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Abstract. Currently, there is no method for providing a nonverbal objective assessment of pain. Recent work
using functional near-infrared spectroscopy (fNIRS) has revealed its potential for objective measures. We
conducted two fNIRS scans separated by 30 min and measured the hemodynamic response to the electrical
noxious and innocuous stimuli over the anterior prefrontal cortex (aPFC) in 14 subjects. Based on the estimated
hemodynamic response functions (HRFs), we first evaluated the test–retest reliability of using fNIRS in meas-
uring the pain response over the aPFC. We then proposed a general linear model (GLM)-based detection model
that employs the subject-specific HRFs from the first scan to detect the pain response in the second scan. Our
results indicate that fNIRS has a reasonable reliability in detecting the hemodynamic changes associated with
noxious events, especially in the medial portion of the aPFC. Compared with a standard HRF with a fixed shape,
including the subject-specific HRFs in the GLM allows for a significant improvement in the detection sensitivity of
aPFC pain response. This study supports the potential application of individualized analysis in using fNIRS and
provides a robust model to perform objective determination of pain perception. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.5.1.011018]
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1 Introduction
The development of an objective measure of pain/nociception
would be beneficial in many clinical situations including pain
assessment in those not able to provide verbal self-reports, mea-
sures for evaluation of treatment efficacy, or measures of noci-
ception/ongoing pain during the perioperative period. Recent
studies have shown the potential of using functional near-
infrared spectroscopy (fNIRS) in such conditions, given its
advantages in cost, robustness, and portability.1,2 NIRS is a non-
invasive neuroimaging technique that is able to provide long-
term measures of cortical hemodynamics [i.e., through measure
of the changes of oxygenated hemoglobin (HbO) and deoxygen-
ated hemoglobin (HbR) concentrations].3–5 Previous work using
fNIRS in studying pain mainly delineated a significant deoxy-
genation process (normally a decrease in HbO concentration) in
the anterior prefrontal cortex (aPFC) in response to noxious
stimuli, including cutaneous pain,6–8 tooth pain,9 and visceral
pain.10,11 Such observations are in line with recent reports of
deactivations in aPFC blood oxygenation level-dependent
(BOLD) signals following pain using functional magnetic
resonance imaging (fMRI).12–15 Our previous fNIRS studies
reported that the hemodynamic response to noxious stimuli

was stronger than the response to innocuous stimuli with regard
to peak amplitude changes6 and that the HbO decrease is most
strongly present in the medial portion of the aPFC.7

Several difficulties remain regarding using the defined fea-
ture of the aPFC response (viz., the amplitude of HbO decrease)
to detect pain in individual cases including: (1) the hemo-
dynamic response to pain seems to show habituation with repeti-
tive painful stimuli, leading to an insignificant difference in the
response amplitude between innocuous stimuli and repeated
noxious stimuli;6,7 (2) distinct patterns in the shape of the hemo-
dynamic response function (HRF) to pain (in terms of e.g., acti-
vations or deactivations, the peak/nadir time, dispersion, and
undershoot time) have also been observed across different sub-
jects, brain regions, and types of pain. In addition to the deacti-
vations, multiple studies using fNIRS also reported pain-induced
activations in the aPFC, largely in the lateral portion;16–19 and
(3) while the aPFC hemodynamic changes associated with pain
were shown to be bilateral in some studies, others observed pre-
dominantly left-lateralized responses.9,10 These results suggest
using personalized analysis in the detection of the brain response
to pain to properly characterize the signal.

In the present study, we sought to use fNIRS to detect aPFC
response in healthy individuals with prerecorded, personalized
HRF to nociception. The subjects involved in this study
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underwent two 3-min fNIRS scans (a prescan and a detection
scan) separated by 30 min of resting period. In the first part
of this study, we evaluate the feasibility of using prerecorded
HRF to detect subsequent painful/nonpainful events by quanti-
tatively estimating the test–retest reliability of the fNIRS-mea-
sured HRF to noxious and innocuous stimuli in the aPFC
between the prescan and the detection scan. Based on the results,
we then propose a detection model under a general linear model
(GLM) framework, which employs the subject-specific HRF
estimated from the prescan to detect the aPFC response to
the two types of stimuli in the detection scan. The GLM has
been widely applied in the detection of evoked brain hemo-
dynamic changes [see Monti20 for a review]. Two approaches
are compared in the current analysis: (a) a standard GLM
with the statistical parametric mapping (SPM) canonical HRF
(cHRF) and (b) the proposed detection model that employs per-
sonalized, prerecorded HRFs. The detection sensitivity of using
these two analysis methods to detect aPFC response to noxious
and innocuous stimuli is reported. This study suggests that
fNIRS is reliable in detecting the prefrontal response associated
with pain and proposes a simple but robust individualized pain
detection model that can be easily implemented in clinical set-
tings. This approach may potentially be used to provide rapid
assessment of pain, e.g., to monitor pain perception on people
unable to communicate (such as patients under general anes-
thesia, babies, stroke patients, and patients with mental disor-
ders) to evaluate the effectiveness of pain treatment.

2 Methods

2.1 Subjects

This study was approved by the Institutional Review Board of
the Massachusetts General Hospital. The study conformed to the
ethical standards for human experimentation as defined by the
Helsinki Accord and the International Association for the Study
of Pain. Sixteen healthy subjects were recruited for this study
(right handed, males, ages 19 to 38, mean age 27� 6). Each
subject provided written informed consent prior to the scan.
Exclusion criteria included a history of neurological trauma or

psychiatric disorders and the inability to remain still for six con-
secutive minutes.

