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Abstract

Significance: The practicality of optical methods detecting tissue optical contrast (absorption,
elastic and inelastic scattering, fluorescence) for surgical guidance is limited by interferences
from blood pooling and the resulting partial or complete inability to interrogate cortex and blood
vessels.

Aim: A multispectral diffuse reflectance technique was developed for intraoperative brain im-
aging of hemodynamic activity to automatically discriminate blood vessels, cortex, and bleeding
at the brain surface.

Approach: A manual segmentation of blood pooling, cortex, and vessels allowed the identi-
fication of a frequency range in hemoglobin concentration variations associated with high optical
signal in blood vessels and cortex but not in bleeding. Reflectance spectra were then used to
automatically segment areas with and without hemodynamic activity as well as to discriminate
blood from cortical areas.

Results: The frequency range associated with low-frequency hemodynamics and respiratory rate
(0.03 to 0.3 Hz) exhibits the largest differences in signal amplitudes for bleeding, blood vessels,
and cortex. A segmentation technique based on simulated reflectance spectra initially allowed
discrimination of blood (bleeding and vessels) from cortical tissue. Then, a threshold applied to
the low-frequency components from deoxyhemoglobin allowed the segmentation of bleeding
from vessels. A study on the minimum acquisition time needed to discriminate all three com-
ponents determined that ∼25 s was necessary to detect changes in the low-frequency range.
Other frequency ranges such as heartbeat (1 to 1.7 Hz) can be used to reduce the acquisition
time to few seconds but would necessitate optimizing instrumentation to ensure larger signal-to-
noise ratios are achieved.

Conclusions: A method based on multispectral reflectance signals and low-frequency hemoglo-
bin concentration changes can be used to distinguish bleeding, blood vessels, and cortex. This
could be integrated into fiber optic probes to enhance signal specificity by providing users an
indication of whether measurements are corrupted by blood pooling, an important confounding
factor in biomedical optics applied to surgery.
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1 Introduction

The practicality and application scope of optical methods in surgery are often limited by inter-
ferences from blood pooling. This includes fiber optics and camera-based macroscopic imaging
applications using biomedical optics instrumentation to guide interventions based on the optical
tissue contrast from diffuse reflectance (absorption, elastic scattering), fluorescence, and vibra-
tional spectroscopy (inelastic scattering). This is because bleeding can lead to blood pooling
within the imaging field, which in turn represents an important confounding factor since hemo-
globin is often the most important chromophore in tissues. Clinical implementation problems
then arise from the practical limitations associated with the impossibility to clear pooled blood
during fast-paced and oftentimes complex surgical procedures. Another set of issues can arise
from the need to discriminate blood vessels from other tissue types and provide this information
to surgeons to limit hemorrhage.

Fiber optic probes are used in a variety of biomedical applications ranging from pathology
identification to surgical guidance. In the case of brain biopsy procedures, probes have been
developed to locate areas with higher significance for pathology diagnosis, by avoiding collect-
ing tissue in necrotic areas1 or to ensure the safety of the procedure, by avoiding the rupture of
blood vessels located near the biopsy needle.2 Preventing hemorrhage during brain biopsy pro-
cedures is critical since the risk of morbidity and mortality caused by intracranial hemorrhage
can go up to 16% and 3%, respectively.3 Optical technologies allowing blood vessel detection in
neurosurgical applications using intrinsic contrast include optical coherence tomography,2 dif-
fuse reflectance spectroscopy detecting hemoglobin absorption contrast,1,4,5 and its pulsatile
motion,6 near-infrared spectroscopy,7 and laser Doppler imaging.8–11

This paper presents a technique using multispectral reflectance signals to identify blood ves-
sels located at the brain surface and differentiate them from bleeding that could have occurred in
the neurosurgical cavity. The technique segments blood vessels, bleeding, and brain cortex in
multispectral images acquired during epilepsy surgery. The segmentation algorithm is based on
the absorption spectrum of hemoglobin to detect blood and exploits the fact that temporal var-
iations in oxygenated hemoglobin concentration associated with blood flow are present only in
blood vessels and not in bleeding. This temporal frequency detection increases the specificity of
blood vessel detection compared to reflectance techniques based only on absorption spectra. A
proof-of-principle is presented in this paper using a multispectral imaging system to detect
hemodynamic activity during neurosurgery in three patients.

