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Abstract. Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches
brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the
behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram
Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community.
However, this unprecedented technique remains largely under-utilized, and many future possibilities await for
VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent
complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response
and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recur-
rent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are
thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such
approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to
advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger
development of interdisciplinary approaches can bridge micro- to macroscales. © The Authors. Published by SPIE under a
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1 Introduction
Despite the tremendous recent advancements in neuronal
activity recording tools, voltage-sensitive dye imaging (VSDI)
remains the only technique that allows to measure neuronal
activity with high temporal (1 to 10 ms) and spatial (<50 μm)
resolution1,2 over a large field-of-view (typically about
1 to 2 cm2). VSDI2 thus provides access to the mesoscopic
scale, i.e., a network of neurons from the column to a whole
area, between microscopic (single-neuron) and macroscopic
(whole-brain) scales. Recording techniques providing access
to this scale—VSDI as well as by other optical imaging tech-
niques (e.g., optical imaging of intrinsic signals, two-photon
microscopy) and multielectrode arrays [Fig. 1(a)]—have
unfortunately received relatively little attention from the neuro-
scientific community: only 4% of publications listed in PubMed
with the keyword “cortex” study this mesoscopic scale, with
only 0.5% from VSDI [Fig. 1(b) and Table 1]. This relative
lack of attention stands in contrast to the fact that more than
95% of interneuronal connections occur between neurons sep-
arated by less than 2 mm in cortex.4 These under-explored tech-
niques, with VSDI in particular because it remains unique in the

field-of-view and temporal resolution it reaches, have, therefore,
an enormous potential for unraveling new fundamental scientific
discoveries. Two points, however, stand in the way of this poten-
tial: (1) insufficient understanding of the VSDI signal’s origin and
(2) the lack of standardized signal processing tools. Developing
dedicated computational approaches may, therefore, be the key to
improve our knowledge and know how in VSDI studies.

Here, we review recent advances in that direction. First, we
describe how generative models of VSDI data can help to better
understand the origin of the signal and unravel possible underly-
ing mechanisms. In particular, biophysical models have proved
very useful in describing the signal’s multicomponent origin.
Second, we strongly suggest a standardization of signal process-
ing tools that are key for generalization and comparison of results
obtained with VSDI. With this imaging technique, the raw signal
is corrupted by many noise components arising from physiologi-
cal, mechanical, or electronical sources. We review the signal
processing tools that have been developed for VSDI signal analy-
sis. Finally, we show that combining single-trial data analysis
with computational models can reveal the origin of the observed
signal’s dynamics. Similar to the convergent interdisciplinary
efforts that have been undertaken to optimize our understanding
and use macroscopic brain imaging signals [i.e., functional mag-
netic resonance imaging (fMRI), magneto-encephalogram, and
electro-encephalogram], we believe that such computational
approaches are needed for the development of VSDI and are vital
to establishing this as a standard neuroscientific imaging technique.
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2 Computational Models of Voltage-Sensitive
Dye Imaging Signal

We start by reviewing the different computational models avail-
able to better understand the origin of the population dynamics
and the VSDI signal.

2.1 Dissecting the Underlying Mechanisms of
the Response Dynamics

The behavior of large assemblies of neurons can be studied
without having to tackle the mathematically unwieldy chal-
lenges associated with microscopic considerations. Indeed, at
the mesoscopic scale, it is valid to study average values, thus
requiring only simple computations to describe the activity of
interacting populations of neurons through mean-field theory.5

The VSDI signal reports mesoscopic population activity at
high spatio-temporal resolution and has been successfully
reproduced by models developed at this scale.6–15 Here, we
briefly review, in a nonexhaustive manner, three families of
such models (see Ref. 14 for a more detailed overview of the
models and their equations).

2.1.1 Neural-field models

Grimbert and Chavane,10 as well as Markounikau et al.13 and
Deco and Roland,14 proposed neural fields as a suitable meso-
scopic model of cortical areas. Neural fields are continuous net-
works of interacting neural masses, describing the dynamics of
the cortical tissue at the population level.16 Therefore, they are
appropriate to solve the direct problem of the VSDI signal, i.e.,
to generate a VSD signal given the neural substrate parameters
and activities. These three models indeed account for physio-
logical spatio-temporal dynamics of V1 population responses to
various illusory motion stimuli (apparent motion, line motion).