2.2 Data Acquisition and Experimental Design

A multichannel continuous wave fNIRS system (CW7, TechEn,
Massachusetts) operating at 690- and 830-nm wavelengths was
used for this study. Fifteen light emitters and 16 light detectors
were mounted on the subject’s head, forming 36 30-mm fNIRS
channels covering the anterior portion of the prefrontal lobe,
as well as the bilateral motor and somatosensory regions [see
Fig. 1(a)]. A short separation detector was also installed 8 mm
from each light-emitter to detect signal changes coming from
extra cerebral layers (e.g., skin, scalp, and skull).

Prior to the actual scans, we applied 5 Hz electrical stimu-
lations (Neurotron, Maryland) to each subject’s left thumb to
determine his level of subjective pain perception. The subject
was asked to report ratings as a 3/10 score and a 7/10 score
for the perceived sensation, with the 3/10 score being that
“the subject should be strongly aware of the stimulus but should
not perceive any pain” (innocuous) and the 7/10 score being “the
subject should perceive pain, but the pain should be tolerable
without breath holding or any retreat actions” (noxious). The
intensities of the electrical shocks, which deliver the innocuous
and noxious stimuli, were recorded and then used in the actual
fNIRS scan.

For each subject, two fNIRS acquisition sessions were con-
ducted: one detection scan and one prescan, which was per-
formed 30 min prior to the detection scan. Each recording
session lasted ∼3 min and contained a randomized sequence
of three noxious stimuli and three innocuous stimuli. Both
types of electrical stimulations were applied continuously for
5 s and were separated by 25 s of resting period.

2.3 Data Preprocessing and Hemodynamic
Response Functions Estimation

As this study focuses on detecting the aPFC hemodynamic
response to pain, only the fNIRS data recorded from the six

Fig. 1 (a) The arrangement of fNIRS optodes and the corresponding sensitivity profile. Image is adapted
from our prior study.21 In this study, we focus on detecting pain response from the six prefrontal channels
(marked in red). (b) The coregistration of the six prefrontal channels onto a T1 MRI template. The coor-
dinates of the prefrontal channels are obtained based on an average of the locations on the 14 subjects.
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prefrontal channels (see Fig. 1) were used for analysis. Data
were preprocessed with the HOMER2 toolbox22 implemented
in MATLAB (Mathworks, Massachusetts). Please refer to
Yücel et al.6 for a detailed description of the preprocessing
pipeline. In brief, the raw fNIRS signals were first converted
into optical density changes and were further transformed to
HbO and HbR concentration changes using the modified
Beer–Lambert law. These hemoglobin concentration changes
were then low-passed filtered at 0.5 Hz with a third-order
Butterworth filter. For each of the six normal fNIRS channels,
the measured hemoglobin concentration time course Z of
a recording session was decomposed with the following decon-
volution model:23

EQ-TARGET;temp:intralink-;e001;63;609Z ¼ RN � γN þ RI � γI þD � γD þ S � γS þ ϵ; (1)

where RN and RI represent the hemodynamic changes associ-
ated with noxious and innocuous stimuli modeled by the con-
volution of the stimulus timing T with a series of basis functions
B (consecutive Gaussian functions with a standard deviation of
1 s and their means separated by 1 s in this study), respectively,
D is the modeled drift in the data (polynomial regressors up to
the third order), S is the time course from a short separation
channel that showed the highest correlation with the time course
of the current normal channel (i.e., Z), γN; γI; γD, and γS are the
corresponding coefficients, and ϵ is the error term.

From Eq. (1), the coefficients γN and γI were estimated with
a least-square approach, i.e.,

EQ-TARGET;temp:intralink-;e002;63;446γ̂ ¼ ðATAÞ−1ATZ; (2)

where A ¼ ½RN; RI;D; S� and γ̂ ¼ ½γ̂N; γ̂I ; γ̂D; γ̂S�T. The proc-
essed time course Y of the session was then reconstructed
from Z by removing the drift component and the physiological
noises

EQ-TARGET;temp:intralink-;e003;63;371Y ¼ Z −D � γ̂D − S � γ̂S: (3)

The subject-specific hemodynamic response functions
(sHRFs) to noxious stimuli FN and to innocuous stimuli FI
of the specific channel were obtained by

EQ-TARGET;temp:intralink-;e004;63;307FN ¼ B � γ̂N FI ¼ B � γ̂I: (4)

In this study, we focused on the HbO concentration changes
as the recorded HbR changes were generally noisy and unreli-
able, which made it difficult to identify the true hemodynamic
response to those two types of electrical stimuli.

2.4 Test–Retest Reliability Evaluation

We compared the sHRFs of HbO concentration changes esti-
mated from the two scans (i.e., the prescan and the detection
scan) to evaluate the test–retest reliability of the fNIRS-mea-
sured aPFC hemodynamic changes associated with noxious
and innocuous stimuli. On each channel of each subject, the
Spearman’s rank correlation coefficient (Spearman’s ρ) was
first calculated to test the overall monotonic relationship
between the sHRFs from the two scans. In addition to the overall
resemblance, we obtained the intraclass correlation coefficients
(ICCs) using a two-way random effect analysis of variance
model24 (with “scan sessions” as the column factor and “sub-
jects” as the row factor) to provide a quantitative measure of

