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Abstract. Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion
correction algorithms have previously been proposed and their respective performance compared for evoked
brain activation studies. We study instead the effect of MAs on “oscillation” data which is at the basis of functional
connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC),
the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that
increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real
MAs, we find that the best motion correction approach consists of discarding the segments of MAs following
a careful approach to minimize the contamination due to band-pass filtering of data from “bad” segments spread-
ing into adjacent “good” segments. Finally, we compare the IHC in a stroke group and in a healthy group that we
artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of
increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke
group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We
emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infra-
red spectroscopy studies. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.056011]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) has seen an
exponential development over the past 20 years with an impres-
sive breadth of applications.1,2 One of the strong advantages of
the technology as a functional brain imaging tool is its adapt-
ability to challenging environments and populations, notably
for developmental studies in infants and children,3 motor and
gait studies in moving subjects,4–6 and the clinical translation
of the modality to neurocritical care.7,8 While the modality is
often cited as relatively tolerant to movements, especially in
comparison to fMRI, the nature of these studies is prone to intro-
duce motion artifacts (MAs) in the fNIRS data.

Therefore, in parallel to hardware efforts to design instru-
mentation more resistant to motion,6,9,10 a recent body of
work has focused on developing algorithms to detect and/or
correct MAs. These approaches include adaptive, Wiener, and
Kalman filtering,11,12 principal component analysis (PCA),13–15

spline interpolation,16 wavelet analysis,17,18 an approach using
the expected negative correlation between oxy- and deoxyhemo-
globin,19 and an autoregressive model.20 Diverse metrics have
been proposed to quantify the contamination by MAs and to

compare the performance of different motion correction tech-
niques in order to identify the optimal one.15,20–23 Some studies
have assessed the effect of MAs and of their correction directly
on the raw signal, or on the concentration time traces, by com-
puting the signal-to-noise ratio of the data.9,10,23 In previous
studies, we and others instead used metrics related to the
evoked hemodynamic response function (HRF) to brain activa-
tion,15,20–22 a largely reported measure in fNIRS studies. We
compared different MA correction approaches based on how
accurately and repeatedly they could retrieve the HRF despite
the presence of motion. Cooper et al.21 added a synthetic
HRF on real resting-state data acquired on stroke patients and
contaminated by MAs. They showed that all motion correction
approaches improved the recovery of the HRF compared to
no correction and to simple rejection of the stimulus trials
contaminated by MAs, with the best performing methods
being wavelet filtering and spline interpolation. Similarly, Yücel
et al.15 used resting-state data acquired on healthy subjects
instructed to perform specific movements in order to intention-
ally introduce MAs, and subsequently added synthetic HRFs to
the time series. We introduced a novel motion correction
method, targeted PCA, which proved to be superior to other
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approaches in the studied datasets. In both these studies, the
ground truth for the HRF was known as it had been added syn-
thetically to the resting data contaminated by MAs. A different
approach was used by Brigadoi et al., who analyzed real func-
tional activation data contaminated by MAs, recorded during a
speech study, and for which the true HRF was unknown. Instead
of comparing the retrieved HRF to the ground truth, unknown in
this case, the authors assessed the physiological plausibility of
the retrieved HRF.22 Contrary to the studies of Cooper et al. and
Yücel et al., where the MAs were uncorrelated to the onsets of
the stimulus, the scenario studied by Brigadoi et al. was more
challenging: the MAs arising from the subject talking occurred
simultaneously to the stimulus onsets the subject was respond-
ing to. In agreement with Cooper et al., the authors showed that
the motion correction was always preferable to trial rejection in
this case. Further, they found the best approach for these real
datasets to be wavelet filtering.

In parallel to the traditional fNIRS studies based on evoked
response to cerebral activation, a growing number of studies
instead analyze the spontaneous oscillations in the fNIRS
signal.24–35 These can be roughly divided into two categories:
resting-state functional connectivity (rs-fc) studies24–28 and
autoregulation and vascular reactivity studies.29–35 The first cat-
egory observes neuronally driven oscillations that show corre-
lations between functionally related regions, while the second
category studies vascular oscillations driven by blood pressure
or CO2 fluctuations. To our knowledge, no work has directly
investigated the effect of MAs, and the optimal way to correct
them, on these types of data. This is the question we address in
the present study, by comparing resting-state data with minimal
motion contamination, with added MAs, and after correction of
these MAs.

Under the broad term of fNIRS “oscillations” studies, the
concept of HRF does not apply and there is no standard way
to analyze the data. However, a commonly employed tool is
the temporal correlation between two time traces. Functional
connectivity maps are generally obtained by computing the cor-
relation of the fNIRS signal between a seed channel and all other
locations over the head.24,27,28 Autoregulation studies based on
spontaneous oscillations analyze the data either in the temporal
domain,29,33,34 or in the Fourier frequency domain with transfer
function analysis.31,32,35,36 In the first case, metrics of interest
are, for instance, the cross-correlation between NIRS and
arterial blood pressure (ABP) or cerebral perfusion pressure
(CPP),33,34 or between symmetrical NIRS channels.29 For in-
stance, we observed in Muehlschlegel et al.29 a significantly
reduced interhemispheric correlation (IHC) between symmetri-
cal channels in severe stroke patients compared to a control
group. Use of a wavelet-based correlation has also been pro-
posed instead of the traditional correlation, to account for the
fact that the measured physiological signals are not stationary.37

In the present study, we chose as our metric of interest the
correlation between oxyhemoglobin fluctuations measured at
rest on symmetrical channels bilaterally on the forehead.

2 Methods

2.1 Subjects and Data Collection

NIRS data were collected in two distinct groups: 46 healthy
adults and 36 stroke patients. Forty-six healthy volunteers
with no history of cardiovascular or neurological disease
were recruited at the University of Copenhagen, Denmark, and

36 patients with symptoms of stroke in the territory of the
internal carotid artery were recruited from the Stroke Unit,
Glostrup Hospital in Denmark. The Biomedical Research
Ethics committee in the Capital Region of Denmark approved
both studies (H-B-2008-039 and H-B-2008-088). All subjects
gave informed consent to participate in the study, which was
undertaken in accordance with the Helsinki Declaration of
1964, as revised in Edinburgh in 2000. Subsets of this data
have been previously analyzed and published independ-
ently.21,30,38 The NIRS data were collected with a TechEn
Inc. (Milford, Massachusetts) CW6 system. NIRS optodes were
placed bilaterally and symmetrically on the forehead, with, on
each side, one source (690 and 830 nm) and one detector 3 cm
away, avoiding the midline sinus. Additional channels were
recorded at other locations in the two groups, but were not ana-
lyzed for the present study. NIRS recordings were acquired at
a sampling rate of 200 Hz and were subsequently downsampled
to 25 Hz.