2.1.2 Self-organizing models

The laterally interconnected synergistically self-organizing map
(LISSOM) family of models17,18 was also proposed to reproduce
the spatial organization of V1 as observed with optical imaging.
It is based on Hebbian self-organizing algorithms19 used to
visualize and interpret large, high-dimensional data sets. Sit and
Miikkulainen9 but also Stevens et al.6 proposed variants of
the original LISSOM model to account for the development of
stable and realistic cortical functional maps.

Fig. 1 Spatio-temporal resolution and scales of neuronal recording
methods. (a) Three-dimensional representation of 10 families of neu-
ronal recording methods as a function of their spatial resolution, tem-
poral resolution, and the spatial field-of-view that they can reach.2

INTRA, intracellular recordings; S/MUA, single or multiunit activity;
LFP, local-field potentials; 2-PH, two-photon microscopy; MEA: multi-
electrode array; VSDI, voltage-sensitive dye imaging; OI-IS, optical
imaging of intrinsic signals; fMRI, functional magnetic resonance im-
aging; E/MEG, electro- or magneto-encephalogram; IDEAL, the ideal
technique. (b) In the same spatial resolution, field-of-view represen-
tation, frequency histograms of the amount of publication referenced
in PubMed with the word “cortex” and one of these method. The
generic search line was: (TECHNIQUE_NAME[Title/Abstract]) AND
(cortex[Title/Abstract] OR cortical[Title/Abstract]). When appropriate,
the technique name was written in full and abbreviated.

Table 1 Orders of magnitude of neuronal recording techniques in terms of spatial resolution, temporal resolution, and field-of-view,2,3 as well as the
exact hit in PubMed search.

INTRA S/MUA LFP 2-PH MEA VSDI OI-IS fMRI/TEP E/MEG IDEAL

Spatial resolution Subneuronal Neuron Neuron-
column

subneuronal Neuron Neuron-
column

Neuron-
column

Subareal Subareal Subneuronal

Field-of-view Neuron Neuron Column Column Multicolumns Area Area Brain Brain Brain

Temporal resolution Sub-ms ms Tens of ms Tens of ms ms ms Hundreds
of ms

Hundreds
of ms

Hundreds
of ms

Sub-ms

Pubmed search: 10,267 8680 739 784 572 346 964 24,943 16,131
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2.1.3 Conductance-based models

Rangan et al.8 proposed a large-scale conductance-based
integrate-and-fire (IAF) model of the primary visual cortex
in order to reproduce the spatiotemporal activity patterns of
V1, as revealed by VSDI, in response to the line motion
illusion.20 This family of models simplifies the model of
Hodgkin and Huxley (HH) by representing neurons as IAF
units while still taking into account a simplified version of the
conductance changes due to action potentials.21 More recently,
Chizhov15 also used this family of models to account for VSDI
dynamics.

Each of these models helps understanding or testing the role
of some specific components of the VSDI signal. For instance,
one intriguing feature of VSDI cortical responses to illusory
motion stimuli,20,22 calls for the existence of slow mechanisms
that can “bind” spatially and temporally the transient stationary
inputs composing the stimulus sequence. In all models,
such nonlinear low-pass filtering by the neuronal population
has been attributed to various mechanisms. For instance,
Markounikau et al.13 and Chemla and Chavane23 both suggested
that a balance between excitation and inhibition and lateral
connections are potential mechanisms shaping the sequence of
stationary input. Similarly, Chizhov15 found that intracortical
connectivity is a critical factor accounting for VSDI dynamics.
In Ref. 8, the NMDA conductance has been further proposed as
a complementary, nonexclusive, mechanism to account for the
slow dynamics of the VSDI signals. Such a conductance could
also play an important role in structuring on-going spontaneous
activity by generating an intermittent unsuppressed state.24

These results show that computational models can be used to
demonstrate the plausibility of various mechanisms probed
by specifically incorporating the putative candidate, conduc-
tances, or connectivity—such as horizontal and vertical inter-
columnar connections between neural masses10 or feedback.14