the consistency between the main response of the sHRFs
(defined in terms of main nadir/peak magnitude and latency)
across scans. The main nadir (or peak) of an sHRF was recog-
nized automatically by locating the lowest value (or the highest
value if an HbO increase was present) in the sHRF within 2 to
15 s after the stimulation onset. The identified nadirs or peaks of
the sHRFs were then reviewed manually. To reduce the sensi-
tivity to spurious noise that could create an unusually low nadir
(or high peak), the magnitude of a nadir/peak was represented
by an average of the sHRF amplitudes over a time window of
2 s before the nadir/peak to 2 s after the nadir/peak. Finally, for
noxious stimuli, we conducted one-tailed Wilcoxon signed-rank
tests between the nadir/peak magnitudes of the sHRFs estimated
from the prescan and the detection scan to evaluate the extent of
signal habituation in the data. The Wilcoxon signed-rank test is
a nonparametric test that requires few assumptions on sample
data distribution or variance, making it suitable for testing
small sample size data. Therefore, we employed the Wilcoxon
signed-rank tests to test the sHRF magnitudes due to the limited
number of subjects included in this study.

2.5 General Linear Model Analysis: Standard
Approach and a Detection Model

The GLM analysis was carried out using the nirs10 MATLAB
toolbox25 developed based on SPM826 and NIRS-SPM.27,28

For each subject, the HbO dataset obtained from the detection
scan was used as the detection set. The detection process was
performed using two approaches, i.e., a standard GLM or the
proposed GLM-based detection model.

In the standard GLM approach, the processed channel-wise
time course of the measured HbO concentration changes Y [see
Eq. (3)] of the detection scan was expressed with the GLM as
follows:

EQ-TARGET;temp:intralink-;e005;326;381Y ¼ XNβN þ XIβI þ β0 þ ε; (5)

where XN and XI are the expected hemodynamic responses to
noxious and innocuous stimuli, respectively (computed by con-
volving the timing of the stimuli with the SPM8 cHRF), βN and
βI are the corresponding regression coefficients, β0 is a constant
regressor, and ε is the error term. The regression coefficient β̂
was then derived from the least square solution

EQ-TARGET;temp:intralink-;e006;326;282β̂ ¼ ðXTXÞ−1XTY; (6)

where β̂ ¼ ½β̂N; β̂I; β̂0�T. Due to the sparse distribution of the
NIRS channels, β̂ values were spatially interpolated to each
pixel of four two-dimensional (2-D) projections (dorsal, frontal,
left, and right) using an inhomogeneous interpolation kernel
K.27 At each pixel, two-tailed t-statistic tests were conducted
to test the hypothesis that the regression coefficient correspond-
ing to the expected response of noxious (XN) or innocuous (XI)
stimuli was not significantly different from 0 (i.e., the recorded
HbO response did not change as expected with the presence of
noxious or innocuous stimuli)

EQ-TARGET;temp:intralink-;sec2.5;326;135

�
H0∶βs ¼ 0

H1∶βs ≠ 0

where s ¼ fN; Ig. The t-statistic at a pixel l was derived by27
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EQ-TARGET;temp:intralink-;e007;63;421ts;l ¼
β̂sKlffiffiffiffiffiffiffiffi
Cs;l

p ; (7)

where Cs;l is the element in the error covariance matrix of stimu-
lus s corresponding to the pixel l (for details, please refer to
Ye et al.27). The obtained t-scores of all the pixels in a 2-D
projection were corrected using the Euler characteristic (EC)
correction method to yield a family-wise error rate of p < 0.0529

and were then displayed as t-statistical contrast maps.
In the proposed detection model approach, instead of apply-

ing a cHRF, we calculated the expected hemodynamic response
to noxious and innocuous stimuli with the corresponding sub-
ject-specific HRFs obtained from the prescan. To better compare
with the GLM results generated with the cHRF (i.e., the stan-
dard approach), the sign of the estimated sHRFs was flipped
before being passed to the GLM. This is because the main
response of the cHRF is depicted as a peak increase, while
the main response of sHRFs is usually observed to be HbO
decreases. Therefore, by inverting the sign of the sHRFs, the
brain regions that showed positive correlations between the
response in the prescan and in the detection scan would be asso-
ciated with negative t-scores, making them easier to be com-
pared with the deactivation clusters detected with the cHRF.
The flipped sHRFs from the four aPFC channels [C2, C3,
C4, C5, see Fig. 1(b)] were used, respectively, generating
four t-contrast map sets of each stimulus type (noxious or
innocuous) for each subject with a similar GLM approach as
described above. The four t-contrast map sets of a subject were
then combined into one t-contrast map set by taking the smallest
t-score (i.e., the most negative) across the four map sets at each
pixel. Adapted from previous fMRI studies,30 this procedure
was intended to account for the variability in the specific

aPFC regions, which show pain-related response across differ-
ent subjects.

2.6 Detection Sensitivity Definition

Based on the t-contrast maps, we compared the sensitivity of
using the two detection methods (i.e., the standard GLM and
the detection model) in detecting the fNIRS-measured HbO
change associated with noxious and innocuous stimuli. For
each subject, we defined positive sensitivity (SEN ¼ 1) for a
detection method if we were able to locate at least one cluster
of pixels with negative t-scores associated with noxious or
innocuous stimuli over the aPFC on the t-contrast maps gener-
ated with the method. The overall sensitivity of a method was
estimated by dividing the number of subjects on whom the
method was sensitive in the detection by the total number of
subjects involved in the analysis.

