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Abstract. Functional brain imaging techniques require accurate co-registration to anatomical images to pre-
cisely identify the areas being activated. Many of them, including diffuse optical imaging, rely on scalp-placed
recording sensors. Fiducial alignment is an effective and rapid method for co-registering scalp sensors onto
anatomy, but is quite sensitive to placement errors. Surface Euclidean distance minimization using the
Levenberq-Marquart algorithm (LMA) has been shown to be very accurate when based on good initial guesses,
such as precise fiducial alignment, but its accuracy drops substantially with fiducial placement errors. Here we
compared fiducial and LMA co-registration methods to a new procedure, the iterative closest point-to-plane
(ICP2P) method, using simulated and real data. An advantage of ICP2P is that it eliminates the need to identify
fiducials and is, therefore, entirely automatic. We show that, typically, ICP2P is as accurate as fiducial-based
LMA, but is less sensitive to initial placement errors. However, ICP2P is more sensitive to spatially correlated
noise in the description of the head surface. Hence, the best technique for co-registration depends on the type of
data available to describe the scalp and the surface defined by the recording sensors. Under optimal conditions,
co-registration error using surface-fitting procedures can be reduced to ∼3 mm. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.1.016009]
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1 Introduction
Co-registration is the process of assigning the correct anatomical
locations to the points from which physiological data are
recorded.1 Anatomical localization of functional brain data is
central to cognitive neuroscience and to the preoperative appli-
cation of imaging methods. However, many functional brain im-
aging techniques measure brain activity without a concurrently
recorded anatomical frame of reference and rely instead on
anatomical information separately obtained through structural
magnetic resonance imaging (sMRI) or computerized axial
tomography.

These functional imaging techniques, which typically rely on
scalp-placed recording sensors, include electroencephalography
and event-related brain potentials (EEG and ERPs),2,3 magneto-
encephalography (MEG),4 transcranial magnetic stimulation
(TMS),5 functional near-infrared spectroscopy (fNIRS),6–8 and
fast optical and event-related optical signals (FOS and EROS).9

EEG and ERPs rely on the measurement of the electromagnetic
fields generated by active neurons, which are broadly volume-
conducted across the scalp, limiting their spatial resolution.
However, the use of high-density montages and sophisticated
inverse solutions for EEG and ERPs10,11 increases the need for
accurate and stable co-registration algorithms. Optical imaging
methods (fNIRS, FOS, and EROS) measure changes in the
propagation of NIR light through the head tissue, which is
affected by hemodynamic and neuronal activity. Functional
changes in light parameters decay within a short distance (a

few centimeters) from their source.12 Thus, these measures can
be strongly affected by co-registration errors, particularly when
high density diffusive optical tomography (HD-DOT)13 is con-
sidered and depth resolution is required.

Co-registration involves aligning two data sets: an anatomi-
cal data set (typically a volumetric anatomical MR image of the
brain) and a set comprising three-dimensional (3-D) measure-
ments of the scalp locations from which the functional data
were recorded (which can be obtained using a magnetic 3-D
digitizer or an optical photographic method), but which may
also contain additional points that are only included to facilitate
the co-registration process. Typically, these two data sets are
obtained separately and use different frames of reference. In
addition, both can potentially contain some measurement errors,
although typically only errors in the measurement of the record-
ing locations are considered. As such, the co-registration prob-
lem can be defined as the set of procedures used to transform
the coordinates of the recording locations from those based on
their original frame of reference into those based on the same
frame of reference used to express the anatomical information.
These procedures are not trivial and require sophisticated
algorithms in order to achieve the most accurate solution. In this
paper, we compare procedures for co-registration, including a
novel procedure called iterative closest point-to-plane (ICP2P),
to provide guidelines about their application.

A common method to co-register anatomical and functional
data is to determine a set of anatomical landmarks, or fiducial
points14,15 that are identified and tagged both on the anatomical
image and on the sensor-placement framework. If we do not
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consider measurement error, a simple system of linear equations
can then be used to co-register the fiducial points’ coordinates
obtained from the 3-D digitizer onto the corresponding points of
the anatomical image. To solve the co-registration equations, a
minimum of three noncolinear fiducial points is needed. By con-
vention and for reliability across labs, fiducial points typically
include the two preauricular points and the nasion, which were
used as reference markers in the 10-20 system for EEG/ERP
electrode placement.16 These same fiducial locations continue
to be used for EEG/ERP electrode positioning and have also
been used as reference points for co-registering the head to the
MEG dewar17 and TMS data onto anatomical MRIs.18 More
accurate but invasive transcutaneous markers have been used
for preoperative clinical procedures and can sometimes provide
submillimeter precision.15,19,20 The main advantages of fiducial
alignment are the simplicity of the co-registration algorithm,
its negligible computational time, and the fact that it does not
require a description of the entire scalp surface, but only a few
specific points.