However, none was specifically designed to dissect the origin
of the VSDI signal, which is a central question for interpreting
the results (see Ref. 14 for a detailed review on this problem-
atic). The VSDI technique is indeed a complicated signal based
on voltage-sensitive dyes that bind to the cells’ membrane and
linearly transform variations in the membrane potential into
fluorescence. A millisecond temporal resolution is reached by
using a highly sensitive charge-coupled device camera, whereas
the spatial resolution (down to 20 to 50 μm) is mainly limited by
optical scattering of the emitted fluorescence.25 The recorded
signal, therefore, results from fluorescence integrated over
a large population of cells and is thus affected by activity of
intermingled components under each measuring pixel, e.g.,
different neuronal compartments (including dendrites, somata,
and axons) of different cell types (excitatory and inhibitory)
in different layers, which are likely to be stained in the same
manner. How to isolate the contributions from its different com-
ponents is, therefore, a difficult question to answer directly. To
specifically investigate this question, Chemla and Chavane23

have proposed a biophysical model that we present below.

2.2 Biophysical Model for Unraveling the Signal’s
Origin

2.2.1 Basics of the model

We developed a detailed biophysical cortical column model
based on known neural properties of the visual cortical network

and adjusted to reproduce the dynamics of experimental VSDI
signal.26,27 The model was developed at a scale that corresponds
in size to one pixel of the VSDI image (50 μm) and embedded
into a larger network to be realistic, i.e., an artificial hypercol-
umn (in the case of V1). More precisely, this model comprised
180 multicompartment HH neurons [see Fig. 2(a)] with three
different types of excitatory neurons (one type per represented
layer) and one unique type of inhibitory neurons in each of the
three layers (2/3, 5, 5/6). Excitatory and inhibitory neurons,
which represent 80% and 20% of the cells respectively, were
initially fitted to intracellular recordings from Ref. 28. These
neurons were then recurrently connected in accordance with
Ref. 29, which provided a quantitative estimation of the synaptic
projections between these different neuronal types. The local
network calibration was done by tuning the contrast response
functions of these two populations of neurons to reproduce
those obtained electrophysiologically in vivo.30 Lateral inter-
actions were tuned in strength and number of synapses to fit
excitatory and inhibitory distributions, respectively, from
Refs. 31 and 32. Background activity was also taken into
account in the form of fluctuating ionic conductances33 in
order to reproduce in vivo synaptic bombardment. Finally,
the dye attenuation parameter was given by the distribution
of fluorescence intensity estimated by Ref. 34.

2.2.2 Unraveling time and stimulus-dependent origin of
the signal

We computed the VSDI signal by linearly integrating the mem-
brane potential over the total surface area, corrected by a factor
accounting for the amount of staining of each compartment.
This model reproduced well the experimental VSD signal
dynamics [Fig. 2(b), in black the mean� SEM of the recorded
VSDI and in red the modeled VSDI]. At this stage, the model
was used to quantify the different contributions of the signal, by
computing the fraction of the contribution of each compart-
ments, but also the correlation between each of these compart-
ment and the global signal [represented graphically in Fig. 2(c)].
Importantly, the model was very stable and tolerant to changes
in the model’s parameters (synaptic weights and number of
connections).

As expected, the VSDI signal mainly reflects dendritic activ-
ity of excitatory neurons in superficial layers [gross contribution
of 60%, high level of correlation in Fig. 2(c)], with 40% of
the signal originating from a mixed contribution of inhibitory
neurons, lower layers, and axons (hence spikes). However,
when increasing the thalamic input strength, these contributions
are changing, inhibitory cells contribution increase, and the one
of axons decreases. Importantly, these contributions are also
dynamic: the contribution and level of correlation from layer
4 neurons and inhibitory neurons, as well as axons, increased
transiently at response onset [Fig. 2(c)].23 This model hence
demonstrated that the relative contribution of all compartments
is not stationary and that no compartment on his own allows to
fully account for the global signal.

2.2.3 Effect of anesthesia and the notch as a marker of
transient imbalance of excitation/inhibition

In a recent extension of this model, we further probed how
much these contributions will depend on the network state
since studies in VSDI are both done in anesthetized and
awake preparations.35 Succinctly, we manipulated a key model
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parameter to account for the effect of anesthesia: the decay time
constant tauG of GABAA-mediated IPSCs. Indeed, tauG has
been shown to be prolonged in a dose-dependent manner by
most anesthetics as reported in Ref. 27. Figure 3(a) shows
that, when increasing tauG, our model predicted that the VSDI
signal amplitude should decrease and the transient imbalance
between excitation and inhibition increase. These predictions
were confirmed experimentally with monkeys at different
arousal states, induced by the administration of midazolam,
i.e., a positive GABAA modulator, during a behaving session
[Fig. 3(b)]. Altogether, these results provide a quantitative
description of the effect of GABAA receptor modulation on
the cortical population dynamics, as measured by the VSDI