3 Results

3.1 Comparison of cHRF and sHRF

Data of two subjects were excluded from the analysis in the
preprocessing step due to excessive noise and motion artifacts.
For the remaining 14 subjects, we plotted the sHRFs to noxious
stimuli estimated from the two recording sessions in Fig. 2
(medial channels) and Fig. 3 (lateral channels). The sHRFs
to innocuous stimuli, as well as the parameter estimates of
the nadir/peak magnitude and latency of the sHRFs to both
types of stimuli, can be found in the Appendix. In Figs. 2
and 3, the magnitudes of the sHRFs have been normalized so
that the highest magnitude is shown as a unit value.
Decreases in HbO concentration associated with noxious stimuli

Fig. 2 Medial channels (C3 and C4): comparison of the SPM8 cHRF and the channel-wise sHRFs to
noxious stimuli estimated from the prescan (solid curves) and the detection scan (dashed curves).
Each panel represents data from a subject.
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were seen in most of the subjects. However, it should be noted
that the shape of the response varied from the cHRF with respect
to peak latency and peak dispersion. In addition, we also
observed HbO increases in some subjects, especially from
the lateral channels (Fig. 3). Interpretation of the observed deac-
tivations and activations is discussed in Sec. 4.3.

3.2 Test–Retest Reliability of fNIRS-Measured
aPFC Response

We present the ICC and the Spearman’s correlation coefficient
values of the sHRFs to noxious (Table 1) and innocuous stimuli
(Table 2) across the prescan and the detection scan. Along with
the ICC values, the 95% confidence interval, the F-score, and
the p-value were also obtained. In the medial channels (C3 and
C4), noxious stimuli were seen to be associated with higher ICC
values and Spearman’s correlation coefficients when compared
with innocuous stimuli. The most reliable measure for noxious
stimuli came from the left medial channel (C3), with ICC values
for sHRF magnitude and latency being 0.785 and 0.633, respec-
tively, as well as the Spearman’s correlation coefficient being
0.45 after excluding four outlier subjects. The best channel
for innocuous stimuli was C4 (right medial), with ICC values
of 0.357 and 0.407 for peak/nadir magnitude and latency,
respectively. It should also be noted that, for the lateral channels,
we obtained a negative ICC value for the nadir/peak magnitude
of the sHRFs to noxious or innocuous stimuli. This is due to
a larger within-subject variance than between-subject variance
in the magnitude dataset, indicating that this measure from the
lateral channel was not reliable.

Finally, we compared the nadir/peak magnitude of the sHRFs
to noxious stimuli between the prescan and the detection scan to
evaluate the extent of habituation of pain signals in our data.

Although we observed magnitude attenuation on some subjects
(e.g., subjects #8 and #9, see Fig. 2 and Appendix) especially
from the medial channels, the difference in the magnitudes
did not reach statistical significance (p values ¼ 0.50∕0.16
for medial channels C3/C4). This might be explained by the
small number of stimuli we delivered to the subjects, as well
as the relatively small subject sample size in this study. In addi-
tion, the 30-min resting period between the prescan and the
detection scan may be enough to eliminate the effect of habitua-
tion in some subjects.

3.3 General Linear Model Results and Detection
Sensitivity

Table 3 provides the GLM results on noxious stimuli of the 14
subjects. The peak t-statistical scores and the spatial profiles of
the detected clusters with negative t-scores using the standard
GLM (with the cHRF) or the detection model (with prerecorded
sHRFs) are presented, respectively. In 10 of the 14 subjects, we
observed a lower peak t-score and/or a larger spatial extent of
the detected cluster using the detection model. The difference in
the peak t-scores between the standard GLM and the detection
model was shown to be statistically significant with a one-tailed
Wilcoxon signed-rank test at 0.05 testing the null hypothesis
that the peak t-scores generated with the sHRF model were
not lower than those obtained using the cHRF (p ¼ 0.00098).

With the standard GLM approach, statistically significant
hemodynamic changes associated with noxious stimuli were
located over the aPFC in 2 of the 14 subjects (subjects #7
and #11), leading to a detection sensitivity of 14.3%. The sen-
sitivity was improved to 64.3% using the detection model with
prerecorded sHRFs (9 of 14 successful cases). Figure 4 presents
a case study to further illustrate the detection process.

Fig. 3 Lateral channels (C2 and C5): comparison of the SPM8 cHRF and the channel-wise sHRFs to
noxious stimuli estimated from the prescan (solid curves) and the detection scan (dashed curves).
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Table 1 ICC and Spearman’s correlation coefficient values of the sHRFs to noxious stimuli across the prescan and the detection scan. For
Spearman’s correlation coefficient, the ρ-average is from a simple average across all subjects, and the ρ-positive is from an averaging process
where all negative coefficients were excluded. The number in the parentheses indicates how many subjects were included in the averaging
process.

C2 (left lateral) C3 (left medial) C4 (right medial) C5 (right lateral)

ICC values

Peak/nadir magnitude

ICC −0.429 0.785* 0.660* 0.163

CI upper 0.144 0.926 0.876 0.638

CI lower −0.819 0.447 0.235 −0.396

F -value 0.414 7.795 4.860 1.390

p-value 0.062 0.000367 0.00380 0.289

Peak/nadir latency

ICC 0.014 0.633* 0.181 0.305

CI upper 0.537 0.865 0.633 0.709

CI lower −0.547 0.179 −0.356 −0.207

F -value 1.027 4.328 1.444 1.964

p-value 0.481 0.0064 0.259 0.128

Spearman’s rank correlation coefficient values

ρ-average 0.003� 0.45 0.21� 0.47 0.20� 0.50 0.26� 0.44

ρ-positive 0.33� 0.25 (8/14) 0.45� 0.27 (10/14) 0.42� 0.26 (11/14) 0.40� 0.28 (11/13)

*The ICC estimate was significant under p < 0.05.