Each dataset consisted of 10 min of resting-state NIRS
recording. Both the healthy subjects and stroke patients were
placed in a supine position in a silent room with a constant
temperature and the light dimmed. After 15 min of rest in the
supine position, a 10-min trial of spontaneous breathing was
acquired.

2.2 Data Analysis: Interhemispheric Correlation

For each channel, the raw intensities at 690 and 830 nm were
converted to relative changes in optical density ΔOD using
the modified Beer–Lambert law with a differential path length
factor of 6 at both wavelengths. When applicable, MAs were
identified and corrected on the ΔOD time traces as detailed
in Sec. 2.3. Then the corrected ΔOD time series were converted
to changes in oxy and deoxyhemoglobin concentrations,
Δ½HbO� and Δ½HbR�, respectively. The hemoglobin concentra-
tion time series were band-pass filtered (third-order Butterworth
low-pass filter and fifth-order Butterworth high-pass filter) in
four different frequency bands of physiological interest: cardiac
(0.5 to 1.5 Hz), respiration (0.15 to 0.5 Hz), low-frequency
oscillations (LFOs, 0.05 to 0.15 Hz), and very LFOs (VLFO,
0.01 to 0.07 Hz). Finally, our metric of interest was the IHC
between the two symmetrical channels on the forehead.
Specifically, the IHC was computed as the correlation coeffi-
cient over the whole 10 min recording duration between the
filtered Δ½HbO� time series of the two symmetrical channels on
the forehead for each of the four frequency bands. Therefore, for
each subject’s 10 min recording, we obtained four IHC values
corresponding to the four physiological frequencies. The IHC
values are between −1 and þ1, with þ1 meaning that the
symmetrical channels are perfectly in phase, −1 representing
perfect anticorrelation (180-deg phase), and 0 representing
either a complete lack of correlation between the channels or
a 90-deg phase shift.

2.3 Motion Artifact Identification and Correction

MAs were detected on the ΔOD time series using the function
hmrMotionArtifactPerChannel from the Homer2 processing
package,39,40 except for the wavelet motion correction pro-
cedure, which performs the MA identification as part of the
correction analysis. For each data channel, the algorithm auto-
matically identifies MAs based on fast changes in signal ampli-
tude and/or standard deviation. If, over a temporal window of
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length tMotion, the standard deviation increases by a factor
exceeding SDThresh, or the peak-to-peak amplitude exceeds
AMPThresh, then the segment of data of length tMask
starting at the beginning of that window is defined as motion.
We used tMotion ¼ 0.5 s, tMask ¼ 2 s, SDThresh ¼ 14, and
AMPThresh ¼ 0.2 for all datasets. In practice, these parame-
ters may be tweaked on an individual-subject or -study basis
in order to optimize the MA identification as confirmed by
visual inspection. In the present study, in order to perform an
objective characterization of MA incidence and of their correc-
tion, we fixed these parameters at the same values for all datasets
in both groups.

We compared five different MA correction approaches,
which are illustrated in Fig. 1, left: not correcting the MAs
(“No correction”), discarding the MA segments (“Discard”),
spline interpolation correction (“Spline”),16 recursive-targeted
PCA correction (“tPCA”),15 and wavelet filtering (“Wavelet”).18

The last three MA correction methods have been fully described
by their respective authors and have been summarized in pre-
vious publications,15,21,22 so we only give a brief overview of
the different algorithms here.

2.3.1 Motion artifact segment removal (discard)

The simplest MA correction consisted in discarding all MA seg-
ments [Fig. 1(c)], i.e., computing the IHC on MA-free segments
only. If an MA segment was identified in any of the four

channels (two source-detector pairs at two wavelengths each),
the time segment was ignored from the data in all channels.

However, care must be taken in the management of the
“ignored” MA-contaminated segments, so that they do not cor-
rupt the adjacent MA-free segment through the subsequent step
of band-pass filtering the data. Therefore, we first reconstruct
the data in the MA segments using spline interpolation (as
described below in Sec. 2.3.2), we then band-pass filter the
data, and finally compute the IHC only on the time points origi-
nally identified as MA-free, as illustrated on Fig. 1(c), right.
A more thorough discussion of this approach and a parallel
with methods developed by Power et al.41,42 for fMRI data is
presented in Sec. 4.2.

2.3.2 Spline interpolation

We applied the spline interpolation approach proposed by
Scholkmann et al.,16 and incorporated in Homer2 as the
hmrMotionCorrectSpline function [see Fig. 1(d)]. Each MA
segment is first modeled with a cubic spline interpolation
using the MATLAB® function csaps, and the modeled data
are then subtracted from that segment of data. The successive
corrected segments are then shifted by an offset that corresponds
to the difference between the mean of the signal at the beginning
of the MA segment and the mean of the signal at the end of the
previous MA-free segment, following the framework detailed in

Fig. 1 Example illustrating: (a) a motion-free segment of data, (b) the same data after addition of
MA segments, which are identified by the gray areas, and the different motion correction procedures:
(c) discarding the MA segments, (d) spline interpolation, (e) targeted PCA, and (f) wavelet filtering.
Left: ΔOD at 830 nm for the symmetrical forehead channels. Right: Δ½HbO� time series for the symmet-
rical channels, after filtering in the LFO frequency band (0.05 to 0.15 Hz). The displayed IHC was com-
puted over the whole 600 s of recording, but only 160 s of data are shown for better visualization of
the MAs.
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Scholkmann et al.16 The smoothing parameter pSpline was set to
0.4, 0.9, and 0.99 successively.