A major disadvantage of fiducial alignment is that it can be
significantly affected by errors in replicating the placement of
the fiducials across the two measurement sessions (i.e., scalp
sensor digitization and anatomical imaging, respectively).
Since the method described above depends on a deterministic
(i.e., not statistical) model, it does not include the possibility
of error, therefore, there is no procedure to minimize its effects.
Using a larger number of fiducials and applying a statistical
model can ameliorate the problem. However, there is little agree-
ment on how many fiducial points are needed to produce opti-
mal results. Further, methods based on fiducials require time to
accurately digitize the points on the subject and to identify and
place markers over these same points for MRI. Last, fiducial
alignment is limited to points that can be identified reliably
across multiple sessions. Thus, only a few fiducials are typically
used and these are normally located in the front or on the side of
the head. This means that the co-registration of posterior loca-
tions, as well as of locations placed above or below the plane
identified by the three fiducial points, need to be based on
extrapolation, a process that is likely to significantly decrease
co-registration accuracy.

Surface-fitting procedures21–24 offer alternative or supple-
mental methods to fiducial-based approaches. They fit a discrete
sampling of two surfaces, one represented by the digitized
points and another represented by points extracted from a ren-
dition of the scalp derived from an sMRI image. Fitting means
finding the regression parameters (i.e., a set of three values
related to the translation of the two surfaces so that they are
co-centered, and a set of three angles used to rotate the two
surfaces so that they are oriented in the same direction) that
minimize an error term (also called objective function). This
problem is nonlinear, as it involves angles, therefore, it has
no simple analytical solution. As such, the problem is addressed
by an iterative method that explores the space defined by the
possible angles, looking for a point in this space (i.e., a combi-
nation of the various parameters) that minimizes the objective
function. Each iteration involves three steps: (1) a guess about
the values of the parameters; (2) the computation of the resulting
value of the objective function (or error); and (3) a strategy used
to move to another guess. The iterative procedure is interrupted
when the error does not reduce anymore with further iterations
(stop rule).

A problem with this method is that there is no guarantee that
it will find the correct solution. It is possible that other combi-
nations of parameters that were never explored could produce an
error value that is even better than the one observed. This prob-
lem is typically minimized if the initial guess (i.e., the guess
used at the first iteration) is relatively close to the correct sol-
ution. Alternatively, the method used to search the parameter
space should be sufficiently reliable so as to eliminate this pos-
sibility. Another problem (common to all regression methods) is
that various solutions may produce very similar errors and that
the difference between them (which is also subject to sampling
error) may not be large enough to ensure that the one chosen is
really superior to the others (this is equivalent to saying that the
confidence interval for a particular estimate is very large and
that little confidence should be put on any particular solution).
This problem may be generated by a poor sampling strategy, one
that does not provide a detailed enough description of the two
surfaces to be fit.

Four factors will, therefore, determine the accuracy of sur-
face-fitting procedures: (1) the accuracy of the depiction of
the surface defined by the digitized points; (2) the accuracy
of the depiction of the scalp surface extracted from the anatomi-
cal MRI image; (3) the relative accuracy of the initial guess; and
(4) the effectiveness of error evaluation and the strategy for mov-
ing to another guess. Desirable characteristics of the fitting algo-
rithm include its robustness (i.e., the ability to produce accurate
results across varying measurement conditions) and the speed
and ease of its application.

Surface-fitting methods can differ in their definition of
the objective function to be minimized. Some methods, such
as those proposed by Towle et al.,21 Kozinska et al.,22 and
Koessler et al.,24 use Euclidean distance and a least-square
method to define the objective function. The Levenberg and
Marquardt algorithm (LMA)25,26 also defines the objective func-
tion using Euclidean distance and the least-square method (or a
modification of this method called damped least squares), but
uses special procedures to explore the parameter space to reduce
the probability of getting stuck in a local minimum. Whalen
et al.23 showed that using fiducial alignment to generate the
initial guess, followed by application of the LMA algorithm,
outperforms fiducial alignment alone when co-registering the
digitized points to the extracted head surface.

For brain imaging scalp co-registration, the problem of local
minima is particularly crucial because the surface of the head is
nearly spherical/ellipsoidal in shape, and symmetries can easily
cause erronous solutions. Therefore, the choice of the initial
guess is very important. Consistent with this logic, Whalen
et al.23 showed that LMA performance is strongly dependent on
the accuracy of the initial guess. In other words, LMA worked
well only when coupled with an initial guess based on fiducial
alignment, and its performance degraded substantially when the
initial guess was wrong. Used together, fiducial alignment and
LMA provide accurate and robust co-registration. However,
they require a substantial amount of work by the user—both
in terms of placing fiducials as reliably as possible in both
the digitizing and the MR anatomical session and in terms of
retrieving the location of the fiducials from the anatomical
MR images.