Table 2 ICC and Spearman’s correlation coefficient values of the sHRFs to innocuous stimuli across the prescan and the detection scan.

C2 (left lateral) C3 (left medial) C4 (right medial) C5 (right lateral)

ICC values

Peak/nadir magnitude

ICC 0.384 0.332 0.357 −0.061

CI upper 0.742 0.726 0.741 0.462

CI lower −0.113 −0.236 −0.226 −0.507

F -value 2.349 1.952 2.038 0.874

p-value 0.068 0.121 0.106 0.401

Peak/nadir latency

ICC 0.176 0.216 0.407 0.317

CI upper 0.630 0.671 0.765 0.733

CI lower −0.359 −0.354 −0.163 −0.302

F -value 1.430 1.563 2.286 1.860

p-value 0.264 0.216 0.075 0.148

Spearman’s rank correlation coefficient values

ρ-average −0.07� 0.29 0.053� 0.42 0.17� 0.47 0.02� 0.40

ρ-positive 0.25� 0.15 (5/14) 0.35� 0.20 (8/14) 0.45� 0.28 (9/14) 0.20� 0.18 (10/13)
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Table 3 Detected response to noxious stimuli: peak t -statistical scores and spatial profiles with the standard GLM approach and with the detection
model. For the subjects where no statistically significant clusters could be located, uncorrected t -scores are reported and were used in theWilcoxon
signed-rank test to calculate the p-value.

Subjects

Standard approach (cHRF) Detection model (sHRF)

MinðtÞ Location SEN MinðtÞ Location SEN

1 −2.4 Left medial 0 −2.4 Left medial 0

2 NR 0 NR 0

3 −2.3 Bilateral medial and lateral 0 −2.9* Bilateral medial 1

4 NR 0 −2.6* Right medial 1

5 −2.5 Bilateral medial 0 −2.2 Right lateral 0

6 −2.0 Bilateral medial 0 −4.7* Bilateral medial 1

7 −2.7* Left lateral 1 −5.8* Bilateral medial and lateral 1

8 NR 0 −3.4* Bilateral medial and lateral 1

9 NR 0 NR 0

10 NR 0 −2.7* Right lateral 1

11 −3.4* Left medial and right lateral 1 −8.7* Left medial and lateral and right medial 1

12 −2.3 Left medial and lateral 0 −2.7* Left medial and lateral 1

13 −1.8 Left lateral 0 −2.4 Left medial and lateral 0

14 −2.2 Bilateral medial 0 −2.6* Right lateral 1

Sensitivity 14.3% 64.3%

p-value 0.00098

Note: NR, no response.
*The detected response was statistically significant under EC correction.

Fig. 4 Case study, subject 7. (a) The GLM-based detection model approach. The top row shows the
sHRFs to noxious stimuli estimated from the prescan. Error bars indicate standard error across the
three stimulus trials. The middle row depicts the t -statistical contrast maps generated with GLM
using the four estimated sHRFs, respectively, EC corrected, p < 0.05. The bottom row shows the
final spatial map for detection combined from the above four t -map sets. Significant clusters with negative
t -scores (circled in black) were seen in bilateral medial and lateral portions of the aPFC (detection result:
success). (b) The standard GLM approach. The above image shows the SPM8 cHRF. The bottom is the
corresponding statistical map using the cHRF, EC corrected, p < 0.05. A much smaller cluster with less
significant negative t -scores was seen (mainly in the left lateral aPFC).
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In Table 4, we present the main findings regarding the peak
t-statistical scores and the spatial profiles of the detected hemo-
dynamic changes associated with innocuous stimuli. Using
a similar detection process, we also observed an increase in
the detection sensitivity of innocuous stimuli from 21.4% to
64.3% when the detection model was applied. However, the
improvement in peak t-scores of the detected hemodynamic
changes associated with innocuous stimuli (p ¼ 0.0248) was
less significant than that with noxious stimuli.

4 Discussion

4.1 Summary of Findings and Potential Clinical
Applications

In the first part of this paper, we provided a preliminary assess-
ment of the test–retest reliability of the fNIRS-measured aPFC
response to noxious and innocuous stimuli. Based on the results
from 14 healthy, male subjects, the hemodynamic changes
associated with noxious stimuli seemed to have a higher repro-
ducibility (i.e., with higher ICC and Spearman’s correlation
coefficient values) than innocuous stimuli in the medial portion
of the aPFC. Moreover, we observed that responses recorded
from the medial channels (C3 and C4) were also generally
more reliable than those from the lateral channels (C2 and C5).

These findings are concordant with the findings reported in our
previous papers6,7 that the hemodynamic response to painful
stimuli was stronger than that to nonpainful stimuli and that
the response was most strongly present in the medial portion
of the aPFC. The overall good test–retest reliability of aPFC
response to pain on a single subject provides the basis of
employing a prerecorded pain response function to detect sub-
sequent perception of painful events.

Based on these results, in the second part, we proposed
a GLM-based detection model that detects the aPFC
hemodynamic response to noxious and innocuous stimuli in
individual subjects using prerecorded individualized HRFs.
The detection sensitivity of the proposed model was estimated
based on the 14 subjects and was compared with a standard
GLM approach using a canonical HRF. We reported that
using the prerecorded sHRFs significantly improved the detec-
tion sensitivity of pain response in 10 subjects with an increase
in sensitivity from 14.3% to 64.3%. In addition, the detection
model also improved the sensitivity of detecting innocuous
stimuli. However, the statistical significance of the improvement
was lower.