signal. Interestingly, our model predicted that one key feature of
the VSDI signal, the so-called “deceleration–acceleration (DA)
notch” component introduced by Sharon and Grinvald36 as “a
small transient drop in the rate in which the evoked response
increased,” is resulting from desynchronization between
excitation and inhibition induced by anesthesia. Physiological
recordings in awake and anesthetized preparation confirmed
this prediction. The DA notch was indeed proposed to be an
emergent signature of the cortical network excitability.36–38

Chemla and Chavane’s study further demonstrated that this is
a prominent property of VSDI in anesthetized state and could
be taken as a marker of a transient imbalance between excitation
and inhibition. This effect is logical since anesthetic specifically

(a)

(b) (c)
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Fig. 2 VSDI biophysical model schematic and contributions. (a) Model representation. The six popula-
tions of neurons, depicted by one unique representative neuron (small pyramidal cells in layer 2, spiny
stellate cells in layer 4, large pyramidals in layer 5, and smooth stellate cells in each layer), are recurrently
connected (red arrows). The cortical column is embedded into a larger network by simulating a realistic
synaptic bombardment on each population (green arrows) and by modeling lateral connections between
the column and its neighbors (blue dashed arrows). Inputs from the thalamus to layer 4 neurons
are represented by the large red arrow on the left. (b) Time-course of the modeled VSDI signal
(red trace) in response to a thalamic input of 800 ms (black trace), compared to the experimental
signal (gray trace) obtained in monkey V1. (c) Correlation analysis between the VSDI signal and the
membrane potential of each compartment of the column for three periods of time (spontaneous
activity, stimulation onset, or rising phase and evoked activity). (Adapted with permission from Ref. 23.
Copyright © 2010.)
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slows down inhibitory conductances and not excitatory. At
response onset, inhibition will have the possibility to transiently
override excitation, before being re-equilibrated by the strongly
recurrent cortical network.

VSDI generates complex experimental data that are difficult
to interpret. Computational models can help explain the origin
of this signal. These models are useful to understand the role of
the major components of the VSDI signal and to generate exper-
imentally testable predictions. However, the validation of such
models cannot be achieved in isolation to real experiments,
which are necessary to constrain them. In order to facilitate
the confrontation of computational models and real data, it
is, therefore, necessary to improve the signal processing algo-
rithms available for VSDI data, and we now review the recent
literature dedicated to this.

3 Signal Processing Methods for Improving
Voltage-Sensitive Dye Imaging Signals

3.1 Review of the Different Methods

The raw VSDI signal is a noisy combination of several different
components. We describe below the three main families of
denoising methods that have been proposed to extract the neuro-
nal signature from VSDI data.

3.1.1 Blank subtraction

The most common and first empirical denoising method is the
blank subtraction.1,39 It consists in estimating noise components
using blank trial recordings (no stimulation) or a “cocktail
blank” consisting of the mixture of all other stimulation

(a) (b)

Fig. 3 Model predictions on the effect of anesthesia and experimental validation. (a) Effects of tauG
modulation on the modeled VSDI signal dynamics (Plateau and DA notch amplitude). Top row:
onset of the normalized VSDI signal time-courses decomposed into excitatory (burgundy traces) and
inhibitory (orange traces) cells activity for three tauG values (2.5, 5, and 10 ms), revealing the DA
notch formation. Middle row: time-course of the difference between excitatory and inhibitory VSDI sig-
nals. Bottom row: boxplot diagrams of the plateau amplitude (left) and the DA notch amplitude (right) of
the modeled VSD response as a function of tauG. Significant differences with the condition tauG ¼ 2 ms
(P < 0.01) are denoted by a star. (b) Experimental validation of the model predictions shown in (a).
Top row: onset of the experimental VSDI signal time-courses obtained in three awake (left) and three
anesthetized (right) monkeys, in response to full-field drifting gratings of high contrasts. One monkey
was recorded in both arousal conditions (dashed lines). Bottom row: Boxplot diagrams of the Rmax or
plateau amplitude (left) and DA notch amplitude (right) values of the experimental VSDI data shown on
top. (Adapted with permission from Ref. 35. Copyright © 2016.)
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conditions.40 The first step of the analysis consists of dividing
each image of the stack by the first frames (recorded before
stimulus onset) in order to correct for inhomogeneous levels
of illumination and staining. In the second step, image stacks
collected during stimulated trials are subtracted by those
acquired during blank trials on a frame-by-frame basis. This
subtraction aims at removing the slow drifts due to dye
bleaching as well as synchronous physiological artefacts like
heartbeat.1 A decaying general trend often persists, however,
which can be attributed to change in bleaching dynamics
or physiological parameters. Therefore, a subsequent linear
detrending step can be applied.41,42 Some more statistically
reliable measure can then be applied, such as a z-score taking
into account the level of variability pixel by pixel.20,43