2.3.3 Targeted principal component analysis

We applied the recursive-targeted PCA approach described
in Yücel et al.,15 and integrated in Homer2 as the
hmrMotionCorrectPCArecurse function [see Fig. 1(e)]. It con-
sists of a recursive PCA method applied only to the segments
identified as MAs rather than to the whole time series. At each
iteration, the MAs are automatically identified using the pro-
cedure described in Sec. 2.3. If an MA is identified on one
channel, then the segment is considered MA on all channels.
The MA segments are then combined into a single matrix of
size “number of MA time points” by “number of channels.”
The PCA analysis converts the matrix of MA data into a set of
orthogonal vectors (principal components), ranked in decreasing
order of their contribution to the variance of the data. A certain
number of principle components, accounting for a specific per-
cent of the variance σPCA of the data they explain, is removed
from the orthogonal matrix which is then transformed back into
the corrected data. The segments of corrected motion are then
stitched back into the original data time series by shifting the
mean value of adjacent epochs of motion and motion-free
data, following the same procedure used in the spline method
above.16 The procedure of motion identification and correction
is repeated for a total of Niter iterations to remove any residual
MAs. In this study, we usedNiter ¼ 3 and set σPCA to 90%, 95%,
and 97% successively.

2.3.4 Wavelet filtering

We used the discrete wavelet filtering approach described by
Molavi and Dumont18 and incorporated in Homer2 as the
hmrMotionCorrectWavelet function [see Fig. 1(f)]. Note that,
for this approach, the MAs are both identified and corrected
through the wavelet analysis so that we do not use the segments
previously identified with Homer2. The time course is first
decomposed in the wavelet domain using the general discrete
wavelet transformation. The model assumes that the wavelet
coefficients have a Gaussian probability distribution: the

physiological components are centered around zero while
MAs appear as outliers. The coefficients that are outside αIQR
times the interquartile range (IQR) of the distribution are con-
sidered to represent MAs and are set to 0 before reconstructing
the signal with the inverse discrete wavelet transform. The tun-
ing parameter αIQR was set to 0.1, 0.8, and 1.5 in this work.

2.4 Motion Artifact Addition

A subset of the healthy datasets was used as reference data with
minimal motion contamination. We selected all healthy datasets
for which the cumulative duration of MA segments was less
than 5% of the total recording time (34 datasets). On these
“motion-free” datasets, we added MA segments obtained from
the stroke datasets.

2.4.1 Same motion artifact content as the stroke group

For each healthy recording, we randomly chose 20 stroke
recordings from which to extract the MA segments, yielding
a total of 680 datasets with added MAs. For each recording,
the procedure to add MA segments, illustrated in detail in
Fig. 2, was the following: one clean healthy dataset with no
MA [Fig. 2(a)] was matched with a MA-contaminated stroke
dataset [Fig. 2(b)]. The MA segments were identified on the
stroke time series [Fig. 2(b)] as described in Sec. 2.3. Then
the MA segments from the stroke ΔOD time series were sub-
stituted in the healthy ΔOD [Fig. 2(c)] on a per-channel and per-
wavelength basis. Importantly, each MA segment was shifted in
the healthy data by the same offset it was shifted in the stroke
data. This shift can, for instance, be observed around t ¼ 120 s
on Figs. 2(b) and 2(c). An additional example of the procedure
was provided in Figs. 1(a) and 1(b). The procedure was then
repeated for all 20 selected stroke recordings.

2.4.2 Larger motion artifact content than the stroke group

In addition to the previous procedure where we artificially intro-
duced the same MA content as that of the stroke datasets, we
studied the effect of introducing further MA contamination.
For this procedure, we first created a “pool” of 355 MA

Fig. 2 Illustration of the addition of motion artifacts (MAs) to healthy datasets: (a) The original ΔOD time
series from a healthy subject, with no identified MA. (b) The MA segments are identified on the ΔOD time
series of a stroke patient. (c) The MA segments are substituted in the healthy time series. The process is
performed per source-detector pair and per wavelength. Only one channel is shown here (left side,
830 nm). The data offsets resulting from the MAs are also incorporated in the modified data. See for
instance around t ¼ 120 s, the baseline ΔOD has been shifted negatively by about 0.2 after the MA
segment to reflect the actual effect of the motion observed in the stroke dataset.
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segments extracted from the stroke datasets as described above.
Each MA consisted of the four segments of ΔOD at the two
wavelengths and the two channels. For each healthy dataset,
we then added MA segments randomly selected from this
pool at randomly selected time points, following the same seg-
ment substitution as described above (Sec. 2.4.1), in order to
obtain a target average MA contamination. For each healthy
dataset, we created 20 instances of randomly placed MA seg-
ments for the target MA contamination level. Finally, the
whole process was repeated for different MA contamination
levels varying from 17% up to 50% (duration of the cumulated
MA segments over total recording duration). Figure 3 shows an
example of a ΔOD time series from the healthy dataset after
introduction of a motion segment that results in approximately
10%, 30%, and 50% MA content. Note that this procedure
results in a large number of short MAs as opposed to few
long segments of MAs, so that the contamination higher than
50% corresponds to unusable datasets.

2.5 Statistical Analysis

The distribution of the number of MA segments is not Gaussian,
and the distribution of IHC is bounded between −1 and þ1 and
is non-Gaussian. We, therefore, report the median and IQR of
the number of MA segments and of the IHC values in the four
frequency bands of interest for each group.

To quantify the dependence of IHC on the number of MAs,
we computed the Pearson correlation coefficient between the
number of MAs and the Fisher’s Z-transform of the IHC. The
Fisher Z-transformation normalizes the distribution of the IHC.

We compared the IHC values between the following datasets:
healthy without MA versus healthy with added MAs; healthy
without MA versus healthy with added MAs, after MA correc-
tion; stroke versus healthy without MA; and stroke versus
healthy with added MAs, before and after MA correction in
both groups. To compare the IHC values between two datasets,
we performed a two-sample Student t-test applied on the Fisher
Z-transformation of the IHC. Note that we report the median and

IQR of the IHC before transformation for convenience, but all
statistical analyses were performed on the Fisher Z-transform of
the IHC. The threshold for significance was set to p < 0.01.