Taken together, this study showed that fNIRS is a reliable
tool for detecting the prefrontal response to pain and described
a simple but practical method in applying fNIRS to perform

Table 4 Detected response to innocuous stimuli: peak t -statistical scores and spatial profiles with the standard GLM approach and with the
detection model.

Subjects

Standard approach (cHRF) Detection model (sHRF)

MinðtÞ Location SEN MinðtÞ Location SEN

1 NR 0 −4.2* Left lateral 1

2 NR 0 −3.1* Bilateral medial 1

3 NR 0 −1.8 Left lateral 0

4 NR 0 −2.8* Right medial 1

5 −4.6* Left medial 1 −3.7* Bilateral medial 1

6 NR 0 −2.8* Left medial 1

7 NR 0 −3.3* Right lateral 1

8 −3.1* Bilateral medial 1 −3.1* Right medial 1

9 NR 0 −3.1* Right lateral 1

10 −2.1 Right lateral 0 NR 0

11 −1.8 Left medial 0 −2.0 Left medial 0

12 NR 0 −3.2* Bilateral medial and right lateral 1

13 NR 0 −2.0 Right lateral 0

14 −3.2* Right medial 1 NR 0

Sensitivity 21.4% 64.3%

p-value 0.0248

Note: NR, no response.
*The detected response was not statistically significant under EC correction.
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rapid, robust pain detection, and evaluation. We believe that
this approach can be easily implemented (as it only requires
the addition of a brief prescan) and can potentially be used
in various pain-related clinical applications, such as to monitor
pain in patients unable to speak and to test the efficacy of pain
treatment (e.g., opioid effect). An example of using this
approach would be to test the level of analgesia on patients
undergoing surgical treatment. While a prescan can be easily
conducted on a patient preoperatively, the recorded pain-related
hemodynamic response may then be used to detect and evaluate
his/her perception of pain in the perioperative period.

4.2 Comparison of Our Results with Those from
Previous Studies

FNIRS and BOLD-fMRI share a similar physiological basis in
that they both measure hemoglobin concentration-related
changes in the brain. In this study, we first evaluated the
test–retest reliability of pain measures using fNIRS in a way
similar to previous fMRI studies.31–33 With BOLD-fMRI,
Quiton et al.31 observed deactivations in BOLD signals over
the medial portion of the aPFC for heat pain and reported
ICC values of 0.668 to 0.771 for the amplitude of the signal
decrease. Upadhyay et al.33 focused primarily on the activation
clusters over the prefrontal cortex following pain and obtained
ICC values of 0.515 to 0.787 for the response magnitude. These
results are generally comparable to the ICC values we estimated
for fNIRS from the medial channels (ICCs for nadir/peak mag-
nitude: 0.660 to 0.785).

Regarding pain detection, several studies (mostly based on
fMRI, but also a few on fNIRS) have explored the feasibility
of developing practical models in using brain signals to recog-
nize painful events or to predict subjective pain intensities.34–37

In particular, models employing machine-learning techniques
have been shown to yield promising results. For example,
using fNIRS signals from the anterolateral prefrontal cortex
(which mostly delineated an HbO increase following pain) and
a support vector machine (SVM)-based technique, Pourshoghi
et al.38 obtained an accuracy of up to 94% in classifying high-
pain and low-pain events. Despite the focus being on post-hoc
painful event classification and clustering (rather than pain
detection as in our study), their work is still remarkable in dem-
onstrating the feasibility of using fNIRS as a useful tool in
objective pain assessment. Karamzadeh et al.39 applied fNIRS
in the classification of patients with traumatic brain injury
and showed its potential in identifying brain markers of injury
or disease. Using fMRI, Brown et al.34 reported 81% accuracy in
distinguishing painful from nonpainful stimuli with an SVM
approach. Another study by Wager et al.37 reported a pattern
of fMRI activity associated with heat pain and showed high sen-
sitivity and specificity (both above 90%) in using the specific
pattern to distinguish painful heat from nonpainful warmth,
pain anticipation, and pain recall. These estimates of pain detec-
tion sensitivity with fMRI are much higher than the numbers
reported in this study with fNIRS (64.3% sensitivity). First,
fMRI has better spatial resolution and is able to sample from
deep structures of the brain, which allows for the delineation
of a much more general pattern of pain signals involving multi-
ple cortical and subcortical regions. For example, the neurologic
signature used in Wager et al.37 included activities in the secon-
dary somatosensory area, the cingulate cortex, the thalamus,
the insula cortex, and the periaqueductal gray matter, which
are the main regions reported to be reliably activated during

experimental acute pain.32,33 On the other hand, fNIRS is
able to reliably collect hemodynamic signals from the cortical
surfaces, therefore limiting its ability to detect deep layer pain
response. However, fNIRS has excellent robustness to accom-
modate clinical settings (e.g., in the operating room, bedside).
In this study, we focused on the aPFC response. Advantages of
putting NIRS optodes on the forehead include the ease of access
and the ability to eliminate hair contaminations to obtain a high
signal-to-noise ratio.7 Finally, it should be noted that machine-
learning approaches usually require a large sample set to train
classifiers to achieve a reasonable sensitivity and specificity.40

In this fNIRS study, however, we showed that the detection
sensitivity of pain response could be significantly improved
just by adding a short prerecorded session (a 3-min acquisition
containing three noxious stimuli) prior to the actual noxious
scan.

