCHHb, black plots),
with visual rejection (ΔCO2Hb, magenta and ΔCHHb, cyan plots), and with adaptive rejection (ΔCO2Hb,
red and ΔCHHb, blue plots) for (a1–a2) TD, (b1–b2) preadministration, (c1–c2) postmedication, and
(d1–d2) postplacebo ADHD samples in (a1–d1) datasets I and (a1–d1) II. Shaded patches around
plots are standard error while gray areas represent the stimulus interval.
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to visual rejection. Thus the adaptive rejection algorithm can be
a potential substitute for the visual rejection method.

4.1 Noise Correction Versus Adaptive Rejection
Algorithm

In addition to the noise rejection, noise correction has been
persistently attempted in fNIRS studies. Previous studies have
shown the comparison over several correction methods in ana-
lyzing various datasets.14,15,19–21 All studies reported the superi-
ority of correction methods in managing noises compared to
rejection methods with respect to maintaining sufficient sample
number.

However, there are three arguments as to why we did not
consider the noise correction method in the current datasets.
First, the noise correction method also experiences temporal
data loss in a way similar to that of the rejection method.
The true activation confined in dominant noises might be cor-
rected and the risk of true activation elimination together with
noises will likely increase. Therefore, the data pattern may sub-
stantially change compared to the raw data as a result of over-
processing. Jahani et al.21 reported the advantage of hybrid
methods (e.g., a combination of two or more correction meth-
ods) in reducing artifacts. Instead of remarkable performances,
the waveform significantly changed. Principal component
analysis (PCA) has also been reported to result in unstable
performances.14,20 The parameter of component selection
(e.g., 80% variance elimination) may arbitrarily remove the
recovered activation or retain noises. Furthermore, multichannel
measurement is required with the assumption of uncorrelated

components.59–61 In addition, this basic assumption will likely
be violated when the true activation and noises are convolved
to each other. Other than PCA, independent component analysis
(ICA) has been widely used to remove nonneuronal components
(i.e., motion artifact, extracerebral, and physiological interfer-
ences).62–64 Aarabi and Huppert65 presented the advantage of
the ICA method in decomposing the physiological noises
even from single channel. However, the preprocessing still
required multichannel measurement to reduce motion artifact
using spatial-ICA. The ICA performance highly depends on
the multichannel measurement; reduced efficiency happens
when the number of channels is less than those of independent
sources.66 The number of sources are unknown, and the sources
(true activation and noises) themselves are likely to correlate
with each other. These become limitations of ICA. Even though
attempts have been made to apply ICA to real-time applica-
tions,67 there are some constraints related to limited data, limited
analysis time, and dynamic changes of brain signals.68 Second,
another concern is the current dataset including data from
disordered children, which we would like to understand
comprehensively. Performances of noise correction had been
compared based on the HRF recovery parameter.14,69 This
parameter may be invalid for these datasets and the risk of
over-processing may conceal the true characteristic of
disordered samples. Third, the noise feature cannot be inter-
preted easily and each correction method may be suitable for
particular noise characteristics. Thus the correction performance
results varied depending on datasets. Spline interpolation is use-
ful for eliminating apparent noise such as high-frequency
spikes; however, it has a limitation in detecting overlapped

Fig. 14 Scatter plot of activation values (ΔCO2Hb, ΔCHHb, and ΔCHb-total) computerized using visual
(x -axis) and algorithm (y -axis) rejections for (a1–a2) TD, (b1–b2) preadministration, (c1–c2) postmedica-
tion, and (d1–d2) postplacebo ADHD samples in datasets (a1–d1) I and (a2–d2) II. Arrows indicate the
examples of substantial offset between visual and adaptive algorithm activation values. r - and DF-values
indicate the Spearman’s rank correlation coefficients (r ) and the degrees of freedom (N − 2).
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noises with true activation signals.18–20 The performance is
highly related to individual noise level and the method’s
parameters should be adjusted individually for optimum
performance.19,70

As discussed above, the correction methods have three dis-
advantages: temporal data loss leading to substantial waveform
change, subjective activation assumption, and noise-dependent
performance. Such problems sometimes pose difficulties in
assessing fNIRS data, especially those for disordered children.
The current adaptive rejection algorithm offers controlled data
loss with maintained data originality and individual-personalized
assessment. Therefore, it addresses the disadvantages of noise
correction and provides a practical alternative for treating
noise-prone children data.