This limitation can potentially be addressed by a co-registra-
tion algorithm that does not require fiducial points and can,
therefore, be applied automatically. In fact, a completely
automated procedure was proposed by Kozinska et al.22 This
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procedure uses geometrical moments to generate the initial
guess, but lacks an effective strategy, such as LMA, for explor-
ing the parameter space and optimizing the co-registration.
In this paper, we introduce an iterative co-registration method
that, to our knowledge, was never used for this kind of appli-
cation, ICP2P,27,28 and we compare it to the pairing of fiducial
alignment with LMA proposed by Whalen et al.23

A difference between ICP2P and LMA is that ICP2P relies
on an objective function, based not only on Euclidean distances
between the points of the two surfaces, but also on estimated
normals (hence curvatures) of the destination surface. ICP2P
emphasizes regions with high curvature for improving co-regis-
tration during the iterative procedure. This approach is used for
providing an alternative method for addressing the problem of
local minima and ensuring accurate co-registration even when
the initial guess is highly inaccurate. As such, ICP2P could pro-
duce accurate and robust results even in cases in which fiducial
points are not available. This can make this procedure entirely
automatic and, therefore, reduce experimenters’ workload.

We tested the different procedures both on simulated and real
data. Simulations were performed in order to test the iterative
procedures and to evaluate the ability of LMA and ICP2P to
perform accurate co-registration as a function of noise and sam-
pling strategy. This allowed us to systematically manipulate and
control scalp noise and sampling distributions. Specifically, we
used different levels and types of errors together with different
scalp sampling strategies.

On real digitized data, we used a number of metrics to com-
pare the various methods considered in this paper: fiducial align-
ment alone, fiducial alignment followed by application of LMA,
and application of ICP2P—with and without previous fiducial
alignment. These metrics include accuracy (defined as the mean
distance between the head surface markers found in the MRI and
sensor surfaces) and robustness, or ability to produce similar
co-registration accuracy under different conditions.

In assessing the quality of co-registration, it is important to
determine what impact co-registration error has on the outcome
of a study. To a large extent, this is related to the precision of
the localization claims made about the brain areas involved in
generating a particular optical signal. To this end, we tested the
effects of co-registration errors on the 3-D reconstruction of
simulated HD-DOT data.

2 Methods
The digitization and structural MRI data used for comparing the
co-registration techniques are the same as those used in Whalen
et al.23 The MRI data were used both for the simulations and
the real data analysis, whereas the digitization data were used
only for real data analysis. The basic details of these procedures
will be stated here.

2.1 Subjects

Five bald male participants received a detailed description of the
procedures and of the purpose of the experiment and signed
written informed consent as approved by the University of
Illinois institutional review board.

2.1.1 Fiducial and scalp marker placement and
digitization

Fiducial IZI® multimodality markers were placed on each par-
ticipant’s left and right preauricular points and at the nasion.

To designate reproducibly identifiable (target) locations on the
scalp surface, 32 IZI® markers were placed on the scalp in five
anterior-to-posterior symmetric rows of 4 to 7 markers (see
Fig. 1). No markers were placed on the back of the head, in
order to avoid discomfort and/or displacement as a result of
lying in the MRI scanner.

Fiducial and scalp locations were digitized with a Polhemus
FastTrak 3-D digitizer (Colchester, VT; accuracy: 0.8 mm) using
a recording stylus and three head-mounted receivers, which
allowed for small movements of the head in between measure-
ments. All IZI® marker locations were digitized, plus an addi-
tional 600 points evenly distributed over the scalp surface.
Figure 1 shows the locations of the fiducials (large yellow
points), the target locations (red points), and the additional digi-
tization points (small green points) from one representative sub-
ject, plotted over the corresponding rendered structural image.

2.1.2 MRI acquisition and marker localization

An sMRI was recorded from each participant immediately
after digitization. T1-weighted images were acquired sagittally
on a Siemens 3T scanner [echo time ðTEÞ ¼ 4.38 ms, repetition
time ðTRÞ ¼ 1800 ms, flip angle ¼ 8 deg) with 144 slices,
an in-plane resolution of 1.3 mm × 0.9 mm and between-
plane resolution of 1.2 mm. The fiducial and target markers
were identified manually in the MR images and their coordi-
nates were transcribed. This manual procedure was repeated
five times for each participant. The average standard deviation
of the mean distances of the markers between the five repetitions
was found to be 0.66 mm. Thus, lack of reliability of marker
identification contributes <1 mm to the overall registration
error, which is within the spatial resolution of the MR images.
All the images had a sufficient field-of-view to encompass the
whole scalp as well as the fiducial markers. This is a critical
assumption for co-registration.