2.6 Overall Method

In summary, our approach was the following. First, in Sec. 3.1,
we study the correlation between incidence of MAs, and IHC,
on the original (i.e., not MA-corrected) healthy and stroke data-
sets. Second, in Sec. 3.2, using only the healthy datasets with
minimal MA contamination, we investigate the effect on IHC
of adding MAs and of correcting them with the different
approaches. We study in detail the case where synthetic motion
contamination is equivalent to that of the stroke group, and
further investigate how the different MA correction approaches
perform when the MA contamination increases to up to 50% of
the total recording time. This section provides a case where the
ground truth IHC is known, and we can directly study the effect
of MAs and their correction. Finally, in Sec. 3.3, we compare the
healthy group after the addition of MA and the stroke group, in
both cases with or without MA correction. The objective of this
last part is to compare the healthy and stroke groups with similar
MA contamination so as to minimize the confounding effect of
motion contamination.

3 Results
Table 1 presents the median and IQR of the IHC in the four
frequency bands for the two groups (healthy and stroke) and
for the different motion addition and correction approaches.

3.1 Interhemispheric Correlation Correlates with
the Number of MAs

As illustrated in Fig. 4(a), without MA correction, the IHC
(median and IQR) was significantly higher in the healthy group
than in the stroke group at all frequencies: cardiac (healthy:
0.98, 0.95 to 0.99; stroke: 0.93, 0.84 to 0.96; p ¼ 5 × 10−6),

Fig. 3 Illustration of the addition of different levels of motion contamination to healthy data. The original
ΔOD time series from a healthy subject (blue) is contaminated by substitution of MA segments obtained
from the stroke datasets, resulting in cumulative duration of MAs of 10%, 29%, and 52% (cyan).
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respiration (healthy: 0.78, 0.55 to 0.90; stroke: 0.55, 0.22 to
0.76; p ¼ 3 × 10−5), low-frequency (healthy: 0.78, 0.66 to
0.89; stroke: 0.52, 0.01 to 0.68; p ¼ 2 × 10−7), and very-low
frequency (healthy: 0.78, 0.64 to 0.90; stroke: 0.57, 0.41 to
0.71; p ¼ 3 × 10−5). The IQR values show that the variability
across subjects was higher in the stroke group than in the healthy
group in all frequency bands [see also error bars on Fig. 4(a)].

The number of MA segments was significantly lower
(p ¼ 0.0019) in the healthy group (median ¼ 2 and IQR ¼
1 to 5) than in the stroke group (median ¼ 8 and IQR ¼ 4 to
13), as displayed in Fig. 4(b).

Figure 4(c) shows the scatter plot, combined for both healthy
and stroke groups, of the IHC in the low-frequency band versus
the number of MAs. There is a significant negative correlation
between the number of MAs and the IHC value (Pearson cor-
relation coefficient: R ¼ −0.38, p ¼ 5 × 10−4). The correlation
was also significant in the cardiac (R ¼ −0.42, p ¼ 1 × 10−4),
and respiration (R¼−0.30, p¼6×10−3) frequency bands, and
marginally significant in the VLFO (R ¼ −0.27, p ¼ 0.015)
frequency band.

3.2 Adding Motion Artifacts to Motion Artifact-Free
Datasets Significantly Reduces Interhemispheric
Correlation

Thirty-four healthy datasets were considered motion-free as
defined by the total duration of MA segments being under
5% of the total recording time (i.e., under 30 s over 10 min
of recording). On this subset of data, the median (IQR) IHC

was 0.98 (0.95 to 0.99), 0.85 (0.65 to 0.91), 0.80 (0.71 to
0.91), and 0.81 (0.66 to 0.90) in the cardiac, respiratory,
LFO, and VLFO frequency bands, respectively. As expected
from the results above, these values are slightly higher than
the median values for the complete healthy group.

After the addition of MAs on the healthy data subset, the IHC
decreased significantly to 0.88 (0.77 to 0.95), 0.49 (0.23 to
0.73), 0.56 (0.34 to 0.74), and 0.60 (0.35 to 0.79) at the cardiac,
respiration, LFO, and VLFO frequencies, respectively. This is
significantly lower than the original values, with a p-value of
1 × 10−6, 3 × 10−12, 7 × 10−9, and 8 × 10−7, respectively. This
result is illustrated in Fig. 5 by the dark blue and cyan bars.
As can be observed from the IQR values and from the error
bars on Fig. 5, the addition of MAs also increased the variability
of the IHC across subjects.

3.3 Effects of Different Motion Correction
Approaches

We performed a sensitivity analysis on the input parameters
pSpline, σPCA, and αIQR for the Spline, tPCA, and Wavelet
approaches, respectively. For each correction method, we
assigned three values to the input parameters as described in
Sec. 2. Working with the healthy dataset, we selected the
value of each parameter that resulted in the least difference
between the original IHC (on the MA-free datasets) and the
IHC after MA addition and correction. This resulted in
pSpline ¼ 0.99, σPCA ¼ 97%, and αIQR ¼ 1.5. These values
were employed in all subsequent results below.

Table 1 Interhemispheric correlation (IHC) for the different groups and analyses in the four frequency bands of physiological interest. N is the
number of subjects in the group. We report the median IHC and the interquartile range (IQR) in parentheses.

Dataset N Motion
correction

Cardiac
(0.5 to 1.5 Hz)

Respiration
(0.15 to 0.5 Hz)

LFO
(0.05 to 0.15 Hz)

VLFO
(0.01 to 0.07 Hz)

Healthy 46 No correction 0.98 (0.95 to 0.99) 0.78 (0.55 to 0.90) 0.78 (0.66 to 0.89) 0.78 (0.64 to 0.90)

Discard 0.98 (0.95 to 0.99) 0.78 (0.55 to 0.89) 0.71 (0.60 to 0.85) 0.73 (0.61 to 0.83)

Spline 0.97 (0.93 to 0.98) 0.71 (0.50 to 0.87) 0.69 (0.56 to 0.83) 0.73 (0.60 to 0.83)

tPCA 0.97 (0.93 to 0.99) 0.70 (0.52 to 0.89) 0.76 (0.59 to 0.85) 0.72 (0.59 to 0.87)

Wavelet 0.98 (0.95 to 0.99) 0.79 (0.60 to 0.89) 0.71 (0.62 to 0.84) 0.75 (0.65 to 0.89)

Healthy <5% MAs 34 No correction 0.98 (0.95 to 0.99) 0.85 (0.65 to 0.91) 0.80 (0.71 to 0.91) 0.81 (0.66 to 0.90)