4.2 Optimum Algorithm’s Parameters

After the rejection algorithm was optimized, all criteria were
found to be optimum as we had expected. Among the three
noise characteristics, criterion 1 is the most obvious noise char-
acteristic that could be identified with bare visual observation.
However, the complete reproducibility results achieved only
using all criteria with an adaptive concept may confirm that vis-
ual judgment is prone to subjectivity each time individual data
are assessed while maintaining the sample number. The neces-
sity of all criteria in the rejection algorithm confirmed that the
noise characteristics varied from extreme signal amplitude
change to slow change of baseline. The occurrence of each noise
characteristic varied across individuals. Even though the algo-
rithm parameters were optimized using ΔCO2Hb signals, the
algorithm applicability in ΔCHHb and ΔCHb-total was confirmed
with comparable rejection accuracies. Furthermore, we exam-
ined the effect of preprocessing that could affect the algorithm
parameters. However, through our confirmation of the real data-
set characteristics, only criterion 1 was significantly influenced
by preprocessing step. Therefore, the preprocessing caused the
change in the criterion 1 threshold, which should be tuned.
Including all criteria enables this adaptive rejection algorithm
to be useful for any signal types in both datasets with differing
noise types and levels.

Our first hypothesis suggested that there was the possibility
of different noise levels depending on performed tasks.
Therefore, both independent and sequential optimizations were
performed depending on the task. Even for the same noise cri-
teria, we found that complete reproducibility was obtained from
different acceptance rates: the GNG dataset required an accep-
tance rate (i.e., ≥three epochs) lower than that of the OB dataset
(i.e., ≥four epochs). However, this difference may not be attrib-
uted to types of performed tasks. We observed the complete
reproducibility of TD samples in the GNG dataset by setting
four epochs of acceptance rate as in the OB dataset. On the
other hand, ADHD samples in the GNG dataset (i.e., the red
bar-plot in Fig. 11) only reached complete reproducibility
when the acceptance rate was set to be either three epochs or
none (i.e., nonadaptive rejection). According to Figs. 13(b2)–
13(d2), ADHD preadministration and postplacebo samples of
the GNG dataset were substantially noisy compared to TD
samples of the GNG dataset [Fig. 13(a2)]. Therefore, our
hypothesis of the task-dependent noise level could not be sup-
ported, and instead, the acceptance rate was rather influenced by
the individual noise level of a particular subject group being
analyzed.

4.3 Visual Rejection Versus Adaptive Rejection
Algorithm

We assessed three factors in comparing visual and adaptive
algorithm rejections and all of them provided positive support
for the algorithm potential as a substitute for visual rejection.
We observed similar waveforms and activation tendencies
(i.e., factors 1 and 2) between visual and adaptive algorithm
rejection. Furthermore, we found no significant differences in
activation results for either method. Compared to the nonadap-
tive algorithm with rejection up to >90%,14 the current adaptive
algorithm is able to preserve the epoch number as an acceptance
rate. In addition to the capability of maintaining data volume,
it provides other advantages such as analysis speed, less subjec-
tivity, and higher applicability for even inexperienced data
analysts.

We should note here that we observed several discrepancies
between visual and algorithm-based rejections such as the sub-
stantial offsets indicated by arrows in Fig. 14. There are two
arguments related to the reasons for these offsets. First, noises
with very slow oscillation periodically become out of phase
from the stimulus. This characteristic violated criteria 2 and
3 of shifted epoch’s baseline and low interepoch correlation.
Although the algorithm likely identified noisy epochs more
than the acceptance rate, they might have remained nonrejected
to maintain the minimum sample number. Second, severe noises
such as intermittent sudden amplitude increase and decrease and
thus affect the whole measurement interval. This data likely had
lower signal quality compared to other data. The above argu-
ments indicate that the adaptive algorithm has limitations in
mimicking the visual rejection performance, particularly in
data with high interepoch variability and bad signal quality.
In addition, it should be noted that perfect reproducibility of
visual rejection results may not always be desired as visual
inspection necessarily entails subjective evaluation. Given the
moderately high reproducibility in this study, further validation
of the adaptive rejection algorithm should be performed from
different perspectives.