4.3 Activation and Deactivation in the aPFC
Associated with Nociception

In this study, we focused on the hemodynamic response in the
aPFC, also known as the frontopolar (FP) cortex, which corre-
sponds with the Brodmann area 10. The role of the aPFC in
pain perception and modulation has not been fully elucidated.
Besides deactivations, some studies have also reported aPFC
activations during or following painful/noxious stimulus (e.g.,
see Apkarian et al.41 for an early review), especially in the lateral
portion of the aPFC. In this study, while a deactivation process
was mostly observed in the medial aPFC, HbO increases (i.e.,
cortical activation) after electrical pain were also noticed, pri-
marily from the lateral channels (e.g., on S2, S4, S5, S6, S7,
S8, S10, and S11, see Fig. 3). Connectivity-based studies
have proposed either two subregions (medial and FPm and lat-
eral FPl)42 or three subregions (FPm, FPl and orbital, and FPo)
parcellation43 for the aPFC, with each subregion associated with
different connections and functions: FPl—cognitive processing
network; FPo—social emotional network, and FPm—the
default mode network (DMN). Therefore, the activations that
we observed in the lateral aPFCmight reflect high-level process-
ing and integration of the sensory information of pain, as well as
the associated emotional processing. Moreover, previous work
reported that the lateral aPFC was activated during opioid,44,45

stimulation,46,47 and placebo-induced48,49 analgesia, suggesting
its role in the modulation of pain. On the other hand, deactiva-
tion of the medial aPFC following pain was often seen to
be associated with other regions in the DMN.15,50 The DMN
is involved in interoception, self-referential evaluation and
is generally deactivated when a task or salient event is
presented.51,52 Indeed, Kucyi et al.53 reported that the pain-
induced DMN deactivation was attenuated when the subject’s
attention was distracted from pain. In support of complex inter-
actions whereby pain may inhibit activities in frontal areas,
research in a nonhuman animal model has revealed “glutama-
tergic afferents from the amygdala monosynaptically innervate
GABAergic interneurons in the medial prefrontal cortex, which
synapse on layer V pyramidal cells and control pyramidal cell
output.”54

Conceptually, the above-mentioned studies provide a model
for the aPFC response profile we observed on our subjects,
i.e., activations in the lateral portion (related to sensory-discrimi-
native, affective-motivational aspects of pain, and endogenous
pain modulation) and deactivations in the medial portion
(related to attentional aspect and other inhibitory processes).
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By simultaneously looking at the contrast maps generated with
sHRFs from both medial and lateral channels, the proposed
detection model is likely to combine these distinct cortical rep-
resentations associated with pain in the detection, which might
also potentially explain the significant sensitivity improvement
over the standard GLM assuming only aPFC deactivations with
a fixed shape.

4.4 Limitations

There are a few limitations related to this study including:
(1) Sample size: as an assessment of test–retest reliability
and pain detection sensitivity, this study was conducted on a
relatively small subject sample size (n ¼ 14). In particular,
the detection set for each subject contained only three noxious
stimuli and three innocuous stimuli. This might lower the stat-
istical significance of the detected responses with the GLM.
(2) Sampling brain region: this study focused exclusively on
the aPFC response to pain. The detection sensitivity may be fur-
ther increased when fNIRS signals can be reliably collected
from both prefrontal and somatosensory regions. (3) Types of
pain and sex differences: this study was restricted to the detec-
tion of electrical pain in male subjects. However, individuals
have different pain thresholds or susceptibility to pain and anal-
gesics, presumably based at least in part on the baseline “resting
state” condition that may change with behaviors (e.g., sleep dep-
rivation), genetic contributions,55,56 or sex.57 Further work incor-
porating various types of pain stimuli on both genders would be
necessary to determine the usefulness of the proposed detection
model. (4) Pain habituation: we did not observe significant
habituation of pain signals in this study possibly due to the
small number of stimuli, the short acquisition time, the small

number of subjects involved, and a relatively long resting period
between the two scans (30 min). However, we anticipate that
severe habituation of pain response in other cases may have
a negative impact on the test–retest reliability and the detection
sensitivity.

5 Conclusions
In this work, we report that fNIRS has a reasonable reliability in
detecting the hemodynamic response to noxious stimuli from
the medial portion of the aPFC. Based on these results, we pro-
posed a GLM-based model that employs prerecorded, person-
alized HRFs to detect pain and showed a significantly higher
sensitivity in detecting a subject’s pain perception using the pro-
posed model than the standard GLM approach. This study sup-
ports that fNIRS may have the potential to become a clinically
useful tool for accessing and evaluating pain and highlights the
importance of performing careful modeling and individualized
analysis in data processing. Further work on the improvements
in data acquisition and the analytical methods (especially, to
evaluate the detection specificity), as well as on validations
with different types of pain stimuli on a larger number of both
male and female subjects, might be beneficial.

Appendix: Supplementary Data

A.1 Comparison of the Estimated sHRFs to
Innocuous Stimuli with the cHRF

We depict the sHRFs to innocuous stimuli from the medial pre-
frontal channels (Fig. 5) and the lateral channels (Fig. 6),
respectively.

Fig. 5 Medial channels (C3 and C4): comparison of the SPM8 cHRF and the channel-wise sHRFs to
innocuous stimuli estimated from the prescan (solid curves) and the detection scan (dashed curves).
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A.2 Peak/Nadir Magnitudes and Latency of the Identified Main Response of the sHRFs
Tables 5 and 6 present the peak/nadir magnitudes and latency of the identified main response of the estimated sHRFs of each subject
from the prescan and the detection scan.