Healthy (<5% MAs)
with added MAs

680
(34 × 20)

No correction 0.88 (0.77 to 0.95) 0.49 (0.23 to 0.73) 0.56 (0.34 to 0.74) 0.60 (0.35 to 0.79)

Discard 0.95 (0.91 to 0.98) 0.72 (0.50 to 0.85) 0.71 (0.56 to 0.81) 0.69 (0.51 to 0.79)

Spline 0.91 (0.84 to 0.95) 0.62 (0.38 to 0.78) 0.66 (0.48 to 0.77) 0.66 (0.50 to 0.78)

tPCA 0.91 (0.82 to 0.96) 0.57 (0.32 to 0.78) 0.61 (0.38 to 0.78) 0.63 (0.41 to 0.80)

Wavelet 0.92 (0.86 to 0.96) 0.71 (0.52 to 0.82) 0.65 (0.49 to 0.75) 0.62 (0.40 to 0.79)

Stroke 36 No correction 0.93 (0.84 to 0.96) 0.55 (0.22 to 0.76) 0.52 (0.01 to 0.68) 0.57 (0.41 to 0.71)

Discard 0.97 (0.93 to 0.98) 0.70 (0.51 to 0.77) 0.48 (0.34 to 0.66) 0.50 (0.34 to 0.62)

Spline 0.94 (0.88 to 0.96) 0.57 (0.42 to 0.71) 0.46 (0.27 to 0.64) 0.47 (0.29 to 0.61)

tPCA 0.94 (0.82 to 0.97) 0.62 (0.24 to 0.75) 0.49 (0.27 to 0.67) 0.55 (0.47 to 0.70)

Wavelet 0.96 (0.91 to 0.97) 0.67 (0.47 to 0.76) 0.50 (0.30 to 0.67) 0.57 (0.42 to 0.72)
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Figure 1 shows an example of the effect of the MA addition
and correction on a short segment of motion-free healthy data.
The first column displays the ΔOD time traces at 830 nm of the
two symmetrical channels, while the second column displays
the corresponding Δ½HbO� times series after filtering in the
0.05 to 0.15 Hz frequency band.

Figure 5 shows the effect of the different motion correction
methods in the four frequency bands of interest for the healthy
datasets with added MAs. All approaches increased the median
IHC compared to the dataset with added MAs. However, all of
them retrieved a value lower than the true IHC. Indeed, the IHC

remained significantly lower than their original true values for
all correction approaches.

The performance of the different approaches differed. The
discard approach performed best in all frequency bands, increas-
ing the IHC to 0.95 (0.91 to 0.98) in the cardiac frequency band,
0.72 (0.50 to 0.85) in the respiration frequency band, 0.71 (0.56
to 0.81) in the LFO band, and 0.69 (0.51 to 0.79) in the VLFO
band. The spline method increased the IHC to 0.91 (0.84 to
0.95) in the cardiac frequency band, 0.62 (0.38 to 0.78) in
the respiration frequency band, 0.66 (0.48 to 0.77) in the
LFO band, and 0.66 (0.50 to 0.78) in the VLFO band.

Fig. 4 (a) IHC in the healthy group and the stroke group obtained with the original datasets (i.e., without
MA addition or correction), in the four frequency band of interest. The colored circle represents the
median and the error bars the IQR over all subjects. (b) Number of MA segments in the healthy
group and the stroke group, obtained from the original datasets (median and IQR). For (a) and (b),
the significance of the difference between the two group is displayed as *p < 0.01 and **p < 0.001.
(c) Scatter plot of the Fisher’s Z-transform of the IHC versus the number of MAs for the healthy subjects
and the stroke patients. The displayed Pearson correlation coefficient R and corresponding p-value
were computed over the combined data (healthy and stroke).

Fig. 5 Bar graph of the IHC in the healthy datasets with less than 5% MA contamination (blue), after
addition of MA segments (cyan), and after motion correction using the discard method (gray), spline
interpolation (green), targeted PCA (yellow), and wavelet analysis (magenta). The bar height represents
the median, and the error bar the IQR over all subjects.
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Targeted PCA retrieved an IHC of 0.91 (0.82 to 0.96) in the
cardiac frequency band, 0.57 (0.32 to 0.78) in the respiration
frequency band, 0.61 (0.38 to 0.78) in the LFO band, and
0.63 (0.41 to 0.80) in the VLFO band. Finally, the wavelet
analysis increased the IHC to 0.92 (0.86 to 0.96) in the cardiac
frequency band, 0.71 (0.52 to 0.82) in the respiration frequency
band, 0.65 (0.49 to 0.75) in the LFO band, and 0.62 (0.40 to
0.79) in the VLFO band.

3.4 Effect of Higher Motion Artifact Content

Figure 6 shows the evolution of the IHC, without MA correction
and for the different MA correction approaches, as a function of
the added MA content. The IHC decreases with increased MA
content up to approximately 45%MA contamination. For higher
MA content, the IHC starts to increase sharply. All MA correc-
tion methods improve the IHC, with the exception of the tPCA
approach which degrades the IHC for MA content higher than
∼25%. The discard approach performs best at all MA contents,
and wavelet and spline have similar performances. However,
even after MA correction, the IHC decreases for increasing
MA contamination.

3.5 Comparison of Healthy with Added Motion
Artifacts, and Stroke

Figure 7 shows the effect of the different motion correction
methods in the four frequency bands of interest for the stroke
datasets. After the Discard motion correction, the median
(IQR) IHC in the stroke group increased to 0.97 (0.93 to
0.98) at the cardiac frequency, 0.70 (0.51 to 0.77) at the respi-
ration frequency, and decreased to 0.48 (0.34 to 0.66) in the LFO
frequency band, and to 0.50 (0.34 to 0.62) in the VLFO fre-
quency band. The spline procedure increased the IHC to 0.94
(0.88 to 0.96) at the cardiac frequency and 0.57 (0.42 to
0.71) at the respiration frequency, and decreased it to 0.46
(0.27 to 0.64) in the LFO frequency band, and 0.47 (0.29 to
0.61) in the VLFO frequency band. tPCA increased the IHC

to 0.94 (0.82 to 0.97) at the cardiac frequency, and 0.62
(0.24 to 0.75) at the respiration frequency, and decreased it
to 0.49 (0.27 to 0.67) in the LFO frequency band, and 0.55
(0.47 to 0.75) in the VLFO frequency band. Finally, the wavelet
filtering increased the IHC to 0.96 (0.91 to 0.97) at the cardiac
frequency, and 0.67 (0.47 to 0.76) at the respiration frequency,
and had little effect in the lower frequency bands, where it
retrieved 0.50 (0.30 to 0.67) in the LFO frequency band, and
0.57 (0.42 to 0.72) in the VLFO frequency band.