2.2 Algorithm Stream

2.2.1 MRI image preprocessing

Single MRI image slices were concatenated and converted into
NIfTI format using the dcm2nii conversion tool29 given by the
MATLAB® toolbox.

Fig. 1 Locations of the fiducials (large yellow dots), the target loca-
tions (red dots), and the additional digitized points (small green dots)
from one representative participant, plotted over the corresponding
surface-rendered structural magnetic resonance imaging (MRI)
(top-left view).
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Each image was then placed into a left-right, posterior-
anterior (P-A), inferior-superior (I-S) spatial orientation and
resampled into 1-mm isovoxels by cubic spline interpolation
of the original image. This was done to minimize scaling errors
in further analyses and to simplify the initial guess process, as
the digitized values are expressed in millimeters. A 1-mm voxel
size was chosen as a compromise between computational speed
(which is slower for smaller voxel sizes) and the accuracy of
spatial information (which is lower for larger voxel sizes).
Note that the error introduced by the MRI image resampling
(<1 mm) is small compared to the total expected co-registration
error (>3 mm).23

2.2.2 Scalp segmentation

Scalp segmentation (i.e., the separation of the scalp surface from
the background MR noise) is required to provide the anatomical
data to be used for surface fitting. It is implemented in the
MATLAB® toolbox and based on the procedure described by
Whalen et al.,23 with some changes to improve processing
speed. It includes the following steps:

1. A 3-D, 3-mm median filter is applied to the MR
image to reduce high-frequency spatial noise and
artifacts. This filter allows us to reduce the threshold
(see below) used to define the scalp surface. A median
(rather than mean) filter is used to best preserve the
exact shape of the scalp.

2. A user-defined threshold value (expressed as a fraction
of the largest voxel intensity) is selected to separate
the head from air. Sagittal (both from the left and from
the right), coronal (both from the front and from the
back), and axial (both from the top and from the bot-
tom) scans are performed from the border of the MR
image toward the inside of the head until the threshold
is reached. The union of the points from all scanning
directions is taken to define the scalp surface.

3. A rendered scalp image is displayed (Fig. 2). If the
threshold is too high, resulting in an image with a
noncontinuous scalp surface [Fig. 2(c)], or too low,
resulting in an image with extraneous scalp surfaces
[Fig. 2(a)], the user is allowed to adjust the threshold to
optimize the segmentation process. The threshold level
depends, in part, on the quality of the MR data. In most

cases, a threshold of 0.05 (5% of the maximum inten-
sity) gives good results.

After these steps, the scalp is saved both as a 3-D image and
as points in space.

We used this scalp extracting procedure rather than other
procedures already available in the imaging literature because
our interest in this case is in the scalp surface alone and not
in the underlying tissue.

2.2.3 Scalp normals and curvature estimation

The scalp normals and curvatures were estimated using angles
between segments connecting the nearest-neighboring points.
As the surface of the head is curved, this procedure is highly
sensitive to the distance between the points used to describe
the surface. An isotropic resampling of the scalp was performed
in order to have the nearest-neighbor points always at the same
distance in all the surface directions.

Note that the MR images used in this study included a num-
ber of markers that were attached to the scalp for measurement
purposes (see Fig. 1). These markers modified the surface of the
scalp as computed from the MR images, generating points of
high curvature that did not exist in the surface created by the
digitized points. This situation (which is replicated in normal
experimental conditions by the presence of fiducial markers)
may create problems, in particular, for methods based on surface
normals and curvatures estimation (such as ICP2P). We, there-
fore, developed a method for downsampling and deleting high
curvature points from the extracted scalp surface. Specifically,
curvature correction consisted of eliminating scalp surface
points with a curvature above the 90th percentile. The impact of
this curvature correction procedure on alignment accuracy will
be presented in the results.