2 Methods

2.1 Multispectral Imaging System

A custom multispectral imaging system connected to a neurosurgical microscope (OPMI
Pentero, Zeiss) was used to image the exposed cortex of a patient during epilepsy surgery.12

The system integrates a snapshot multispectral camera (IMEC, Leuven, Belgium) composed
of 4 × 4 arrays of band-pass filters disposed over a charged-coupled device (CCD) chip of
1024 × 2048 pixels, leading to raw images of 16 spectral bands (480 to 630 nm with a
15-nm spectral resolution) of 256 × 512 pixels. The camera was operated at 20 frames per sec-
ond (fps) to allow sufficient signal-to-noise ratio (SNR) and recordings were performed for 8 min
for a total of 9600 images. The white light source (Superlux, 300 W xenon lamp) integrated into
the microscope was used to continuously illuminate the brain surface during the imaging session.
The microscope working distance was ∼25 cm and the total microscope magnification was set at
1.5×. The lenses in the camera adaptor led to a resulting magnification of 4.7, an imaging field of
view of ∼13 cm2, and a spatial resolution ∼0.1 mm. Electrocorticography (ECoG) electrodes
were placed on the patient’s brain but electrophysiological data were not used as part of the work
presented here. Informed consent was obtained from the patient and the Centre Hospitalier de
l’Université de Montréal (CHUM) ethics review board approved the research protocol.

The dataset is composed of acquisitions performed during epilepsy surgery in three patients
where regions of accumulated blood were noticeable in the field of view. The dataset of patient 1
exhibited a clear drop of blood and was chosen to design the segmentation technique described
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in Secs. 2.2 and 2.3. Patients 2 and 3 exhibited areas of accumulated blood and were selected to
demonstrate the technique’s capabilities to segment blood, blood vessels, and cortex in different
patients. The total number of acquisitions performed with the multispectral imaging system
reached 15 patients, but only three presented that spontaneous accumulation of blood and were
included in the study.

Calibration and biophysical modeling procedures were applied to the spatial–temporal–
spectral patient datasets resulting in a time-course of oxygenated hemoglobin (HbO) and deoxy-
genated hemoglobin (HbR) concentration variations at the surface of the cortex. A detailed
description of the algorithms and model parameters can be found in Ref. 12. Briefly, spectral
and spatial calibrations were initially performed to account for the system response by normali-
zation using a dataset measured on a reflectance standard (Spectralon, Labsphere). Pixels attain-
ing the detector maximum intensity were associated with specular reflections and were excluded
from the analysis. Then, a spatial registration algorithm was implemented using the MATLAB®

Medical Image Registration Toolbox.13 That procedure was applied to each image, resulting in a
dataset where the mechanical motion of the brain due to breathing and heartbeat was removed. A
modified Beer–Lambert law was applied to all images on a pixel-by-pixel basis to compute the
relative concentration changes of HbO and HbR.14 The differential pathlength factor used in the
modified Beer–Lambert law was computed using estimates from the literature for the absorption
and scattering coefficients ðμa; μ 0

sÞ in brain.15 Parameters and equations used to model absorption
and scattering coefficients are detailed in Sec. 2.3.1.

2.2 Hemodynamic Activity Characteristics of Cortex, Blood Vessels,
and Bleeding

Following the application of the preprocessing steps, the dataset consisted of videos (9600
images) of brain hemodynamic activity, i.e., time-sequences showing the concentration
variations of HbO and HbR for each of the 256 × 512 pixels. A Fourier transform was applied
to the concentration variation of HbO within each pixel to obtain the frequency profile of the
hemodynamic activity from 0 to 10 Hz with a resolution of 0.0024 Hz. To avoid confusion, in
this paper, the term “temporal frequencies” refers to the frequency spectra resulting from the
Fourier transform (Hz). Otherwise, the term “spectra” refers to the optical spectrum of the diffuse
reflectance (nm). A standard normal variate (SNV) normalization was applied to temporal
frequencies so that the relative distribution of components was independent of absolute power
density.

The patient 1 dataset showed a blood drop within the imaging field of view that slowly accu-
mulated in the top-left corner of the image and started dripping toward the bottom of the image.
The time frames clearly exhibiting the blood drop (#4800 to 8000) were selected to evaluate the
temporal and spectral characteristics of the three different components of the exposed brain:
blood vessels, cortex, and bleeding. For patients 2 and 3, no apparent movement of blood was
noticed and 4000 frames were selected for data processing. Manual segmentation of the three
physiological components was performed within those time frames to identify some regions for
which the nature of the imaged tissue could be ascertained. Bleeding was identified from areas of
dense accumulated blood; blood vessels with clear boundaries including arteries and veins were
selected; clear areas of cortex tissue were circled. The temporal frequency profiles of all pixels
within each segmented area were averaged to visualize the temporal frequency profile of each
component.