The IHC after MA addition in the healthy dataset was
not significantly different than the IHC in the stroke group,
in the respiration (p ¼ 0.42), LFO (p ¼ 0.08), and VLFO
(p ¼ 0.59) frequency bands. At the cardiac frequency, the
IHC was marginally lower in the healthy dataset with added
MA than in the stroke dataset (p ¼ 0.02). These results are
illustrated in Fig. 8.

Figure 8 also illustrates the comparison between the healthy
group (without MA and with added MAs), and the stroke group,
before and after the discard correction. After the discard motion
correction, the IHC in the stroke group and in the healthy group
with added MAs were not significantly different in the cardiac
(p ¼ 0.37) and respiration (p ¼ 0.77) frequency bands. The
IHC was significantly lower in the stroke group for the LFO
(p ¼ 3 × 10−5), and for the VLFO (p ¼ 1 × 10−4) frequency
bands. We are not showing the comparison between the stroke
and healthy groups for the other motion correction approaches,
as they performed worse than discard in retrieving the “true”
IHC in the healthy datasets, as detailed in Sec. 3.3.

4 Discussion

4.1 Negative Correlation of Interhemispheric
Correlation and Number of Motion Artifacts

We observed that the IHC at all frequencies in the original
datasets had a negative correlation with the number of MAs
(results only shown for the LFO frequency band). Furthermore,
adding MA segments to the healthy datasets with minimal MA

Fig. 6 IHC in the healthy datasets with less than 5% MA contamination after added MA, versus level of
added MA contamination (expressed as percent of the total recording time). The results are presented
after addition of MA segments (cyan), and after motion correction using the discard method (gray), spline
interpolation (green), targeted PCA (yellow), and wavelet analysis (magenta). The blue and red arrows
indicate the level of MA contamination corresponding to the original healthy datasets (no MA added) and
to the original stroke datasets.
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contamination resulted in a significantly reduced IHC at all
frequencies and in an increased IHC variability across subjects.

The reduction of IHC with increased MA content can be
counter-intuitive. If we assume motion to induce similar artifacts
on all channels, we would expect the correlation between sym-
metrical channels to increase artificially with the presence of
MAs. This effect was sometimes observed (data not shown).
However, in most cases, the fast signal changes due to MA
occur in opposite directions in different channels or with a slight
delay, inducing a decrease in the IHC, as can be clearly observed
in Fig. 1(b). See, for instance, in Fig. 1(b), right, around
t ¼ 350 s, an MA is present on both channels, resulting in
an increase of the [HbO] fluctuations, albeit with a short
delay between the two channels, which reduces IHC. The com-
bination of these two effects results in an overall decrease of the
IHC, but with increased variance. Note, however, that for very
high MA content, the IHC starts to increase again, as illustrated
in Fig. 7 for MA content >45%. The very high number of syn-
thetically incorporated MA segments is inducing correlations
between channels. Due to the nature of the MA contamination
we model here, which is typically a large number of short (a few
seconds) motion segments, 50% MA contamination represents
extremely “noisy” datasets (one out of two data points identified

as motion-corrupted), which would be considered unusable in
practice.

Similar observations have been made in rs-fc blood oxygena-
tion level-dependent fMRI studies. Power et al.41,42 reported
that the motion affected correlation patterns over the brain,
even when compensatory spatial registration and regression
of motion estimates from the data were employed. They also
observed that, while MAs tend to induce spurious increased
correlations, some long-distance correlations were instead
decreased by subject motion.41 Here, we observe an overall
decrease in symmetrical forehead correlation with increased
subject motion, but accompanied by increased variance,
revealing that the IHC increased in some subjects and decreased
in others.

The contamination by MAs is an important confounding
factor to take into account when interpreting NIRS data analysis
based on correlations, as is mostly the case for oscillation-type
studies such as functional connectivity and autoregulation
studies. It is particularly crucial to be aware of this effect
when comparing different populations, or different paradigms,
that are prone to different levels of motion contamination. In
the study presented here, the analysis of the original datasets
revealed a highly significantly lower IHC in the stroke group

Fig. 7 Bar graph of the IHC in the stroke datasets (red), and after motion correction using the discard
method (gray), spline interpolation (green), targeted PCA (yellow), and wavelet analysis (magenta). The
bar height represents the median and the error bars the IQR over all subjects.

Fig. 8 Comparison of the IHC in the healthy group and the stroke group. The original healthy datasets
(i.e., before MA addition, in dark blue) present high IHC in all frequency bands. After addition of MA
segments obtained from the stroke dataset, the IHC in the healthy group (cyan) is significantly reduced
at all frequencies and is not significantly different from the stroke IHC (red). After applying the discard
procedure to these datasets (healthy with added MAs and stroke), the IHC is significantly lower in the
stroke group than in the healthy group in the LFO frequency band, and marginally lower in the VLFO
frequency band. Significance of the difference between the healthy and stroke datasets: (o) not signifi-
cant (i.e., p > 0.01), *p < 0.01, **p < 0.001.
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compared to the healthy group at all frequencies. However, the
number of MAs was also significantly higher in the stroke
group, due to the difficulty for this clinical population to
keep their head still during the whole duration of the recording.
This suggested that the lower IHC in the stroke group was at
least partly due to the higher MA content. Indeed, when adding
motion segments identified on the stroke group to the healthy
datasets, the IHC decreased to the level of the stroke group.

In general, studies comparing a clinical population to a con-
trol healthy group might be subject to the same confounding
effect of different motion contaminations. This possible con-
found should also be taken into account when studying the
dependence of oscillations or functional connectivity on func-
tional activity.43 A functional paradigm involving a motor or
speech task could induce more MAs than the resting condition.
Based on the present work, we, therefore, recommend that every
study using correlation-based metrics and making comparisons
between subjects or over time should test for MA content.