2.2.4 Co-registration

Co-registration comprises two essential steps: establishing an
initial guess and then minimizing the discrepancy between
the digitized points and the scalp (objective function). Before
co-registering the digitized points to the MRI scalp surface,
the digitization points were evaluated for outliers (typically
due to inadvertantly digitizing before the wand/pointer touches
the scalp surface). To do this, the curvature of the cloud of
digitized points was assessed and points greater than 3 standard
deviations from the mean curvature were disregarded during

Fig. 2 Extracted scalp surfaces from a structural MRI as a function of different thresholds: (a) low thresh-
old value: 0.01; (b) medium threshold value: 0.05; (c) high threshold value: 0.2. The threshold value is
expressed as a proportion of the maximum T1 MRI value.
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the co-registration process. This type of outlier removal has been
shown to be an effective method for increasing co-registration
accuracy.22

2.2.5 Initial guess alignment

Two methods were used to generate the initial guess alignment
for the surface-fitting procedure: fiducial alignment23 and first-
moment [or center-of-mass (CoM)] alignment. CoM alignment
involves translating all the digitized points so that their CoM
(i.e., averages along the x, y, and z dimensions) is aligned
with the CoM of the extracted scalp points. The advantage of
this approach is that it can be automated and, therefore, elimi-
nates the need for user input, which requires some degree of
training. The main disadvantage is that it is less accurate than
fiducial alignment. The fiducial alignment requires manual
specification of the three fiducial points on the sMRI. The digi-
tized points are then aligned with these manually specified
points using a least-squares approach.

2.2.6 Point-to-point surface fitting using Euclidean
distance minimization: LMA

LMA is an algorithm for surface fitting previously applied to
the co-registration problem by Whalen et al.23 It is based on
minimizing the mean distance between the clouds made up by
the digitized and head surface points. For each point on the
digitized surface, the nearest point on the scalp surface is chosen
as its counterpart. If ~si ¼ ðsix; siy; syz; 1Þ is a source point and
~di ¼ ðdix; diy; dyz; 1Þ is the corresponding destination point,
then the goal of each LMA iteration is to find the affine trans-
formation matrix Aopt for m source points such that

Aopt ¼ arg minAΣm
1

�
�
�A · ~si − ~di

�
�
�
2
: (1)

In the search for best-fitting parameters, LMA uses an
approximate second-order convergence by implementing a
Taylor expansion and an iterative approach, with a varying
weighted combination of an exact gradient for the first-order
term and an approximation to the Jacobian matrix of the partial
derivatives serving as the second-order term.30 This adaptive
method can help minimize the local minima problem and allows
for rapid convergence.

2.2.7 Iterative closest point-to-plane surface-fitting
algorithm

The ICP2P co-registration algorithm that was implemented is
based on open source code.31,32 Similar to LMA, ICP2P is an
iterative procedure designed to minimize the discrepancy
between two clouds of points describing two surfaces. The
main difference between LMA and ICP2P (Ref. 33) is how
the error (or objective function) is computed: ICP2P considers
not only the Euclidean distance between the two clouds of
points, but also the estimated normals of the destination surface
when computing the objective function. Formally, the object of
minimization is the sum of the squared distances between each
source point and the tangent plane at its corresponding destina-
tion point. More specifically, if ~si ¼ ðsix; siy; syz; 1Þ’ is a source
point, ~di ¼ ðdix; diy; dyz; 1Þ’ is the corresponding destination
point, and ~ni ¼ ðnix; niy; nyz; 0Þ’ is the unit normal vector at
di, then the goal of each ICP2P iteration is to find the affine
transformation matrix Aopt for m source points such that

Aopt ¼ arg minAΣm
1 ½ðA · ~si − ~diÞ · ~ni�2: (2)

In other words, the minimization algorithm used by ICP2P
sums the distances of data points to the tangent planes in which
the matched-model points reside. As a consequence, the objec-
tive function used for the point-to-plane minimization is rela-
tively insensitive to translations of the source surface over
flat regions of the destination surface, while it is more sensitive
to translations occurring over regions of high curvature.33 In
principle, at each iteration of the ICP2P algorithm, the relative
change of position that gives the minimal point-to-plane error
should be solved using nonlinear least-squares methods, which
are very slow. Fortunately, when the orientation angle between
the two input surfaces is relatively small (<10 deg), the value
of the objective function obtained with a linear least-squares
closely approximates the one obtained with nonlinear meth-
ods.28 The possibility of using ordinary least-square methods
speeds up computation considerably. In fact, the linear approxi-
mation method produces results comparable to those obtained
with nonlinear methods even when the relative orientation angle
between the two input surfaces is large (as much as 30 deg).
As the relative orientation angle decreases after each ICP2P
iteration, the linear approximation becomes more accurate. With
linearized angles, the ICP2P algorithm can be reduced to a stan-
dard linear least-squares problem and solved using singular
value decomposition.34 To improve the numerical stability of
the computation, it is important to use a unit of distance that
is comparable in magnitude to the rotation angles. For that rea-
son, both the initial guess and the scalp points were rescaled and
translated so that they were bounded within a unit sphere cen-
tered at the origin.28

