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Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and
sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during
unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as
mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for
separating some of the mirror motion contributions to fNIRS images and demonstrates its application to
fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion
and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electro-
myography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion cap-
ture or EMG data and independent component analysis was combined with a general linear model to create
an fNIRS image representing activation due to the tapping hand and one image representing activation due to
the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS
images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation
images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.1.2.025009]
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1 Introduction
Cerebral palsy (CP) is a heterogeneous group of disorders, the
unifying feature of which is an impairment of fine and gross
motor function due to dysgenesis or injury in early brain devel-
opment.1 In patients with CP, motor function does not neces-
sarily predict or represent the underlying physiology. Therefore,
observation of neurological activation patterns would help cre-
ate a more coherent understanding of how brain function relates
to motor control deficits.2 Sensorimotor activation patterns of
the brain in children with CP have been mapped by functional
magnetic resonance imaging (fMRI) in several recent studies.3–6

However, fMRI requires subjects to remain still for extended
periods of time in a restricted space, which is particularly
difficult to do when working with children with CP. Recently,
functional near-infrared spectroscopy (fNIRS) has been demon-
strated as a feasible alternate neuroimaging technique that ena-
bles brain activation measurements under relatively unrestricted
conditions.7 fNIRS detects the changes in light absorption

and scattering in tissue caused by changes in concentration of
oxyhemoglobin (ΔHbO) and deoxyhemoglobin (ΔHb) secon-
dary to neuronal activity, known as neurovascular coupling.8

Although this optical technology is limited to cortical imaging
at a modest spatial resolution, it can potentially offer high
activation-related signal detection sensitivity at high temporal
resolution and a relative robustness to motion artifacts.9

Nevertheless, current fNIRS imaging protocols do not typi-
cally factor in the variability of subject motions into the image
formation process. As a result, when subjects cannot perform the
protocol without unintended motions or without activating addi-
tional muscles to support the intended motions, as can be the
case with CP,10 the resulting fNIRS images are contaminated
by these additional activation contributions. To better under-
stand sensorimotor cortex plasticity in children with CP and
the response to treatment, it would be desirable to identify
and, if possible, separate brain activation patterns due to unin-
tended motions or compensatory muscle activity.

A few recent fMRI studies on adult patients with stroke11 and
Parkinson’s12 have employed motion capture technology as a
means to improve the sensitivity of detected activation patterns
by regressing with the actual patient motions rather than the
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intended ones. Electromyography (EMG) recordings have also
been shown to improve fMRI signal analysis outcomes when
used as signal regressors for patients with tremors13,14 and in
healthy adults15 as the movements dictated by the activation pro-
tocol are never performed perfectly even when the subjects fully
intend to do so. Though these studies provide evidence that
functional brain image analysis can be improved by use of
motion capture and EMG technologies, the challenge of iden-
tifying mirror motion contributions in activation images has
not been addressed to date.

In this study, a new method is proposed that combines the
principles of independent component analysis (ICA) and a gen-
eral linear model (GLM), henceforth referred to as the GLM/
ICAmethod, to help identify the contributions of mirror motions
in fNIRS images. Specifically, EMG and a multicamera motion
tracking system were used synchronously with fNIRS to quan-
tify arm muscle activation and finger motions of children with
CP performing a finger-tapping task. In contrast to the standard
practice of using a boxcar function to represent the relative dura-
tion of finger tapping,16 subject-specific EMG and motion
capture data were used instead to create regressors. Data were
recorded from the tapping as well as the nontapping hand and
were processed by a two-regressor GLM, with one regressor
for the tapping and another for the nontapping hand, with the
independent components (ICs) decomposed from the ΔHbO
time-series data by ICA. By identifying which ΔHbO ICs
uniquely correlated with either tapping or mirror hand motion,
two ΔHbO images were reconstructed from a single fNIRS data
set. One image represented the finger tapping map and the other
image represented the unintended mirror motions map. It is
shown that these images help shed light on the relative contri-
butions of each hand to cortical sensorimotor center activation
and that the pattern of these contributions is unique to each
child.

The aforementioned two-regressor GLM/ICA method is not
applicable when mirror motions are not present as no regressor,
and therefore no corresponding image, can be created for the
nontapping hand. Therefore, the two-regressor GLM/ICA
method is not applicable to typically developing children
who do not exhibit mirror motions. Nevertheless, it is shown
that for a typically developing child that performed uninten-
tional extraneous motions with the tapping hand during the acti-
vation protocol, a modified one-regressor version of the GLM/
ICA method could provide an improved activation image com-
pared to standard boxcar analysis.