Table 5 Peak/nadir magnitudes and latency of the identified main response of the estimated sHRFs from the prescan (scan 1).

Scan 1

Peak amplitude (μM) Innocuous stimuli Noxious stimuli

Subject C2 C3 C4 C5 C2 C3 C4 C5

1 0.1515 0.2647 0.1510 0.1663 −0.3255 −0.5178 −0.5804 −0.3276

2 −0.1987 −0.2887 −0.0274 0.3723 −0.3869 −0.4486 −0.2453 0.8949

3 0.5696 0.7614 −0.1939 −0.1742 −0.1758 −0.8760 −0.4152 −0.4332

4 −0.0200 0.1602 0.0916 0.1304 0.2432 −0.1021 0.0974 1.0168

5 −0.2526 −0.3056 −0.0917 −0.1871 0.2146 −0.0960 0.1570 0.3949

6 −0.1553 −0.0888 −0.1061 0.4075 0.0474 −0.1468 −0.1673 −0.0663

7 0.1725 −0.0150 −0.0483 0.1234 0.0975 −0.3911 −0.1847 0.1474

8 −0.3315 0.3190 −0.0789 −0.2935 0.2474 −0.2287 −0.4880 0.3409

9 −0.1744 −0.0626 −0.1140 −0.1453 −0.4472 −0.0890 −0.2806 −0.2290

10 0.1218 0.0489 0.0647 0.7397 0.5553 −0.1007 −0.0887 −0.5632

11 0.2765 −0.4430 −0.4062 −0.4556 0.7744 1.2092 0.3838 0.7547

12 0.3385 0.1685 −0.6963 0.3930 −0.5713 −0.2220 −0.6419 −0.3199

13 0.1608 −0.2657 −0.5263 NR −0.3889 −0.6440 −0.8834 NR

14 −0.0612 −0.0788 −0.1194 −0.0601 −0.0024 −0.0067 −0.3847 −0.1420

Fig. 6 Lateral channels (C2 and C5): comparison of the SPM8 cHRF and the channel-wise sHRFs to
innocuous stimuli estimated from the prescan (solid curves) and the detection scan (dashed curves).
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Table 5 (Continued).

Scan 1

Peak latency (s) Innocuous stimuli Noxious stimuli

Subject C2 C3 C4 C5 C2 C3 C4 C5

1 7.2 6.4 6.16 7.32 10.28 10.76 10.64 12.68

2 5.84 4.16 7.8 8.12 10.08 10.04 9.96 6.04

3 3.56 3.92 6.72 9.84 9.08 10.92 6.96 8.96

4 11.28 2.8 5.2 6.44 5.72 12.76 12.56 7.28

5 5.08 5.88 5.24 3.84 8.4 5.52 9.2 7.92

6 8.56 6.72 10.04 14.92 7.76 6.32 10.2 12.04

7 6.34 9.18 6.44 7.74 5.38 10.22 6.02 9.16

8 6.92 7.9 4.26 6.56 4.32 2.96 7.94 10.18

9 3.9 10.24 12.56 9.1 8.14 10.82 12.62 10.24

10 4.68 10.8 8.38 12.44 5.74 13.16 11.1 6

11 11.84 13.62 10.42 5.22 11.48 10.36 10.66 10.92

12 4.04 4 7.52 3.94 6.9 8.06 8.68 9.72

13 9.52 4.6 4.42 NR 10.72 6.88 7.34 NR

14 3.82 9.3 9.92 9.22 4.82 4.56 4 6.1

Note: NR, no response.

Table 6 Peak/nadir magnitudes and latency of the identified main response of the estimated sHRFs from the detection scan (scan 2).

Scan 2

Peak amplitude (μM) Innocuous stimuli Noxious stimuli

Subject C2 C3 C4 C5 C2 C3 C4 C5

1 0.2673 0.3415 0.0906 0.1545 −0.3787 −0.4956 −0.3110 −0.2907

2 −0.3121 0.0066 0.2196 −0.5454 0.7960 0.4599 0.3591 0.2160

3 −0.0806 0.1474 −0.1131 −0.3800 −0.3751 −1.0388 −0.5632 −0.3292

4 −0.7366 −0.0253 0.1493 −0.1480 0.1727 −0.4147 −0.3159 0.1771

5 −0.1293 −0.3575 −0.1112 0.2846 −0.1416 −0.2044 −0.1491 0.1739

6 −0.1138 −0.4901 −0.1330 −0.3821 −0.5321 −0.2217 −0.0129 −0.2596

7 0.0701 −0.1288 −0.0272 0.4082 −0.2904 −0.5818 −0.2200 0.3911

8 −0.2933 −0.2287 −0.4337 −0.2090 −0.3828 −0.0112 −0.0687 −0.1248

9 0.1811 −0.1088 −0.0842 −0.0417 0.2401 −0.0279 −0.1766 0.0819

10 −0.0871 0.1778 −0.3721 −0.2298 −0.2127 0.0515 −0.0768 −0.2211

11 0.2160 −0.2270 −0.1140 −0.2903 −0.6744 0.8737 0.3282 −0.5784

12 0.1183 0.1388 −0.0608 0.1317 −0.4533 −0.5097 −0.3494 0.2950

13 0.0917 0.3783 −0.5664 NR 0.1748 −0.4844 −1.0006 NR

14 −0.1660 −0.2349 −0.2662 −0.2276 −0.0822 −0.1515 −0.1681 −0.0494
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