The temporal frequency interval of 0.03 to 0.3 Hz was identified as exhibiting large
differences between blood vessels, bleeding, and cortex mainly due to the respiration rate that
has a noticeable effect in HbO concentration trends and was set by the medical team to 0.23, 0.2,
and 0.22 Hz for the three patients, respectively. Temporal frequency spectra were averaged over
the 0.03 to 0.3 Hz range for each pixel of the segmented components and a Kruskal–Wallis one-
way analysis of variance between regions was performed for the frequency range. A threshold
value corresponding to the 75th percentile of the bleeding component was selected for each
patient to determine the lower limit value of hemodynamic activity intensity, used in a semi-
automatic segmentation algorithm.
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2.3 Segmentation Algorithm Using Reflectance Spectra and
Hemodynamic Activity

Using information obtained from Sec. 2.2, a semiautomatic segmentation technique was devel-
oped to identify blood vessels, bleeding, and cortex in the image. Compared to existing methods
detecting the presence of blood vessels based on the presence of hemoglobin absorption sig-
nature in acquired reflectance spectra, this new method combines the spectral detection of hemo-
globin with the temporal frequency characteristics of HbO time-response. This allows more
specific discrimination between dynamic blood (blood vessels supplied in oxygen) and static
blood that has accumulated.

The segmentation technique is performed in three steps, detailed in the following sections.
For step one, pixels with a reflectance spectrum indicating the presence of hemoglobin are iden-
tified as blood, including here bleeding and blood vessels. For step two, pixels with HbO tem-
poral frequency profiles indicating strong low-frequency components are identified as dynamic
(cortex, blood vessels). Other pixels are identified as static (bleeding, skull, and other structures).
Step 3 consists of combining the information of steps 1 and 2 to categorize pixels into bleeding,
blood vessels, or cortex. Each of the three segmentation steps is detailed in the following sections
of the paper.

2.3.1 Segmentation of blood based on diffuse reflectance spectra

Calibrated diffuse reflectance spectra in images were compared to simulated reflectance spectra
of blood and cortex to determine the nature of each pixel. Reflectance spectra of blood and cortex
were simulated using estimations of the absorption and scattering coefficients. The following
model was used for the absorption coefficient (μa)

15

EQ-TARGET;temp:intralink-;e001;116;436μa ¼ BSμa;HbO þ Bð1 − SÞμa;HbR þ μa;0 ðmm−1Þ; (1)

where μa;HbO and μa;HbR are the theoretical absorption coefficient values of HbO and HbR16

in mm−1, S is the oxygen saturation of blood (no unit), B is the proportion of vessels in the
cortex (no unit), and μa;0 is a baseline absorption coefficient (mm−1). The parameters B and
S were first determined from the literature15 and then optimized for each patient based on the
resulting modeled reflectance spectra. A high saturation (0.99 and 0.98) was selected to model
blood to capture both bleeding and blood vessels with this modeling, and saturation of 0.90
was selected for cortex to take into account both veins and arteries capillaries in the cortex
tissue. Parameters used for each patient are summarized in Table 1. For the reduced
scattering coefficient (μ 0

s), the equation μ 0
s ¼ 2.2ðλ∕500Þ−0.66 ðmm−1Þ was used for blood and

μ 0
s ¼ 2.42ðλ∕500Þ−1.661 ðmm−1Þ for cortex15 for all patients, where λ is the wavelength in

nanometers.
The modeled diffuse reflectances for blood and for cortex were estimated using the standard

diffusion approximation for the wavelength range of interest (480 to 630 nm).14 These modeled
reflectance spectra Rblood and Rcortex were fitted to the experimental reflectance spectra Rd using

Table 1 Saturation, blood content, and baseline absorption coefficient parameters to model
absorption coefficient of blood and cortex.