However, this blank subtraction method presents several
limitations. The most important is that the first frames division
is an inaccurate normalization method44 and leads to a system-
atic misestimation of the intertrial variance dynamics.

3.1.2 Blind sources separation techniques

The first decomposition technique applied in intrinsic optical
imaging was principal components analysis.45,46 The signal is
decomposed using an automatic algorithm but signal versus
noise modes need to be identified a posteriori, often using
ad hoc statistical criteria. This was later improved by using mul-
titaper harmonic analysis.47 However, noise sources synchron-
ized on acquisition or stimulus onset can remain embedded in
selected modes. Further improvements have been proposed,
such as extended spatial decorrelation,48,49 which uses spatial
statistical features to separate the recorded mixed sources, or
indicator functions,50–52 which are determined upon stimulated/
reference trials comparison.

The second main decomposition processing family is inde-
pendent components analysis (ICA),53 which relies on the
extraction of the original sources by maximizing their statistical
independence. ICA has been mostly applied on VSDI record-
ings in anesthetized preparations at the single-trial level. A pos-
teriori component identification also mostly relies on statistical
criteria54,55 or with a “weak model” on intrinsic optical imaging
data.56 Again, these decomposition techniques focus on the tem-
poral dimension and can easily be combined with complemen-
tary spatial routines such as spatial ICA57 or local similarity
minimization.58 As noted above, the modes are not determined
upon physiological criteria but upon signal statistics. Thus,
nothing guarantees perfect source separation and parameters
estimation is impossible.59 Signal and noise modes can also
be classified as user judgment after decomposition, for instance
based on complementary recordings.60

These techniques can also be successfully applied on datasets
obtained with specifically designed paradigms with periodic
stimuli. There, the effective separation of the stimulus-evoked
responses from noise is done with Fourier analysis, first devel-
oped for fMRI mapping61 and then applied to intrinsic62 and
voltage-sensitive dye imaging.38,59,63

3.1.3 Linear regression techniques

A different solution lies in multiple linear regression techniques,
which were initially developed for fMRI64 and were sub-
sequently adapted to various optical imaging techniques:
intrinsic imaging,56,65,66 blood flow,67 calcium fluorescence,68

synaptoPhluorin fluorescence,66 and VSDI.69 These techniques

are based on explicit decomposition of all signal components,
mostly by identification of their physical sources. These com-
ponents are then used to build a regression matrix on which the
signal will be projected. The shape of the regressors, therefore,
has to be modeled a priori. By construction, this technique has
several advantages—it is applied at single-trial level, can spe-
cifically identify nonreproducible artefacts, and discounts for
any bias in component selection. As with the other techniques,
it can also be further constrained by the spatial structure of the
signal.70

3.2 GLM for Recovering Single Trials

One key issue in linear regression techniques is the definition of
components. They can be defined as templates or mathematical
models. Templates can be used to model components that are
very reproducible across trials and do not present any other
changes than gain amplitude. Several studies have successfully
used templates for modeling response components in intrinsic,
synaptophluorine,66 or calcium imaging.68 However, they do not
allow to account for changes in latency, duration, or shape,
as seen in VSDI. One solution is to manually decompose
the expected response in several template components,65,67

but this is only possible when changes in response shape are
small, as in intrinsic imaging.