2 Methods

2.1 Subjects

Eight children with hemiparetic CP were included in the study
(subjects 1 to 8, six male and two female, 10� 1.7 years old)
along with eight typically developing children as control sub-
jects (five male and three female, 9.5� 1.5 years old). Each sub-
ject performed two tapping trials, one with each hand, making a
total of 16 trials for the group of subjects with CP. Subjects 6, 7,
and 8 did not exhibit mirror motions while performing the tasks.
Excessive head motions and a failure to follow the protocol
resulted in unreliable data for subject 5. Additionally, subjects
2 and 4 did not exhibit mirror motions while tapping with their
unaffected hand. The GLM/ICA method was applicable to the
six remaining trials where mirror motions were present. Three of
the subjects were classified as level 2 on the Manual Ability

Classification System (MACS),17 two of whom were right-
hand affected (subjects 2 and 3) and one was left-hand affected
(subject 1). One subject (subject 4) was classified as MACS
level 1 and was right-hand affected. Anatomical T1-MPRAGE
MRI images were available for all subjects recruited for this
study, which enabled localizing their brain lesions. Subject 1
proved to be a unique case because at seven years of age,
due to intractable epileptic seizures, he underwent a right func-
tional peri-insular hemispherectomy involving removal of part
of the right temporal lobe, a section of the corpus callosum (dis-
connection of both hemispheres), and subcortical deafferenta-
tion of the right frontal, parietal, and occipital lobes. This
subject had a physical shift in the brain midline separating
the two hemispheres, as verified by the anatomical MRI, and
presented atypical sensorimotor activation patterns that are dis-
cussed in this work. These studies were performed under the
approval of the University of Texas Southwestern Medical
Center at Dallas institutional review board protocol (IRB
No. 042007-064).

2.2 Experimental Protocol and Measurement Setup

Each subject performed a finger-tapping task, once with their
affected hand and once with their nonaffected hand, while
the other hand was to remain at rest to the best of the subject’s
ability. Children were instructed to tap only with four fingers
(excluding the thumb) in unison and keep their wrists on
the table while finger tapping. A program with an engaging
animation made in-house on Adobe Flash (Adobe Systems
Incorporated, San Jose, Calfornia) was used to prompt the chil-
dren to tap at a frequency of 1 Hz. The experimental protocol for
finger tapping with each arm consisted of eight 15-s tapping
periods, each followed by 25 s of rest, with a 3-min rest period
before the first tapping period. For the motion tracking of hands
and arms during the finger tapping task, 5-mm-diameter
hemispherical retroreflective targets (B&L Engineering, Santa
Ana, California) were attached with tape on the finger nail
bed and just above the proximal interphalangeal joint on each
finger, excluding the thumb [Fig. 1(a)]. The three-dimensional
coordinates of these retroreflective targets were tracked by a

Fig. 1 The motion tracking and functional near-infrared spectroscopy
measurement setups: (a) retroreflective target placement on a sub-
ject’s hand, (b) camera setup relative to the child’s position, and
(c) location of sources and detectors on the head with covered cortical
areas, premotor cortex (PMC), supplementary motor area (SMA), and
primary motor/sensory area (M1/S1) circled in red.
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six-camera VICON Mx motion capture system (Vicon, Denver,
Colorado) at a sampling rate of 120 Hz. Three of the six ana-
lyzed trials were performed with a seven-camera setup shown in
Fig. 1(b), where the two cameras to the sides of the subject were
∼1.5 m high, and all others ∼3 m high. The remaining three
trials employed a six-camera setup arranged in a semicircle
around the subject with a distance of ∼3 m from the subject
and heights ranging from 2 to 4 m. The reason that two different
camera setups were used in this work was that after subjects 1
and 4 were measured, the study was moved to a different room,
which was smaller and camera geometry accommodations
had to be made to maintain consistent retroreflective marker
tracking. The retroreflective target localization accuracy in
both rooms was �1 mm, which was much smaller than
the finger tapping amplitude. More marker occlusions were
observed in the smaller room, but due to the high number of
markers on each hand, at least one marker provided sufficient
trajectory data in any one measurement. Muscle movement
was monitored by eight sets of wireless EMG electrodes (BTS
FREEEMG 300, BTS, Garbagnate Milanese MI, Italy) placed
on the finger flexor and extensor muscles, biceps, and triceps
of both arms.

A continuous wave fNIRS system (CW-6, Techen Inc.,
Milford, Massachusetts) was used to measure ΔHbO in the
sensorimotor cortex during the finger tapping tasks. A custom
headset was created with 16 source fiber bundles [Fig. 1(c),
magenta circles] and 32 detector fiber bundles [Fig. 1(c), blue
squares]. The headset was centered on the Cz position of the
EEG International 10∕20 system18 and attached to the subject’s
head with Velcro straps. Anatomical measurements of the C3,
C4, F3, and F4 positions made before each fNIRS session were
sufficient to localize the primary motor/sensory area (M1/S1),
premotor cortex (PMC), and supplementary motor area (SMA)
[Fig. 1(c)]. Each source bundle simultaneously emitted 690 and
830 nm light, which was received by up to six detectors located
within a 3 cm radius giving a total of 84 source-detector pairs for
each wavelength. Eight short (1.5 cm) source-detector pairs
were employed to measure background ΔHbO fluctuations in
the scalp and used to adaptively filter the fNIRS signals
(Sec. 2.4). The detected light signal was sampled at a rate of
25 Hz, and the system utilized frequency modulation (6.4 to
12.6 kHz, with 200 Hz increment) to simultaneously monitor
activation over all source-detector pairs for the duration of
the trial. Data acquisition for the fNIRS, EMG, and motion
tracking systems was manually started simultaneously at the
beginning of each measurement protocol, which afforded a syn-
chronicity of �0.5 s between modalities that is much shorter
than the duration of elicited hemodynamic responses.