Note that in order to apply ICP2P using the tangent-plane
error metric algorithm, we first need to compute an estimate
of the curvature magnitude and normals for both the cloud
points representing the scalp and the cloud points representing
the digitized spots. We used the method described in Pauly
et al.35), which calculates the eigenvalues of the covariance
matrix of a points neighbors, λ0, λ1, and λ2, where λ0 ≤ λ1 ≤ λ2.
The ratio

σn ¼
λo

λo þ λ1 þ λ2
(3)

is the surface variation based on n ¼ 3 neighbors. Pauly et al.35

demonstrated that surface variation is a good estimator of the
surface mean curvature. Points lying in a plane will have
σn ¼ 0, and for isotropically distributed points, the curvature
is σn ¼ 1∕3. The surface normals are estimated using the
eigenvector related to λ0 We used four neighboring points in
our algorithm. As mentioned in the section on scalp segmen-
tation, in order to have a good estimation of the curvature
based on the neighboring points, we performed a surface iso-
tropic resampling of the scalp extracted points. The isotropic
resampling of the scalp surface was performed by forcing the
nearest-neighbor points to be at the same distance in all direc-
tions. This gave us a good curvature classification for each point
considered.

2.2.8 Scalp forcing

Due to the typical errors found in both sensor digitization and
scalp extraction, some sensors will not lie exactly on the scalp
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after surface fitting. The co-registered points can be forced to lie
onto the extracted scalp by projecting them onto their nearest
scalp surface points (see Ref. 23). In our implementation, we
used a k-dimensional tree algorithm to identify the scalp point
closest to each sensor.

2.2.9 Error evaluation

Following Whalen et al.,23 we evaluated the accuracy of our
algorithms using the mean TE. In the case of the simulated
digitized points, the TE is the Euclidean distance between the
registered simulated points and their original scalp coordinates.

In the case of the real digitized points, the TE is the Euclidean
distance between the registered points and the IZI® target
markers placed on the scalp.

2.2.10 Simulations

The main purpose of the simulations was to evaluate the ability
of LMA and ICP2P to retrieve accurate co-registration when the
initial guess was incorrect. Different levels and types of errors
together with different scalp sampling strategies were intro-
duced. We performed simulations in which we systematically
manipulated the level of noise and the sampling distribution.
To create a sample of simulated digitization points with
known scalp coordinates, points were chosen from the extracted
scalp surface for each of the five subjects. Various degrees of
uncorrelated white Gaussian noise or correlated noise were
then added along each of the three axes and a rotation and/or
a translation were applied to the chosen points. Linear spatially
correlated noise was introduced by moving the scalp origin to a
corner of the head and by adding noise to the sampled points,
proportional to the coordinate magnitude. Different sampling
procedures were simulated by both random sampling or by
changing the sampling rate of the polar and the azimuth angles
of the scalp, expressed in spherical coordinates. The capacity of
the co-registration algorithm to retrieve the original position was
evaluated as function of the noise, the scalp sampling proce-
dures, and of the rigid body transformation (i.e., translations
and rotations).

2.2.11 Effects of co-registration errors on simulated
HD-DOT data

We tested the effect of co-registration accuracy on simulated
HD-DOT data. The T1-MRI images of the five participants
were segmented and converted into meshes using the iso2mesh
toolbox.36 Baseline optical properties of different tissues were
inferred from the literature.37 A high-density optode grid was
generated in the occipital cortex, with a minimum interoptode
distance of 1 cm. The grid consisted of alternating sources
and detectors. We simulated a 1-cm 10%-change absorption
inhomogeneity in the primary visual cortex of the subjects.
Forward solutions were computed using a finite element method
approach.38,39 Inverse solutions were obtained using Tikhonov
regularization and iterative approaches.38 Translational factors
(TF) along the I-S axis, together with scalp forcing, were applied
between the computation of the forward and the inverse solu-
tions, simulating different co-registration errors (TF ¼ 0 mm,
TF ¼ 3 mm, TF ¼ 9 mm).

3 Results

3.1 Analyses of Simulated Data

The first step in the simulation analysis was to evaluate the
capacity of the iterative surface co-registration procedures
(based on 400 simulated digitized points isotropically extracted
from the scalp) to retrieve the original position of the head, in
conditions in which we added varying degrees of isotropic
Gaussian noise as well as systematic rotations and translations
to the original locations. Two examples of the simulation results
are reported in Fig. 3. Figure 3 reports the group mean TEs for
LMA and ICP2P as a function of the isotropic Gaussian noise
level when a 10-deg rotation or a 45-deg rotation and a 3-cm
translation along the P-A axis were applied.