To overcome these technical limitations, important improve-
ments come from the use of fMRI’s linear optimal basis sets
(FLOBS) initially designed for fMRI71,72 in order to extract
the activity dynamics in the VSDI signal and to model several
evoked response shapes.69,70,73 A set of temporal regressors is
determined by a singular value decomposition of a large set of
simulated possible changes in the response. Then, few first
eigenvectors are kept and included as regressors in the model.
Such model is then able to selectively extract, independently for
each pixel and each trial, a large range of temporal dynamics
of responses evoked by different sets of stimuli, including
changes in amplitude, duration, and delay. It should be
noted, though, that in linear regression, good source separation
requires that all the vectors of the new basis are orthogonal.
Thus, when building the regression matrix, one must check
that the nonneural components are orthogonal to the stimulus-
evoked response ones in order to ensure that the evoked
response signal is not embedded in noise regressors and that
sensory-driven response estimated by the model is not corrupted
by the noise sources. This is usually trivial for VSDI data
as noise components often show a much faster dynamic and
periodicity than response ones.

Figure 4(a) shows the model design used by Reynaud et al.69

to denoise VSDI data acquired in the awake monkey. The noise
and response components are modeled in the following steps.
The first noise component represents the baseline level X0 by
a constant value. Electronic74 and physiological artifacts X1

(Ref. 1) are characterized by periodic oscillations and are
thus modeled with Fourier series, allowing for phase changes.
Finally, the dye bleaching can be defined with exponential func-
tions X2.

75 The response components X3 are the FLOBS and
describe the neuronal response. The decomposition of the tem-
poral signal on the basis of all these regressors will lead to the
identification of individual coefficients. Finally, the response
components and the residual can be extracted and normalized
by X0 to reconstruct the denoised response [Fig. 4(b)].

The application of the linear model to two experimental trials
in response to a stimulation in the monkey visual cortex is
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shown in Fig. 4(c). The raw time courses are represented in
black in the first column. For each raw signal, the noise com-
ponents as identified by the model are shown in gray (first
column for the bleaching and second column for the periodic
components). The evoked response components are shown in

red (second column). Bleaching, heartbeat, and fast oscillatory
noises were clearly visible on these trials and were well captured
by the model. The residuals (mostly white noise) are shown in
the third column (orange). The signals, denoised with either the
standard blank substraction (blue) or the linear model (red) are

(a)

(b)

(c)

Fig. 4 Linear model decomposition. (a) A raw trial is linearly decomposed into noise components (X 0
baseline, X 1 periodic components, and X 2 bleaching components), the evoked response components
(X 3), and the residual. F denotes fluorescence. (b) Linear model denoising scheme. The reconstructed
signal is the sum of the response components (X 3) and the residual, divided by the baseline illumination
level to obtain a normalized reconstructed signal (ΔF∕F ). (c) Example of the linear model application on
two trials in response to a-600 ms visual stimulation in the monkey visual cortex. First column: raw trials
(black) and bleaching component (as estimated with the linear model; gray). Second column: other
components estimated with the LM: evoked response (red) and periodic noise components (gray).
Third column: residuals. Last column: estimated responses using the linear model denoising scheme
(LM; red) and the standard blank subtraction (BkS; blue). Note the different scales on the ordinates
axis. Adapted with permission from Ref. 69.
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shown in the fourth column. As seen in these examples, the lin-
ear regression method provides a large improvement in signal to
noise.69 Further improvement of the method by combining it to
convex nonsmooth regularization priors has recently been
proposed.70

This method thus recovers the signal at single-trial level
and offers key data that more faithfully capture the variable
population dynamics of cortical networks recorded in VSDI.76

Such variability can obsure important spatio-temporal features
when averaging VSDI data. In particular, a key question is the
question of the spatio-temporal response to small local stimuli.
In awake nonhuman primates, spreads of activity have been
shown26,69,77 but their origin and the question of whether they
represent activity propagation within the cortical tissue have
been disputed.78–80 Here, our denoising method has enabled
us to conclusively answer this debate by applying a new wave
detection approach to the data denoised for single-trial analysis.
The combination of these LM-denoised data and further signal
processing approaches has allowed us to demonstrate that
traveling waves are at the origin of the spread emerging at
the trial-averaged level.