2.3 Signal Processing

Systemic cerebral hemodynamic fluctuations are present in
fNIRS signals due to physiological events, such as cardiac pul-
sation, respiration, and Mayer waves, which typically fall within
0.8 to 2.0, 0.1 to 0.33, and ∼0.1 Hz or lower frequency ranges,
respectively.19,20 Cortical hemodynamic responses to motor
task protocols usually fall within the 0.01 to 0.4 Hz frequency
range, so there is overlap between the evoked response and the
physiological artifacts of respiration and Mayer waves.

To remove these artifacts, a combination of band-pass and
adaptive filtering was used. Cardiac pulsation was removed
by band-pass filtering all signals between 0.01 and 0.4 Hz.
To remove respiration and Mayer waves, an adaptive least mean

square filter was then applied using a short (1.5 cm) source-
detector pair as a reference channel as previously reported.21

Additionally, data were visually inspected and any tapping/
rest blocks with obvious motion artifacts were excluded from
further analysis.

The acquired reflectance data were reconstructed into fNIRS
activation images using the open-source HomER software imple-
mented in MATLAB® (Mathworks, Natick, Massachusetts).22

HomER uses the Tikhonov perturbation solution to the
photon diffusion equation, which employs a regularized Moore-
Penrose inversion scheme23,24 to reconstruct activation images
(20 × 21 pixels) that represent maps of ΔHbO on the cortical
surface within the detectors’ field of view [Fig. 1(c)].

2.4 GLM Analysis with a Boxcar Regressor

A standard GLM analysis was performed with a boxcar regres-
sor using Eq. (1).

Y ¼ X0β0 þ X1β1 þ ϵ; (1)

where Y represents a column matrix containing the measured
hemodynamic response time series, concatenated by pixel
(20 × 21 pixels) and ε represents the model error. The X’s re-
present the regressors that modeled the expected hemodynamic
response. In this case, X0 was simply a column of ones that
modeled the baseline activation, or direct current (DC) value,
and X1 was a boxcar function regressor coinciding with the
experimental protocol (value of 1 when tapping, 0 when resting)
convolved with a hemodynamic response function (HRF). The
HRF, which modeled the predicted hemodynamic response per
tap, was assumed to be a sum of six gamma functions.25 The β’s
in Eq. (1) represent the unknown predictor coefficients, which
were computed using ordinary least squares.26 Though generally
not true for the low spatial resolution fNIRS images, the GLM
method assumed that all pixels and time point data were inde-
pendent of each other and that their variance was constant.26

The β estimates per image pixel derived from the regression
were used to calculate a t value [Eq. (2)] that determined the
image pixels with significant activation.

t ¼ c 0β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðϵÞc 0ðX 0XÞ−1c

p : (2)

All terms in Eq. (2) were introduced in Eq. (1) except for c,
which represents a contrast vector that allowed for hypothesis
testing. A contrast vector of [−1, 1] was used to test the
null hypothesis that activation was not above baseline, i.e.,
β1 ¼ β0. With the application of the Bonferroni’s correction
for multiple comparisons,27 a pixel with p < 0.0001 (jtj > 3.5)
was considered to have significant cortical activity relative to
baseline conditions. Activation images were created with the
significant β1 values, which gave ΔHbO in μMol. To perform
group analysis on the control subjects, the Y matrix in Eq. (1)
was created by concatenating the ΔHbO time-series data for
each subject.

2.5 GLM/ICA Method

2.5.1 Creation of motion regressors

Two subject-specific motion regressors were created for each
trial, one using kinematic data from the tapping hand and the
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other from the mirror hand. Due to the nature of the tapping task,
the largest amplitude changes were seen in the distal markers
located on the finger nails [Fig. 1(a)] in the vertical direction
relative to the table surface. For this reason, only the vertical
trajectories from the distal markers were used to create the
regressors. Continuous motion capture data were required for
the analysis, but were not always available for all markers.
All distal markers with continuous trajectories were used (rang-
ing from 1 to 4), while trajectories with incomplete data due to
target occlusions were excluded. In cases where no markers
had continuous data due to occlusions but only small gaps in
the data stream were present (<0.5 s), gaps were filled using
the MATLAB® function spline, which performs cubic spline
interpolation. The selected trajectories were then low-pass
filtered at 7 Hz, and the marker velocities were calculated by
finding the absolute difference in amplitude for consecutive time
points. The resulting velocity data retained the characteristics of
the motions while removing drifts present in the displacement
trajectories due to children not returning their hand to the table
between taps, or changing the position of their wrists. To
account for movement variations between the fingers, principal
component analysis was applied, and the first principal compo-
nent was selected and down-sampled from 120 to 25 Hz to
match the fNIRS system sampling rate. Finally, the processed
motion capture data were convolved with the HRF.