Both methods seem to be able to compensate for small rota-
tions and translations (less than a few millimeters and degrees of
angle). Under these conditions, the TE varied linearly with the
amount of noise. However, when the added rotations and trans-
lations were larger, only ICP2P was able to retrieve the original
extracted points’ positions with an accuracy almost identical to
that for small rotations and translations. Although infinite com-
binations of translation and rotation can be explored with simu-
lated data, we chose these values because they are examples of
small and large errors in the initial guess, respectively. A more
systematic investigation of the stability of the two procedures in
the presence of a number of rotation and translation angles is
reported below for real data (see Fig. 7).

As a second step in the simulations, we evaluated the out-
comes of LMA and ICP2P as a function of both the sampling
strategy and the type of noise added. Examples of different
samplings performed are reported in Fig. 4. Several different
sampling rates were applied along the polar and the azimuth
angles of the scalp expressed in spherical coordinates. An iso-
tropic sampling of the scalp occurred when the sampling along
the polar and azimuth angles was the same [Fig. 4(a)], whereas
an anisotropic sampling of the scalp occurred when the sam-
pling along the two angles was different [Figs. 4(b) and 4(c)].

Figure 5 reports the TEs of the iterative procedures (initial
guess: rotation of 10 deg along the P-A axis) as a function
of polar and azimuth angles sampling expressed in degrees for
one representative participant. In order to best interpret the sam-
pling distances along the main axis, it should be considered that

Fig. 3 Group mean target errors (TEs) for Levenberq-Marquart algo-
rithm (LMA) and iterative closest point-to-plane (ICP2P) as a function
of isotropic Gaussian noise magnitude when a rotation of 10 deg or
a 45 deg rotation and a 3 cm translation along the posterior-anterior
axis were applied.
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an adult human head has a radius of ∼10 cm; thus, the corre-
sponding sampling distance translates into ∼1 cm for any 6 deg
of sampling angle.

Figures 5(a) (LMA) and 5(b) (ICP2P) report the TEs of the
iterative procedures (initial guess: rotation of 10 deg along the
P-A axis) as a function of the polar and azimuth angles sampling
density, when 3-mm isotropic Gaussian noise was added. For
both procedures, co-registration performance was optimal with
high-density sampling in both dimensions. However, when
Gaussian noise was present, the performance of LMA degraded
rapidly with reduced sampling density. Neither LMA nor ICP2P
were much affected by anisotropic, relative to isotropic, sampling
density (the minor diagonal values tend to be constant). Figures 5
(c) (LMA) and 5(d) (ICP2P) report the TEs of the iterative pro-
cedures (initial guess: rotation of 10 deg along the P-A axis) as

a function of polar and azimuth angles sampling when a spatially
linearly correlated noise was added (3 mmmagnitude as average).
These data show that in the presence of correlated noise (i.e., sys-
tematic distortions of the recorded locations), LMA performs very
similarly to that when the noise is uncorrelated, whereas ICP2P
becomes very sensitive to spatial sampling density, becoming
very inaccurate at very low sampling densities. Again, neither
LMA nor ICP2P were much affected by anisotropic sampling
(the minor diagonal values tend to be constant).

3.2 Analyses of Recorded Data

After evaluating the iterative fitting procedures on simulated
scalp locations, we assessed different fitting procedures on
actual (not simulated) digitized locations.

Fig. 4 Examples of different simulated sampling strategies of the digitized points plotted on an extracted
structural MRI scalp: (a) isotropic surface sampling, polar angle 12 deg, azimuth angle 12 deg; (b) aniso-
tropic surface sampling, polar angle 6 deg, azimuth angle 24 deg; (c) anisotropic surface sampling, polar
angle 24 deg, azimuth angle 6 deg.

Fig. 5 TEs (color scale) from a representative participant (initial guess: rotation of 10 deg along the pos-
terior-anterior axis) as function of polar and azimuth angle sampling expressed in degrees. The plots are
constructed so that the values in the upper-left corner are obtained under denser sampling conditions
than those in the bottom-right corner. (a) and (b) show the TEs obtained for LMA and ICP2P under 3 mm
Gaussian noise conditions, uncorrelated across digitized points. (c) and (d) show the TEs for LMA and
ICP2P under Gaussian noise correlated across digitized points (3 mm average intensity).
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3.2.1 Co-registration accuracy

Figure 6 compares the TE for the four methods of real data co-
registration before and after curvature correction: (1) fiducial
alignment (Fid); (2) fiducial alignment followed by LMA
(Fidþ LMA); (3) fiducial alignment followed by ICP2P
(Fidþ ICP2P); (4) CoM followed by ICP2P (CoMþ ICP2P).
CoMþ LMA results are not reported because the initial
guess produced by CoM is too inaccurate for LMA to provide
accurate co-registration. The mean group TEs after curvature
correction (and related standard errors) were 8.98 mm�
1.34 mm (Fid), 2.7 mm� 0.54 mm (Fidþ LMA), 3.02 mm�
0.51 mm (Fidþ ICP2P), and 3.13 mm� 0.52 mm (CoMþ
ICP2P).