3.3 Instantaneous Phase for Revealing Single-Trial
Waves

Following denoising of the VSDI signal, further computational
approaches are necessary to characterize the complex spatio-
temporal dynamics of neocortical networks. In general, these
methods aim to quantify spatio-temporal flow of activity in
the optical imaging data, often with the goal to characterize
propagation of spontaneous and stimulus-evoked waves, a dif-
ficult task in the context of the low signal-to-noise ratios com-
monly encountered when imaging awake behaving animals
in vivo. For this task, various computational approaches have
been introduced, including the space-frequency singular value
decomposition,81,82 phase-gradient directionality,83 template
matching,84 and an optic flow-based approach.85 In each
case, these methods employ a mathematical representation of
the optical imaging signal to derive a bounded measure of
wave-like organization in the data, allowing to then estimate
further quantitative characteristics such as propagation speed,
wavelength, and direction. In order to conclusively test whether
propagating waves are evoked in the primary visual cortex of
the awake monkey in response to small visual stimuli, however,
we adopted a statistical approach to wave detection using
a phase-based measure.86

We first employ the “analytic signal” representation87,88 to
estimate phase at each pixel in the optical imaging data,
as with previous approaches based on this mathematical
framework.83 In this representation, a real-valued timeseries
[such as values from one pixel of the imaging array; real
plane, at bottom, Fig. 5(a)] is transformed into a complex-valued
timeseries [line color-coded with increasing heat to indicate
time, Fig. 5(a)]. In the complex plane projection [at left,
Fig. 5(a)], the result is a “phasor” rotating in the complex
plane, whose length (or modulus) represents signal instantane-
ous amplitude and whose angle (or argument) represents signal
instantaneous phase. This estimate of signal phase at each time
point can then be used to compare offsets in activity across many
pixels, in a manner robust to noisy amplitude fluctuations.

Next, as a signal processing optimization, we introduce a
measure termed “phase latency” [red curve, Fig. 5(b)], which
quantifies the latency in absolute time to a given phase crossing

in the complex plane. Specifically, by starting from a chosen
point in the timeseries, for example, a point just before response
onset [black dot, Fig. 5(b)], we can calculate the time of the next
phase crossing at each pixel. This measure allows us to flexibly
compare responses between pixels with slightly differing tem-
poral frequencies, and in this way, it precludes the necessity to
filter the data within a tight frequency range. This approach thus
has the ultimate effect of reducing overall waveform distortion
in the analyzed signal, an important consideration when work-
ing with bandpass filtered data. When the phase crossing of
interest falls between two discrete samples [blue dots, Fig. 5(b)],
the precise time for the crossing is calculated by linear inter-
polation between the two points based on their instantaneous
frequency (dφ∕dt).

With this measure calculated at each pixel, we then have a
“phase latency” map starting from the chosen time point. We
next quantify spatial patterns in these maps in several steps.
First, we estimate the wave source from the minimum of the
smoothed phase latency maps [depicted schematically with a
white dot, Fig. 5(c)]. It is important to note here that if the
phase latency map contains only noise, without spatiotemporal
organization, then the estimated wave source will be at a random
point determined by the noise fluctuations. Next, after calculat-
ing the Euclidean distance matrix from the source point, we can
estimate propagation speed from the slope of the relation of
phase latency with distance from the source [Fig. 5(d)] and
the correlation coefficient quantifying the strength of this rela-
tionship (ϱd). We can then form a well-defined statistical test to
determine whether significant phase organization exists in the
VSDI data in each trial (one-tailed t-test, H0: ϱd ¼ 0,
H1: ϱd > 0, in our initial work). Thus, by testing phase organi-
zation systematically across all pixels in space, this approach
maximizes one of the main strengths of VSDI—its high spatial
resolution over a large field-of-view—to enable analysis at the
single-trial level. The result of these calculations is a robust and
sensitive approach for detecting arbitrarily shaped waves in very
high-noise multichannel recordings, by means of a well-defined
statistical test.

4 Discussion
In this review, we have provided a series of examples showing
that computational approaches can standardize and generalize
VSDI as an unmatched tool for studying instantaneous process-
ing by neural circuits. The VSDI signal is indeed unique in
the scales and resolutions it reaches (reviewed in Ref. 2) and
has already allowed uncovering key dynamic processing and
interactions within cortical networks, as shown in particular
by Grinvald et al.20,36,76,89–91 The neuronal operations occurring
at the mesoscopic scale are still very poorly understood,
however, and depart from the dominant feedforward view that
usually gives very little credit to horizontal interactions and
intracortical processing.92–96 The VSDI signal is complicated
and reflects the population membrane potential changes mostly
influenced by sub- and not suprathreshold, spiking, activity. We
believe that, in addition to the inherent technical difficulties of
the method, both the unknown scale and the nonstandard origin
of the signal keeps this tool from being used by a majority of
researchers in neuroscience systems. However, there is no ideal
technique and all existing approaches exhibit methodological
drawbacks to be considered. To start with, the gold standard
“single-unit activity” must be interpreted with caution since
spike identification is never perfect and can be contaminated