Kinematic regressors were also created using EMG signals.
The signal from the finger extensor muscle from each arm was
used to make the corresponding tapping and mirror hand regres-
sors. These signals were band-pass filtered between 20 and
200 Hz and then full-wave rectified and low-pass filtered at
6 Hz, giving a linear envelope of the muscle activity, with each
envelope representing an individual tap. The signals were then
down-sampled from 1000 to 25 Hz to match the fNIRS sam-
pling rate and convolved with the HRF.

2.5.2 Independent component analysis

ICA aims to separate recorded signals, which are assumed to be
a mixture of source signals, into the signals originally produced
by the sources. The ICA equation is described by

x ¼ As; (3)

where A is the mixing matrix, s is a vector containing the
sources, and x is a vector containing the measured mixed
signals. All ICA in this study was performed with the FastICA
algorithm provided online by researchers at the University of
Helsinki.28

For all analyses, the optional parameter for nonlinearity was
set to skew, 10,000 was used for the maximum number of iter-
ations, and all other parameters were left at the default values.
The algorithm allows the user to specify the number of ICs to be
found. However, when too many are selected, the algorithm
does not converge. The FastICA algorithm was run on the recon-
structedΔHbO time-series data (21 × 20 pixels) several times to
find the maximum number of ICs supported by each data set,
which was between 23 and 32.

2.5.3 Selection of significant ICs using
a motion regressor GLM

Due to the stochastic nature of the FastICA algorithm, some ICs
were found in every run, while others were not. To determine

which ICs belonged to the consistently appearing set, an initial
run of the FastICA algorithm was performed on the ΔHbO
time-series data and the components produced were saved for
use in the subsequent steps. Next, the FastICA algorithm was
run 30 times with each run comparing its ICs to the initial
set of ICs. Because the ICA is stochastic, it produced the ICs
in a different order each time it was run. Therefore, each IC
in any one run had to be matched to the IC of the first run.
As the ICs within any one set were statistically independent,
each IC in the first run could be uniquely matched to the cor-
responding IC of any subsequent run by calculating their pair-
wise correlation coefficient (CC). Only ICs with average CC
>0.9 over the 30 runs were used in subsequent steps, as it
was empirically determined that lower average CC values cor-
responded to ICs not found in every run.

To determine if a tapping or mirror motion regressor
explained the ICs, a GLM analysis was performed using

Y ¼ X0β0 þ X1β1 þ X2β2 þ X1X2β3 þ ϵ; (4)

where Y represents the matrix containing the ICs, X1 and X2

represent the motion tracking or EMG regressors for the tapping
and mirror hand, respectively, β1, β2, and β3 were the corre-
sponding scaling factor model estimates, and X0 and ε were
the DC and error terms as in Eq. (1). The X1X2 term was
included as a statistical interaction term to reduce the amount
of cross-talk in the model as the tapping and mirror hand motion
regressors were usually correlated to varying degrees. t values
were calculated with Eq. (2) using contrasts of c ¼ ½−1;1; 0;0�
and c ¼ ½−1;0; 1;0� to test whether the tapping or mirror hand
regressors, respectively, explained a significant portion of the
ICs. Note that if no mirror motions are present, the X2 regressor
is zero and the GLM analysis collapses into a one-regressor
model, which cannot provide two images corresponding to
the tapping and mirror hand motions. However, a modified
GLM/ICA can be performed using only one motion regressor
by excluding the mirror and cross-talk regressors from the
analysis. The difference between the one-regressor GLM/ICA
and the boxcar method is that the former convolves the hemo-
dynamic response function with the profile of the actual motions
of the tapping hand, including any unintended motions during
rest periods, to generate a more accurate model predicting the
observed hemodynamic fluctuation data.