Blood Cortex

B S B S μa;0 (mm−1)

Patient 1 1 0.99 0.5 0.9 0.001

Patient 2 1 0.99 0.5 0.9 0.01

Patient 3 1 0.98 0.5 0.9 0.01
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a least-squares method to obtain the proportions of blood and cortex representing each pixel.
These coefficients ablood and acortex were obtained by minimizing the equation

EQ-TARGET;temp:intralink-;e002;116;711

X
fRdðλÞ − ½abloodRbloodðλÞ þ acortexRcortexðλÞ�g2; (2)

for each pixel. The coefficients ablood and acortex were then expressed between 0 and 1. Based on
the obtained data, pixels with a value of ablood > 0.8 were considered as blood, and pixels with
acortex > 0.75 were considered as cortex to produce a binary segmented image. These thresholds
were determined by hand to optimize the segmentation of the two components and were
validated visually, by ensuring the blood component could capture as many small vessels as
possible. The same threshold values were used for all three patients.

2.3.2 Segmentation of blood vessels and cortex based on the
hemodynamic activity profile

The whisker plots from manually segmented regions described in Sec. 2.1 highlighted the tem-
poral frequency range of 0.03 to 0.3 Hz with significant differences between bleeding, cortex,
and blood vessels. The values of the SNV-normalized frequency amplitude were averaged in the
0.03 to 0.3 Hz range for each pixel to obtain a metric representing the hemodynamic activity
level across the image. A threshold corresponding to the 75th percentile of the blood component
was applied to this metric to separate pixels in two categories: with hemodynamic activity
(dynamic) and without hemodynamic activity (static). The threshold values used were 1.84,
1.27, and 2.31 for patients 1, 2, and 3, respectively.

2.3.3 Combination of presegmented images for segmentation of
blood vessels, bleeding, and cortex

Steps one and two of the segmentation algorithm led to binary images indicating blood/cortex
and dynamic/static. Logical intersections between the binary images produced in Secs. 2.3.1 and
2.3.2 allowed segmenting the images in terms of bleeding, blood vessels, and cortex: (1) pixels
being both marked as blood and with the presence of hemodynamic activity were identified as
blood vessels, (2) pixels being marked as blood and without hemodynamic activity were iden-
tified as bleeding, and (3) pixels identified as cortex and with hemodynamic activity were iden-
tified as cortex.

3 Results

3.1 Hemodynamic Activity of Cortex, Blood Vessels, and Bleeding

Figure 1 shows the manual segmentation [Fig. 1(a)] and average temporal frequency spectrum
[Fig. 1(b)] for patient 1. Averaged HbO concentration variations for each region of the brain
exhibited an inverse trend (1∕f) with respect to the temporal frequency f, which has been
observed to be associated with spontaneous hemodynamic activity,17 combined with sharper
and distinctive peaks at specific frequencies [Fig 1(b)]. The peak at ∼0.23 Hz corresponds
to the respiratory rate for this patient, which was set by the medical team at 14 breathing cycles
per minute during the surgical procedure. This peak was present in the cortex and vessel regions,
but it had noticeably smaller amplitude within the blood drop. The second harmonic of the res-
piratory rate is also visible in the temporal frequency spectrum at ∼0.46 Hz, as well as the heart-
beat at ∼1.3 Hz (79 beats∕min), which are consistent with the values recorded by the
physiological monitoring device during the procedure.

Whisker plots were produced to display the distribution of frequency intensity within all three
segmented regions and for two frequency ranges exhibiting the most differences between
regions: 0.03 to 0.3 Hz [Fig. 2(a)] associated with respiration rate and 1 to 1.7 Hz [Fig. 2(b)]
associated with the heartbeat. Outside of these ranges (f < 0.03 and f > 1.7 Hz), data showed
little differences in amplitude and less SNR. Amplitudes were noticeably lower for bleeding in
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all frequency ranges, except for the lowest frequencies (0 to 0.03 Hz) where the differences
between regions were less apparent. A Kruskal–Wallis one-way analysis of variance between
regions showed a p-value <0.01 for all frequency ranges. The temporal frequency amplitudes of
pixels for cortex and blood vessels also appeared to be differentiable, with the largest observed
differences in the 0.03 to 0.3 Hz range. The outliers in the whisker plots corresponded to pixels
detecting high reflectivity (specular reflection) and were mostly associated with CCD saturation.
Those pixels represented <0.7% of all data points in the 0.03 to 0.3 Hz range and <4% in the 1.0
to 1.7 Hz range. The performance of the brain motion correction algorithm was diminished for
those high intensity pixels, which can explain the larger number of outliers in the frequency
range containing the signal form heartbeat. For each patient, the bleeding region was the one
with the lowest signal amplitude, and the cortex region appeared to have the highest signal
amplitude. Average signal intensity varies from one patient to another, with patient 2 having
the lowest. A threshold specific to each patient was then chosen to separate the bleeding com-
ponent from cortex and blood vessels based on these intensity differences.