4.4 Limitations

In spite of the favorable results obtained with the adaptive rejec-
tion algorithm, we still found three limitations. The first was the
rejection accuracy toward visual rejection, which was on aver-
age about 73.5% (i.e., the robust criteria’s threshold) in both
datasets for all signal types. We still consider that this is a fairly
good achievement compared to the accuracy that skillful ana-
lysts produce in performing visual rejections. Further counter-
measures for collecting more data will be necessary for finer
algorithm tuning. The second limitation relates to the great dif-
ference in activation values produced by visual and adaptive
algorithm rejections for several types of data (i.e., substantial
offsets). The adaptive algorithm does not perform very well
in evaluating data with extremely bad quality, such as sudden
amplitude changes repetitively occurring during measurements
and high interepoch variability because of slow and out-of-phase
oscillation toward stimulus. This showed us that bad-quality
data should not be used. We, therefore, feel that applying the
algorithm in the future to real-time measurements may mitigate
the current limitation.

Even though out-of-phase signals toward the stimulus may
indicate noises, we should be careful in interpreting this phe-
nomenon. Previous studies have reported the high interepoch
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variability in ADHD datasets.71–74 Therefore, noise criterion 3
(i.e., low interepoch correlation) might not be appropriate for
current datasets. In order to examine this possibility, reoptimiza-
tion of noise criteria is required with wider data sets.

The third limitation is the necessity of parameter (i.e., criteria
type, threshold, and acceptance rate) retuning if datasets have
completely different signal qualities, measurement instruments
(i.e., criteria thresholds), and imbalance paradigm intervals (i.e.,
criterion 3). The different noise occurrences and signal quality
have been explained above with the examples of datasets I and II
causing different optimum acceptance rates. The sensitivity of
criteria thresholds (e.g., criteria 1 and 2) will likely decrease
when the frequency sampling is less than the optimized datasets
(and vice versa). Furthermore, criterion 3 was developed on the
basis of the block-design study with constant paradigm inter-
vals; however, it is unsuitable for experimental design with
imbalance paradigm intervals and resting-state measurements.
Criterion 1 (and 2) might be sufficient to control false negative
rates in those datasets. If the algorithm performance apparently
becomes worse, the typical noise in the particular datasets
should be observed further to replace the current criteria.
Despite these limitations, the bottom-up concept of the algo-
rithm is still promising, enabling users to easily adjust the
number of noise criteria.

5 Conclusion
We have proposed an approach to manage motion artifacts in
fNIRS data sets using an adaptive algorithm for guaranteeing
an acceptance rate (e.g., ≥three epochs). Three predetermined
noise criteria (i.e., sudden amplitude change, shifted baseline,
and minimum intertrial correlation) are adopted in this algorithm
to adaptively reject and select the least noisy trials (epochs)
maintaining the sufficiency of trial numbers, which is an
issue in conventional rejection methods. Real fNIRS data
obtained during a cognitive task was applied to the algorithm
and allowed us to conclude the algorithm was feasible by show-
ing the complete reproducibility obtained with it, referring to
prior ADHD studies. The criteria’s parameters were also
found to be robust and valid for both training and validation
datasets.

Although this study presented the first optimized parameters
for the noise criteria, there will always be room for improvement
such as noise criteria optimization and iterative parameter tun-
ing. The usage of the adaptive algorithm is not limited to post-
measurements. It can also be used to evaluate real-time noise
after completing a number of repetitions that is at least similar
to the acceptance rate. This will enable the data acquisition qual-
ity to be improved and the risk of algorithm mistuning due to
low data quality to be reduced. We believe this adaptive algo-
rithm represents a concept in fNIRS data preprocessing and that
it will prove to be highly resourceful for many applications.
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