The GLM analysis in Eq. (4) was performed on each of the
30 FastICA runs mentioned above. Therefore, each IC had a
group of 30 t values for the tapping and 30 for the mirror
regressor associated with it. To determine whether the tapping
or mirror hand motion regressor explained a significant portion
of a given IC, two right-sided one sample t tests were per-
formed (α ¼ 0.05) on the saved tapping and mirror regressor
t values, respectively, for each IC. If the null hypothesis jtj <
3.5 (see Sec. 2.5 for selection of t value) was rejected for a
set of t values, the corresponding regressor was considered
to explain a significant amount of the variation for that IC.
The ICs significantly explained by both regressors were con-
sidered as cross-talk and were discarded along with those
explained by neither regressor. If an IC was significantly
explained by one regressor and not the other, it was saved for
the subsequent step of ΔHbO activation image formation for
that regressor.
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2.5.4 Creation of activation images for tapping and
mirror motions

As the ICA analysis does not take into account the sign of the
ICs, this was double-checked to be consistent with the majority
of the FastICA runs. Subsequently, the ΔHbO time-series acti-
vation images for the tapping and mirror regressor groups were
reconstructed individually using

YICA ¼ A � C � X; (5)

where YICA is the matrix containing the ΔHbO time series for
each pixel, A is the mixing matrix saved from Eq. (3), X is the
matrix of ICs, and C is a square matrix with ones at positions
corresponding either to all ICs from the tapping or mirror
motions and zeroes elsewhere. Two activation images, one
for each motion, were created individually using the GLM
approach described in Sec. 2.5, but with Y and X1 from
Eq. (1) replaced with new terms. For the tapping image, Y
from Eq. (1) was replaced with the YICA reconstructed from
the ICs corresponding to the tapping motions, and X1 from
Eq. (1) was replaced with tapping hand motion regressor [X1

in Eq. (4)]. Similarly, the mirror image was created by replacing
Y from Eq. (1) with the YICA reconstructed from the mirror ICs
and X1 from Eq. (1) with the mirror hand motion regressor [X2

in Eq. (4)].

3 Results

3.1 Identification of Brain Activation Areas due to
Tapping and Mirror Motions Using Motion
Tracking

3.1.1 Determination that activation in M1/S1 seen in the
boxcar image was due to tapping after removal of
activation from the mirror image

The GLM/ICA method was first applied to subject 1 performing
a tapping task with his unaffected right hand. Figures 2(a) and
2(b) show the vertical displacement recorded from the index
finger distal target on the right and left hand, respectively.
Figure 2(b) indicates that mirror motions were present during
this trial, but they were lower in amplitude and sparser than the
tapping hand motions seen in Fig. 2(a). Displacements were
qualitatively similar in all other trials and are, therefore, not
shown in subsequent figures. Figures 2(c) and 2(d) show the
tapping (right hand) and mirror (left hand) images, respectively,
produced by the GLM/ICA method. Figure 2(e) shows the
activation image created using the standard boxcar regressor
analysis for the right hand tapping trial, and Fig. 2(f) shows
the standard boxcar image for subject 1’s left hand tapping
trial. Note that in Figs. 2(c) to 2(f) and all subsequent figures,
a dashed black line indicates the midline and gray color ovals
indicate the locations of M1/S1, PMC functional areas in each

Fig. 2 Comparison of activation images made with the general linear model/independent component
analysis (GLM/ICA) method or a boxcar regressor for subject 1 performing right hand tapping.
(a) Vertical position of nail target on tapping (right) hand and (b) on the mirror (left) hand. (c) Image cre-
ated using the GLM/ICA method for the tapping (right) hand and (d) the mirror (left) hand. (e) Activation
image made using a boxcar regressor for right hand tapping. (f) Activation image made using a boxcar
regressor for left hand tapping. The black dashed lines indicate the shifted midline and the gray ovals
indicate the M1/S1 and PMC of each hemisphere and the SMA shared between hemispheres.
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brain hemisphere, and SMA shared between hemispheres,
as described in Sec. 2.2 and Fig. 1(c) above. Comparing
Fig. 2(c) to Fig. 2(d) revealed that the area of activation present
in the right primary M1/S1 area of the tapping hand image
[Fig. 2(c)] was absent from the mirror hand image [Fig. 2(d)],
as indicated by the circles, but the images were otherwise sim-
ilar. Overlap was seen in the right and left PMC areas where
activation was present in both images [Figs. 2(c) and 2(d)],
as well as the midline activation areas. These midline activa-
tions, which are atypical of hand tapping tasks, were specific
to this subject and likely due to the shift in the left brain hemi-
sphere mentioned in Sec. 2.1. Despite the spatial overlap of
several activation areas between tapping and mirror images
[Figs. 2(c) and 2(d)], the GLM/ICA method provided an advan-
tage as it removed some ambiguity present in the standard
boxcar image [Fig. 3(e)] that could not attribute any activation
area solely to one type of motion. The method was also applied
to subject 1’s left hand tapping task and similar results were
obtained (not shown for brevity). It was interesting to see that
the M1/S1 and part of the PMC areas activated for this subject
during left hand tapping were slightly displaced relative to the
corresponding areas activating for right hand tapping [compare
Fig. 2(e) to Fig. 2(f) boxcar images].