1

1.5

2

2.5

3

3.5
[0.03 , 0.3] Hz

B 1 C 1 V 1 B 2 C 2 V 2 B 3 C 3 V 3

1

1.2

1.4

1.6
[1,1.7] Hz

B 1 C 1 V 1 B 2 C 2 V 2 B 3 C 3 V 3

(a) (b) 

Fig. 2 Distribution of the intensity of the SNV-normalized temporal frequency HbO spectra of each
pixel comprised within the segmented components of bleeding (B), cortex (C), and blood vessels
(V) for each patient (labeled 1, 2, and 3): (a) 0.03 to 0.3 Hz and (b) 1.0 to 1.7 Hz.

5 mm 
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Fig. 1 Hemodynamic activity profiles of cortex, blood vessels, and bleeding: (a) manual segmen-
tation of three visually distinct regions: cortex (green), blood vessels (blue), and bleeding (red).
ECoG electrodes, not used in this study, can be observed in the top right corner of the image.
(b) Average SNV temporal frequency spectrum of HbO concentration for each of the three regions.
Identified peaks correspond to respiration rate (R1), its second harmonic (R2), and heartbeat (HB).
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3.2 Segmentation of Blood Vessels, Bleeding, and Cortex

Figure 3(a) shows the resulting segmented regions with hemodynamic activity (in black) and
without activity (in light red) for patient 1. The blood drop at the image top in Fig. 3(c) and the
blood accumulation toward the image bottom are identified as inactive by the algorithm and thus
correspond to bleeding. Figure 3(b) displays the blood (light blue) and cortex (black) segmen-
tation using the reflectance spectra-based segmentation algorithm. Both bleeding and blood
vessels are identified as blood components by the algorithm. Figure 3(d) shows the final seg-
mentation step, combining the results of Figs. 3(a) and 3(b). Bleeding is presented in red, blood
vessels are in blue, and cortex in green. Gray pixels indicate saturated pixels due to specular
reflections and black pixels were not classified in any category.

Color visualization of the region of interest is presented for patients 2 [Fig. 4(a)] and 3
[Fig 4(b)], with the final segmentation results of blood vessels, cortex, and bleeding
[Figs. 4(c)–4(d)]. Areas of blood pooling are identified as bleeding by the algorithm. Blood
vessels are identified for patient 2, but only one deep blood vessel is present for patient 3’s
region of interest and was not detected as a blood vessel by the algorithm. The areas correspond-
ing to the plastic of the electrodes are associated with the largest errors in terms of performance
for the registration algorithm used in the preprocessing phase. This implies that residues of the

Fig. 3 Semiautomatic segmentation of bleeding, blood vessels, and brain cortex in patient 1:
(a) segmentation of regions with hemodynamic activity (black) and regions without hemodynamic
activity (light red) using a method based on the temporal frequency of reflectance signals; (b) seg-
mentation of cortex (black) and blood (light blue) using a method based on the reflectance spec-
trum; (c) color visualization of the region of interest; and (d) bleeding, blood vessels, and cortex
segmentation using logical intersections of images in (a) and (b). Gray pixels indicate specular
reflections.

Fig. 4 Bleeding, blood vessels, and cortex segmentation on two patients: (a), (b) color visualiza-
tion of the region of interest for patient 2 and patient 3; (c), (d) bleeding, blood vessels, and cortex
segmentation. Gray pixels indicate specular reflections.
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movement of the brain due to heartbeat and respiration rate appear in HbO time sequences and
thus the areas are classified as “dynamic” by the algorithm.

3.3 Minimal Acquisition Time Analysis

The analysis presented in Fig. 3 for patient 1 was performed using 3200 frames acquired at
20 fps, corresponding to a total acquisition time of 160 s. However, such large acquisition times
are not practical for surgical applications, which typically require much faster identification of
vessels or blood pooling in a matter of seconds if not milliseconds. Considering that the lowest
frequency within the interval displaying the most discriminatory potential (0.03 Hz) has a period
of 33.3 s, the technique theoretically requires an acquisition time of around 30 s. An evaluation
of the minimal acquisition time necessary to segment the image using the 0.03 to 0.3 Hz fre-
quency range was performed by extracting sections of the dataset with a different number of
frames and performing the segmentation algorithm on every section. Sections were formed
by selecting n consecutive frames, with n ranging from 100 to 3600 by steps of 100 frames.
The results were compared to reference values obtained with the full acquisition, i.e., with 3200
frames. The average temporal frequency spectrum intensities within the 0.03 to 0.3 Hz range
were similar (<10% variation) to the reference values for acquisition times associated with
>500 frames (25 s), and variations increased to >20% for an acquisition of 200 frames
(10 s). The two-step automatic segmentation algorithm for these limited time-sequences further
confirmed significant degradation of segmentation results at 500 frames.