Neurophotonics 031215-8 Jul–Sep 2017 • Vol. 4(3)

Chemla et al.: Improving voltage-sensitive dye imaging: with a little help from computational approaches



by neighboring cells, as shown by the literature on spike sorting
techniques.97–99 At the other end of the recording spectrum, the
origin and the link of fMRI signal to neuronal response still
remains unclear, even after huge efforts to better understand
it through both models and experiment.100,101 Similarly, the
inverse problem for EEG recordings is still far from being
solved despite a lot of computational efforts.102 Closer to
VSDI, two-photon mostly records calcium fluorescence, whose
link to spiking activity is nontrivial and needs the development
of sophisticated algorithms.103,104 In all these techniques,
computational studies are essential to their development and
appropriate use. In this way, the development of VSDI similarly
depends on these approaches to fill the gap of our current knowl-
edge on mesoscopic neuronal operations.

On one hand, computational models are, therefore, very
important to overcome these hurdles by providing a solid frame-
work to better understand the types of operations subtending the
signal’s dynamics and their neuronal origins. Through the close

interaction between models and physiology, VSDI data can
demonstrate that such operations cannot be summarized in
terms of a simple excitatory-inhibitory balance of the feedfor-
ward drive.105 From this perspective, the fact that the signal
has a subthreshold origin can be seen as an advantage, since
it allows probing the network operations occurring at population
level by highlighting their synaptic origin and processing.106–111

To bridge this gap between network synaptic operations and the
mesoscopic population response, computational models are
crucial. More generally, theoretical considerations about the
information processing and encoding capacities that reside
specifically at the mesoscopic scale are clearly needed, both
for improving our understanding of the experimental results,
but also to generate tractable predictions. Advances in signal
processing, on the other hand, are essential to generate standard-
ized and comparable datasets among studies. It is also necessary
to remove artifacts that could potentially contaminate the signal
and hinder access to analysis of single trials. Since the signal is
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Fig. 5 Phase latency method for detecting waves in single-trial data. (a) The real, imaginary, and com-
plex plane projections of the analytic signal (line colored by heat in time) for a damped oscillation make
explicit the decomposition of a real signal into a complex phasor. (b) The complex plane projection in the
previous panel is used to analyze instantaneous amplitude (A, complex modulus) and phase (φ, complex
angle) in the real signal. Gray arrows indicate the direction of phasor rotation in time. The black dot (bot-
tom left) represents the starting point for the phase latency calculation. The blue dots represent discrete
samples leading up to the phase crossing. (c) Average phase latency map for the region of interest in
the primary visual cortex of awake monkey, in the stimulus (top) and black (bottom) condition.
(d) Propagation speeds extracted from the slope of the relation of phase latency with distance in the
unsmoothed maps, in the 50-ms stimulus condition. (Inset) Phase latency correlation with distance,
stimulus (black) and blank (gray) conditions. Adapted with permission from Ref. 86.
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spatio-temporally inseparable (i.e., cannot be described by two
independent spatial and temporal functions), because of inherent
propagations due to feedforward and feedback divergence, but
also to intracortical connectivity, analyzing data at the single-
trial level is essential to understand its dynamics, which are
easily corrupted by averaging.86,112,113 Here, computational
approaches can help to describe theoretically the type of spa-
tio-temporal dynamics occurring, from single cycle propagating
wave, to standing and traveling waves.114

Finally, the inherent methodological difficulties linked to this
optical imaging technique have also hindered its development. It
is clear that methodological advances such as genetically
encoded voltage indicators115–117 can profoundly help to popu-
larize the technique. However, the theoretical weaknesses linked
to our poor understanding of mesoscopic neuronal operations
will remain if the computational community does not become
more strongly involved. In this review, we have discussed
several recent efforts for developing computational methods
that have improved our knowledge and understanding of the
VSDI signal. However, we believe that there is still a large
gap in terms of conceptual framework to interpret and guide
the experimental results obtained at this scale. This will only
be possible through a closer interactions and collaboration
between the physiological and computational communities.
Only then, the direction initiated by the remarkable work of
Amiram Grinvald will continue to pave the way for understand-
ing the mysteries still hidden at the mesoscopic scale.
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