3.1.2 Determination that activation in M1/S1 seen in
the boxcar image was due to mirror motions after
removal of activation from the tapping image

The GLM/ICA method was next applied to data from subject 2
performing right (affected) hand tapping. Figures 3(a) and 3(b)
show the tapping (right hand) image and mirror (left hand)
images produced by the GLM/ICA method, and Figs. 3(c)
and 3(d) show the standard boxcar images for the right hand
and left hand trials, respectively. Notice that activation in the
ipsilateral (right) M1/S1 area, indicated by circles, was present
in both the boxcar and mirror images [Figs. 3(c) and 3(b)], but

was relatively weak in the tapping image [Fig. 3(a)]. This sug-
gests that activation in the right M1/S1 area was primarily due
to mirror (left hand) motions, as would be physiologically
expected. This conclusion was further supported by the fact
that in subject 2’s left (unaffected) hand tapping trial, where
no mirror motions were present, the right M1/S1 area showed
strong activation as seen in Fig. 3(d). In this case, the GLM/ICA
method was able to clean up the tapping activation image by
removing mirror motion contamination and, thus, provide supe-
rior results to the standard boxcar method.

3.1.3 Determination that bilateral activation in M1/S1 seen
in the boxcar image was due to tapping in one brain
hemisphere and due to mirror motions in the other

The results of the GLM/ICA method applied to subject 3 per-
forming a right (affected) hand tapping task are shown in Fig. 4.
Figures 4(a) and 4(b) show the tapping (right hand) and mirror
(left hand) activation images, respectively, and Figs. 4(c) and
4(d) show the boxcar images for the right and left hand trials,
respectively. Notice that similar to the results for subject 2
(Sec. 3.2.2), the activation in the ipsilateral (right) primary
M1/S1 area (red circles in Fig. 4) present in the right hand box-
car image [Fig. 4(c)] was mostly removed from the tapping
image [Fig. 4(a)]. In addition, an activation area in the left
SMA (gray circles in Fig. 4) was also removed from the tapping
image [Fig. 4(a)]. Both areas were assigned to the mirror hand
image [Fig. 4(b)], indicating that mirror (left hand) motions
were primarily responsible for activation in these areas.

In addition, activation in the contralateral (left) M1/S1 area
(blue circles in Fig. 4) was absent in the mirror image [Fig. 4(b)],
but was present in the tapping and boxcar images [Figs. 4(a) and
4(c)]. In this case, the GLM/ICA method provided another
cleaned-up activation image by removing contamination from
mirror motions, demonstrating its superiority over standard
boxcar analysis.

Fig. 3 Comparison of activation images made with the GLM/ICA method or a boxcar regressor for sub-
ject 2 performing right hand tapping. (a) Image created using GLM/ICA for the tapping (right) hand and
(b) the mirror (left) hand. (c) Activation image made using a boxcar regressor for right hand tapping.
(d) Activation image made using a boxcar regressor for left hand tapping. The black dashed lines indicate
the midline and the gray ovals indicate the M1/S1 and PMC of each hemisphere and the SMA shared
between hemispheres.
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Subject 3 also exhibited mirror motions while tapping with
his left (unaffected) hand, and Fig. 4(d) shows the boxcar image
from this trial containing contralateral M1/S1 and PMC activa-
tion, similar to Fig. 4(b) for right hand tapping. The GLM/ICA
results of this trial are not shown, because the method produced
tapping and mirror images that looked nearly identical and,
therefore, did not provide any useful information. This occurred
because subject 3’s right (affected) hand mirror motions were
highly correlated (0.93) with the left (unaffected) hand tapping
motions. The effect of motion correlation on GLM/ICA results
is further discussed in Sec. 4.4.

3.2 Identification of Brain Activation Areas due to
Tapping and Mirror Motions Using EMG

The GLM/ICA method was applied to subject 4 performing a
right (affected) hand tapping task, but, unlike all other cases, the
motion regressors were created using EMG signals. The reason
was that subject 4 had no detectable mirror (left hand) motions,
so no motion tracking regressors could be created. However,
muscle activity was detected in the mirror (left) hand, indicating
the subject was pressing the mirror (left) arm against the table
while finger tapping with the other (right) hand. Figures 5(a) and

Fig. 4 Comparison of activation images made with the GLM/ICA method and a boxcar regressor for
subject 3 performing right hand tapping. (a) Image created using the GLM/ICA method for the tapping
(right) hand and (b) the mirror (left) hand. (c) Activation image made using a boxcar regressor for right
hand tapping. (d) Activation image made using a boxcar regressor for left hand tapping. The black
dashed lines indicate the midline and the gray ovals indicate the M1/S1 and PMC of each hemisphere
and the SMA shared between hemispheres.