4 Discussion

We presented a diffuse reflectance technique to detect blood vessels in brain surgery applications
and discriminate them from bleeding that could occur during procedures such as biopsies and
resection. The processing steps and instrumentation detailed in this paper were necessary in the
context of multispectral imaging but could be simplified for fiber optic probe applications. This
method could be performed with low-cost instrumentation (diodes and photodetectors) com-
bined with standard reflectance data processing to detect hemoglobin concentration variations.
The new semiautomatic segmentation technique visually illustrates the method capabilities to
segment biological components, but the major improvement over current techniques using dif-
fuse reflectance resides in its capabilities to distinguish bleeding from blood vessels, which is
permitted by the dynamic reflectance measurements of the multispectral imaging system.

The segmentation algorithm based on reflectance signals [Fig. 3(a)] involved modeling of
cortex and blood optical properties with optimization of blood content, blood saturation, and
absorption coefficient. While we have optimized these parameters, we have used the same scat-
tering coefficients for each patient. This variability across patients will be studied in future work
to provide insight into the sensibility of the segmentation algorithm to specific optical properties
parameters. The reflectance-based segmentation also involved selecting thresholds to segment
blood from cortex areas, which was performed by optimizing segmentation in all three patients
together. On the other hand, the segmentation algorithm using hemodynamic activity [Fig. 3(b)]
was based on specific thresholds optimized for every patient individually, due to differences in
intensity levels of the hemodynamic activity. Future work will include an extra calibration step to
allow a more robust comparison between patient datasets ensuring intensity of the temporal
frequency profiles is reproducible between acquisitions.

Although the reflectance modeling with the diffusion approximation is known to be inac-
curate in high absorption tissue, we consider that for the presented method involving thresholds
on the obtained proportions ablood and acortex, the uncertainties of modeling are not crucial to the
technique. Moreover, the results show that the segmentation performs adequately even with the
diffusion approximation, using the same thresholds for every patient. A detailed assessment of
the errors of the standard diffusion approximation compared to the radiative transfer equation
solutions could be performed but was deemed outside of the scope of the manuscript.

The segmentation performed using the 0.03 to 0.3 Hz frequency range exhibited the clearest
separation between regions, but Fig. 2(b) shows that other frequency intervals could be used in
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the analysis to reduce the acquisition time. The range corresponding to the heartbeat (∼1.5 Hz)
would allow the reduction of the acquisition time to few seconds, with the condition that the
detection system allows sufficient SNR in this regime. Implementation of the technique in sur-
gical applications such as brain biopsy needles1 or multimodal spectroscopy probes for in situ
cancer detection18 might then necessitate acquiring data with fiber optic and high quantum effi-
ciency spectrometers that have greater light sensitivity and transmission than the multispectral
system used in this study.

We propose that mostly two frequency intervals could be selected to distinguish blood ves-
sels from bleeding and from tissue: low-frequencies including the respiratory rate (∼0.2 Hz) and
heartbeat (∼1.5 Hz). Respiratory rate offers higher SNR and permits a low sampling rate but
necessitates ∼25 s acquisition time to successfully distinguish tissue types. Heartbeat frequen-
cies would allow acquisition times of few seconds, but instrumentation would need to be opti-
mized to ensure high SNR in this regime. For brain surgery procedures, the respiratory rate is set
by the medical team and is stable over time, whereas the heartbeat varies from one patient to
another but can be measured easily and used as an input parameter in the processing algorithms.

The presented method could also find applications in fiber optic probes for tissue identifi-
cation such as cancer detection. Methods based on automatic classification algorithms for tissue
diagnosis18 are sensitive to the presence of bleeding at the tip of the probe, which affects data
quality. The knowledge of the presence of bleeding could help for example to build more robust
classification models for tissue diagnostic in surgical interventions.
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