4.2 Implementation of the Discard Approach

The implementation of the discard approach requires some care
in the data analysis streamline. This is because the band-pass
filtering step can spread artifacts due to motion from MA-con-
taminated segments onto the adjacent MA-free segments. If the
band-pass filtering was performed before the removal of the MA
segments, the large signal changes due to MAs would spread
into the adjacent good MA segments through the filtering proc-
ess. However, if instead the MA segments were first removed
and the remaining good segments concatenated, this would
also artificially modify the frequency content of the time series.
Similarly, if the MA-free segments were zero-padded, spurious
frequency content would artificially arise at each transition
between MA-free and MA-contaminated segments replaced
with zeros. Instead we first identify the MA segments and
correct them using the spline interpolation approach in order
to minimize any large change in signal. We then apply the
band-pass filtering, and finally compute the IHC only on the
segments originally identified as motion free.

This same issue has already been recognized for the correc-
tion of MAs in rs-fc fMRI data and has been recently thoroughly
discussed by Power et al.41,42 They proposed the following
approach for fMRI resting state data analysis: first the “bad”
data points contaminated by MAs are identified using objective
data quality metrics, then the data points of these MA segments
(the censored “bad” time points) are reconstituted using the
MA-free segments (the uncensored “good” data), using a
least-square spectral decomposition adapted for nonuniformly
sampled data.44 Next, the reconstituted signal is band-pass
filtered. Following the frequency-filtering, the reconstituted
and filtered signals are “recensored,” i.e., the data points corre-
sponding to the originally identified MA segments are ignored.
Power et al.42 refer to this procedure as “scrubbing” the data. We
implement a similar approach here, but we reconstitute the
signal using the spline interpolation instead of the least square
spectral decomposition. The rationale is identical: we implement
a motion correction routine on the MA-contaminated segments
prior to band-pass filtering, because, even though these seg-
ments are ultimately not included in the IHC computation, the
frequency filtering step would otherwise spread the MA effect to
adjacent good segments.

4.3 Effect of Motion Artifact Correction in
Different Frequency Bands

We observed varying performances of the different motion cor-
rection methods. In all frequency bands, the best approach was
to discard the segments with MAs. This good performance when
discarding the MA segments stands in contrast to results for
evoked response to activation. Indeed, our previous publica-
tions15,21,22 have shown that for evoked response studies, it is
always preferable to correct the MAs than to reject the stimulus
epochs contaminated by MAs. This may be simply explained
by the amount of information ignored by discarding the MAs.
For evoked response studies, the HRF is generally estimated,
through block-averaging or deconvolution, over a relatively
small number of stimulus epochs. When an MA is detected
within a stimulus epoch, the whole block of data (typically 5
to 30 s or more) is rejected. In contrast, in the present study,
only the data corresponding to the duration of the MA are
rejected, typically several short segments of a few seconds
which cumulative duration is on the order of 10% of the
total recording.

Note that in the present results, we did not correct the
retrieved IHC values for the number of time points included
in the correlation computation, which is lower for the discard
approach than for the other methods. We verified that this
had little influence on the retrieved IHC for the level of MA
contamination investigated here. Specifically, for all healthy
datasets, we computed the IHC over (a) the whole duration
of the recording (i.e., 10 min), and (b) including only subsets
of time points corresponding to the MA-free segments in the
stroke datasets. For each healthy dataset, we repeated the pro-
cedure for 20 randomly chosen stroke datasets. The retrieved
IHC differed by less than 0.3% in all frequency bands when
using all time points or only a subset. This gives us confidence
that the number of time points has little influence on the
retrieved IHC values for MA contamination on the order of
10%, typical of clinical data as reported in the present study.

Second to discarding the MA segments, the wavelet
approach worked reasonably well for the high frequency
bands (cardiac and respiration). However, the Wavelet approach
performed poorly in the low and very low frequency bands. We
believed that this is due to the fact that the wavelet approach
does not correct sudden offsets in the NIRS signal. Instead
the wavelet analysis acts as a low-pass filter so that the abrupt
signal change is transformed into a slower drift. This drift has
little impact on the signal at the cardiac and respiration frequen-
cies, but introduces spurious frequency content in the LFO and
VLFO bands.

Conversely, spline performed best in the low frequency
bands (LFO and VLFO, second best approach after discard),
but poorly at high frequencies (cardiac and respiration). From
visual inspection of the data after correction [see for instance
Fig. 1(d)], we believe that this is due to the fact that the spline
interpolation models the signal “too well” over the MA segment,
i.e., it also models the high frequency physiology, which is
then subtracted from the segment. For each MAs segment, the
cardiac and respiration physiologies are removed by the spline
approach, thus reducing the IHC in these frequency bands. In
contrast, this subtraction over a few seconds has little impact
on the low frequency physiology.

Finally, tPCA performed relatively poorly in all frequency
bands. This may be due to the limited number of channels
(only two channels at two wavelengths each) in the present
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study. A future study should investigate whether tPCA performs
better in oscillations studies with more channels.

The frequency bands of interest for functional connectivity
and autoregulation studies are generally the LFO and VLFO
bands. In these frequency bands, we suggest that correcting
the MA should be achieved by discarding the MA segments
following the approach described here, or as a second best
approach with spline interpolation. We need to emphasize,
however, that even after MA correction of the added MA,
the IHC remains significantly smaller than the original values.
This result suggests that IHC data should still be interpreted
with caution after motion correction.

4.4 Difference Between Healthy and Stroke

While the main objective of this study was to investigate the
effect of MAs on resting-state data, we also observed an inter-
esting physiological finding. The IHC was smaller in the stroke
group than in the healthy group before MA correction. However,
we showed that this lower IHC could at least be partly attributed
to the higher MA content. After MA correction, this difference
persisted but was less significant. It is unclear if the remaining
difference was due to a real underlying physiological effect or
was an artifact arising from suboptimal MA correction, or from
possible other confounds.

Therefore, we compared instead the stroke group to the
healthy group after MA addition, and corrected MA segments
with the discard procedure in both cases. After this process, the
IHC was not significantly different between the two groups at
the cardiac frequency (p ¼ 0.37) and at the respiration fre-
quency (p ¼ 0.77). The IHC was significantly lower in the
stroke group in the LFO frequency band (p ¼ 3 × 10−5) and
in the VLFO frequency band (p ¼ 1 × 10−4).