Fig. 5 Comparison of activation images made with the GLM/ICA method and a boxcar regressor for
subject 4 performing right hand tapping. (a) Image created using GLM/ICA method for the tapping
(right) hand and (b) the mirror (left) hand. (c) Activation image made using a boxcar regressor.
(d) Activation image made using a boxcar regressor for left hand tapping. The black dashed lines indicate
the midline and the gray ovals indicate the M1/S1 and PMC of each hemisphere and the SMA area
shared between hemispheres.
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5(b) show the tapping (right hand) and mirror (left hand) images,
respectively. Figures 5(c) and 5(d) show the corresponding
boxcar images for the right and left hand trials, respectively. In
this case, the boxcar [Fig. 5(c)] and tapping images [Fig. 5(a)]
looked similar, with M1/S1 and PMC areas activating bilaterally
during the finger tapping motion. Bilateral activation in senso-
rimotor areas is common in children with CP, but is not seen in
all cases as activation patterns are variable in this population.29,30

Interestingly, in the mirror hand image [Fig. 5(b)], the ipsilateral
M1/S1 and contralateral PMC showed weak levels of activation
consistent with the relatively sparse and low-amplitude mirror
hand muscle activations. These areas were also active during
the left hand tapping trial, but their size was larger and also
involved activation of the ipsilateral (left) PMC [Fig. 5(d)].
The observed differences between the mirror hand image
[Fig. 5(b)] and the left hand tapping one [Fig. 5(d)] were not
surprising since these two activation images were not generated
by the same type of motion. Nevertheless, Fig. 5(b) suggests that
when the mirror hand was pressing against the table, a relatively
small contribution was added to the activation image seen by
boxcar analysis [Fig. 5(c)], though the latter would not have
identified the origin of these mirror hand contributions.

3.3 Application of a One-Regressor GLM/ICA
Method to a Typically Developing Child

The modified one-regressor GLM/ICA method was applied to
the right hand trial of subject 9, who was a typically developing
child. Figures 6(a) and 6(b) show the images created using the
standard boxcar analysis and the modified one-regressor GLM/
ICA method, respectively. Figure 6(c) shows the vertical dis-
placement of the marker placed on the nail of the tapping
index finger. The red arrows in Fig. 6(c) indicate that subject
9 moved during the resting portions of the protocol (only
three tapping intervals are shown for clarity). Figure 6(d)

shows the group analysis performed using the right hand tapping
trials from six right-handed control subjects. Two of the eight
control subjects were excluded from the group analysis, one
who was left handed and one due to motion artifacts. The
three circles in Figs. 6(a) and 6(b) indicate areas where the acti-
vation patterns differed in the two images. In the contralateral
(left) M1/S1 area (blue circles), activation was increased in the
GLM/ICA image [Fig. 6(b)], while in the contralateral (left)
PMC, it was decreased (red circles). Additionally, an area of
deactivation was increased in the ipsilateral (right) M1/S1
area (gray circles) in the GLM/ICA image [Fig. 6(b)]. In all
three areas, the GLM/ICA image [Fig. 6(b)] more closely
matched the group analysis image [Fig. 6(d)] than the boxcar
image [Fig. 6(a)]. In this case, the GLM/ICA method provided
an improved image by taking into account the unintended
motions occurring during the rest periods. In the more typical
case where a subject followed the protocol correctly without
extraneous motions, no significant differences were seen
between the boxcar and GLM/ICA images.

4 Discussion

4.1 Overview

A shortcoming of current standard GLM analyses for fNIRS
data is that they cannot distinguish whether sensorimotor cortex
areas activate due to intended or unintended mirror motions. In
this study, the GLM/ICA method was developed to help address
this shortcoming. The method was applied to fNIRS data
acquired during a hand tapping task performed by children
with CP who exhibited unintended mirror motions. In some
cases (subjects 2 and 3), activation areas present in the standard
boxcar image were removed from the tapping hand image, thus
providing a cleaned-up activation image with mirror motions
contamination removed. In other cases (subjects 1 and 4), the

Fig. 6 Comparison of activation images made with the GLM/ICA method and a boxcar regressor for
control subject 9 performing right hand tapping. (a) Activation image made using a boxcar regressor.
(b) Activation image made with the modified GLM/ICA method. (c) Vertical position of nail target on
tapping (right) hand. (d) Group analysis including six typically developing children as control subjects.
The black dashed lines indicate the midline and the gray ovals indicate the M1/S1 and PMC of each
hemisphere and the SMA shared between hemispheres.
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tapping hand image was not very different from the boxcar one,
but the mirror image offered additional information on how
unintended motions were mapped onto the sensorimotor cortex.
Regardless of which case was achieved, the GLM/ICA method
produced additional interesting information that was not attain-
able by standard boxcar regressor analysis.

4.2 Special Case of a Subject with
Prior Brain Surgery

The special case of subject 1 merits further discussion. As men-
tioned in Sec. 2.1, subject 1 had prior brain surgery that resulted
in a physical shift of his brain’s midline, as verified by anatomi-
cal MRI. fNIRS imaging for this subject indicated bilateral acti-
vation for tapping with either hand though, interestingly, the
activation region in the right M1/S1 was in slightly different
locations depending on which hand was tapping. Specifically,
during left hand tapping by subject 1 [Fig. 2(f)], an adjacent
but distinct activation area was located laterally and posterior
to the right hand tapping activation in right M1/S1 seen in
Figs. 2(c) and 2(e). The fact that portions of both the right
and left M1/S1 areas activated for tapping performed by either
hand likely caused each hand to act as the mirror one when the
other hand was tapping. For this special case, the GLM/ICA
method was especially useful in disentangling the relative con-
tributions of tapping versus mirror motion in this subject with
complicated cortical reorganization after surgery.

4.3 Nonseparable Activation Areas and
Motion Regressor Correlation

In all cases, there were some activation areas that appeared in
both the tapping and mirror images, and therefore, the source of
these activations remained ambiguous. Since the GLM/ICA
method assigned ICs uniquely to the tapping or mirror images,
the temporal hemodynamic patterns in these regions were differ-
ent even though they were spatially overlapping. It is, therefore,
possible that in some cases both tapping and mirror motions did
contribute to activation in the same areas as plasticity after brain
injury may have resulted in one brain area eliciting motion in
both hands.31 However, it is also possible that some of the acti-
vation attributed to the same pixel locations in both images was
due to only tapping or mirror motions and that the GLM/ICA
method could not identify the responsible motion. This is
because the tapping and mirror hand regressors were typically
correlated to varying degrees. When two highly correlated
regressors were used in the GLM analysis, the model could
not uniquely assign the variance in the ΔHbO signals to one
of the regressors, as applying a high weight to one regressor
and low weight to the other produced a solution nearly identical
to the opposite weight assignments. This could have resulted in
false overlap of activation areas between the two images. In the
case of subject 3’s left hand tapping trial (Sec. 3.1.3), where the
correlation coefficient between motion capture regressors for
tapping and mirror motions was high (0.93), the overlap was
so severe that the images looked identical and no activation
areas could be attributed to only one motion (not shown for
brevity). However, this high correlation occurred in only one
out of the five motion tracking data sets analyzed in this
study. In the remaining four motion tracking data sets, the frac-
tion of ICs rejected because they correlated with both regressors
was in the 25 to 50% range, corresponding to correlation coef-
ficients in the 0.59 to 0.78 range. In all four cases, meaningful

information on mirror motion effects was attained despite this
limitation.

4.4 Motion Tracking Versus EMG Regressors

Since EMG systems are less expensive and require less setup
time than a multicamera motion capture system, a valid question
would be why use motion capture data when EMG signals could
be used instead? The answer is that motion regressors created
from EMG signals tended to be more correlated than motion
capture data, with correlation coefficients in the 0.72 to 0.96
range. As discussed in Sec. 4.4, higher levels of correlation
between the motion regressors resulted in less meaningful
results. In all cases where both EMG and motion capture regres-
sors were available, the EMG regressors had higher correlation
coefficients than their corresponding motion capture regressors
and were, therefore, inferior. However, in the unique case of sub-
ject 4 (Sec. 3.2), the EMG regressors had a very low correlation
coefficient (0.08), so meaningful results could be obtained.

4.5 Data Acquisition Limitations

In addition to the limitation of high correlation between the
regressors (Sec. 4.4), this method is limited by issues common
to all fNIRS and motion capture studies. In this work, motion
artifacts were observed in several data sets. However, in the five
subjects analyzed, motion artifacts did not cause any trials to be
excluded. Also, motion capture data were not always reliable as
occlusions sometimes occurred during the hand tapping task and
the children occasionally moved their hands outside the camera
system’s field of view. Fortunately, this did not occur in any
trials for the five subjects analyzed in this study, but only in
those excluded due to other reasons, such as the absence of mir-
ror motions.

5 Conclusion
In this work, a new GLM/ICA method was proposed for the
analysis of fNIRS data acquired during a finger tapping task
where unintentional mirror motions were present. Custom
regressors were created from motion tracking or EMG data,
and fNIRS signals were unmixed by applying ICA to the
ΔHbO time-series data. A GLM regression was performed
with the subject-specific regressors and the ICs significantly
explained by one motion regressor and not the other were
used to create sensorimotor activation maps corresponding to
each type of motion. The method provided additional informa-
tion not attainable with the standard boxcar method and, there-
fore, may contribute to an improved understanding of plasticity
in children with CP who exhibit mirror motions as long as these
are not highly correlated to the tapping hand motions. The
GLM/ICA method is potentially applicable to conditions other
than CP, e.g., stroke, and could also be useful in assessing
changes in the mirror hand contributions to sensorimotor acti-
vation maps as a result of a therapeutic intervention. It was also
shown that a modified one-regressor GLM/ICA model could
provide superior results compared to the standard boxcar analy-
sis even for control subjects who unintentionally do not accu-
rately follow the experimental protocol.
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