This finding suggests that the remaining difference arises
from a real physiological effect, possibly originating from
impaired autoregulation on one hemisphere, or from decreased
functional connectivity across hemispheres. In agreement with
this explanation is the fact that the difference in IHC is observed
at the low and very low frequencies, around 0.1 and 0.04 Hz, but
not at the higher cardiac and respiration frequencies, for which
dynamic autoregulation is too slow to operate. Indeed, within
the simplified framework of transfer function analysis, dynamic
cerebral autoregulation is considered to act as a high pass filter,
where fast changes in blood pressure are translated into fast
changes in cerebral blood flow, while slower fluctuations are
attenuated and delayed.45,46 Further studies will be required
to elucidate the exact mechanism, whether of neuronal or vas-
cular origin, behind our finding.

4.5 Limitations of the Study

4.5.1 Addition of motion artifacts

The process of substituting MA segments from the stroke data-
sets into the motion-free data from the healthy group may not
accurately reflect real motion contamination. In particular, the
added segments may have a different frequency content than
the original dataset, for instance, because the cardiac heart
rate differs between the two subjects. However, most MA seg-
ments are only a few seconds long, and the healthy datasets with
added MAs could not be distinguished visually from real data
contaminated by MAs. Our approach has the advantage of intro-
ducing real MA segments as opposed to modeled MAs.

Further, note that our approach models a specific type of
motion contamination, consisting of a large number of short
MA segments, typically a few seconds long. Different types
of MA corruption would probably yield different results. For
instance, imagine a 10 min recording where the first 5 min
of the data is identified as MA-corrupted and is discarded,
and the second 5 min is identified as good data. This would cor-
respond to a level of 50% motion contamination, but would
likely give significantly better results than the 50% of MA con-
tamination we model here, randomly occurring over the whole
duration of the recording.

4.5.2 Other confounding factors of the interhemispheric
correlation metric

Previous studies comparing different motion correction
approaches generally used as a performance metric either
the SNR of the signal,9,10,23 or a measure related to the
HRF.15,20–22 Both types are inadequate for oscillation-based
studies: the concept of HRF does not apply here, and the mea-
sure of SNR generally includes physiological “noise,” which
here is part of our signal of interest. Instead, we chose to
study the IHC, a measure of correlation between two channels.

Importantly, other potential confounding factors could affect
the IHC metric. Notably, the signal-to-noise ratio (SNR) of the
oscillations will likely influence the IHC. The SNR depends on
different factors, for instance, the quality of light coupling to the
head, instrumental noise, the head optical properties, and the
power of the physiological oscillations of interest. The power
of oscillations at low and very low frequencies has been reported
to decrease with age37,47,48 and has been hypothesized to arise
from increased stiffness of the cerebral vessels and reduced
spontaneous activity in microvascular smooth vessels in the
aging brain. This reduced power could, in turn, result in a
decrease of SNR and a decrease of IHC with age. In the present
example, the healthy group was not age-matched to the stroke
group, as it was not specifically recorded as a control group. The
age (mean� standard deviation) was significantly lower (two-
sample Student’s t-test, p ¼ 7 × 10−8) in the healthy group
(47� 13) than in the stroke group (64� 14). However, in
the present study, there was no significant difference between
the two groups in the power of the LFO (p ¼ 0.15) and
VLFO (p ¼ 0.65) oscillations. Nonetheless, the reduction in
IHC in the stroke group could have a physiological origin deriv-
ing from the increased age of that group.

4.5.3 Limitations of the interhemispheric correlation metric

The correlation between two time series is commonly employed
in autoregulation studies, either between two NIRS channels, or
between a measure of blood pressure (ABP, intracranial pres-
sure, or CPP) and the NIRS signal24,27–29,33,34 The correlation
coefficient is a simple useful metric, but it only provides incom-
plete insight into the underlying physiology. First, the IHC does
not inform on potential delay shifts between two signals. Instead
a time-lag can be computed between two signals as assessed
by the delay of maximal cross-correlation, or as a phase lag
obtained from transfer function analysis.32,36 Second, the corre-
lation coefficient computed over a whole recording duration
does not take into account the fact that the physiological proc-
esses are nonstationary. Different approaches relying on wavelet
analysis have been proposed to overcome this shortcoming.37,46

Journal of Biomedical Optics 056011-11 May 2015 • Vol. 20(5)

Selb et al.: Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data. . .



It is beyond the scope of the present work to provide an
exhaustive study of the effects of MAs and of their corrections
for the different frameworks of oscillation data analysis. Instead
we chose to focus on a simple metric that is widely used for
a number of physiological and clinical studies.24,27–29,33,34

4.5.4 Contribution of extracerebral signal

This study does not address the question of the relative intra- and
extracerebral contributions to the NIRS signal. For a source-
detector separation of 3 cm on the adult head, the sensitivity
of fNIRS signal to the cortex has been estimated between
5% and 15%.49,50 The observed oscillations, therefore, reflect
predominantly the systemic extracerebral vasculature. However,
lack of symmetry in the cerebral oscillations, whether arising
from neuronal or vasculature origin, will contribute to decreas-
ing the IHC values. The results presented here concerning the
impact of MAs and the importance of their correction remains,
independent of the origin of the signal.

5 Conclusion
The IHC, defined as the temporal correlation between two sym-
metrical channels during resting-state recordings, is strongly
affected by MAs. A higher MA content decreases the median
IHC value and increases the variability across subjects. This
result has general implications for studies that use the cross-cor-
relation between NIRS channels, or between blood pressure and
NIRS, as a quantitative metric of connectivity or to assess autor-
egulation. We found that, contrary to functional activation
studies based on the measure of the HRF, the optimal motion
correction algorithm for oscillation studies at all frequencies
consisted of discarding the MA segments. The second best
approach depended on the frequency band of interest: wavelet
filtering performed reasonably well in the cardiac and respira-
tion bands, while spline interpolation performed reasonably
well in the low and very low frequency bands. Based on these
results, we recommend testing for the potential confounding
effect of motion contamination in oscillation studies, and if
necessary discarding the segments containing MAs. It is, how-
ever, important to acknowledge that even after motion correc-
tion, the correlation between channels is negatively impacted
by the presence of motion.
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