Planned comparisons showed that adding any of the surface-
fitting methods improved the accuracy of co-registration
with respect to using fiducials alone (for Fidþ LMA versus
Fid, tð4Þ ¼ −3.4, p < 0.05; for Fidþ ICP2P versus Fid,
tð4Þ ¼ −3.2, p < 0.05, for CoMþ ICP2P versus Fid, tð4Þ ¼

−3.1, p < 0.05). Most importantly, there was no difference in
accuracy between the three combinations of initial guessing
and surface fitting (all t 0s < 1), provided that curvature correc-
tion was used. This indicates that ICP2P is as accurate as LMA
if scalp curvature extremes are corrected. It also indicates that
for ICP2P, using the automated CoMmethod for the initial guess
gives results equivalent to those obtained using the manually
marked fiducials. Therefore, when using ICP2P, fiducial points
may not be necessary.

3.2.2 Robustness to fiducial errors

Given the potential for measurement errors in fiducial marking
(both while digitizating them and when locating their coordi-
nates on the anatomical MR images), it is important to test
the robustness of the co-registration algorithms with respect
to these initial alignment errors. To assess this, we applied rota-
tions and/or translations to the initial guess (based on fiducial
alignment) along the three main axes. Figure 7 reports the
TE of the markers’ location after co-registration as a function
of the rotation angles (in degrees) and translation (in milli-
meters) of the initial fiducial locations. The rotation angles
were evaluated up to 45 deg, whereas the translation error
was evaluated up to 80 mm (both being very large errors that
are not likely to occur in realistic lab situations), along each
of the axes. As expected, the TE for fiducial alignment was
proportional to the size of the translation superimposed on
the fiducials and approximately linearly related to the size of
the rotation angles. When LMAwas used, the error also tended
to increase with various rotations or displacements of the fidu-
cials, indicating a dependence of the final result on the accuracy
of the initial guess. In contrast, ICP2P was practically insensitive
to the accuracy of the initial guess provided by the fiducials.
This is in agreement with the simulation results and explains
why ICP2P generates equally accurate results irrespective of
whether the initial guess is based on fiducials or on the CoM
method (as shown above).

Fig. 6 Group mean TEs and related standard errors before and
after curvature correction for the four algorithms considered: Fid =
fiducial alignment only, Fid + LMA = fiducial alignment followed
by LMA, Fid + ICP2P = fiducial alignment followed by ICP2P, and
CoM + ICP2P = center-of-mass alignment followed by ICP2P.

Fig. 7 Group mean TEs and related standard errors as a function of the type and amount of rotation (top
row) and translation (bottom row) of fiducial alignment perturbations. Fid = fiducial alignment only, Fid +
LMA = fiducial alignment followed by LMA, Fid + ICP2P = fiducial alignment followed by ICP2P.
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3.2.3 Effects of the number of digitized locations and
extracted scalp points

In order to compare the performances of LMA and ICP2P,
it is necessary to use the same initial guess for both. Because
LMA typically converges onto largely incorrect solutions
(TE > 50 mm) when starting from an initial guess based on
CoM, here we report the results obtained using fiducial align-
ment as the starting point. In contrast, due to its stability irre-
spective of the starting guess, ICP2P provides the same results
when either CoM or fiducial alignment is used as the initial
guess (see Fig. 6). In this section, we report results about the
stability of each algorithm in the presence of a variable number
of digitized locations and extracted scalp points.

For the analysis of the effects of the number of digitized loca-
tions, we selected random samples of different sizes from the
overall data set of digitized points. Figure 8 shows the group
mean TEs (and related standard errors) as a function of the num-
ber of digitized points used (up to the maximum number of
available digitized points) for the LMA and ICP2P algorithms.
These results indicate that in actual data, ICP2P and LMA
require ∼250 to 300 digitized points in order to provide stable
results, after which there are diminished returns when the
number of points is increased further. However, ICP2P is more
affected by undersampling (higher average TEs). As suggested
by the simulations, this may be due to the presence of a
small spatial distortion (i.e., correlated noise) in our sampling
procedure.

The representation of the scalp surface may also affect the
stability of the algorithms. Figure 9 reports the group mean
TEs and their standard errors for the LMA and ICP2P algo-
rithms as a function of the number of scalp points representing
the surface. This figure suggests that both procedures reach
stable results when >100 points are used to describe the scalp
surface, although ICP2P is more sensitive to scalp under-
sampling. This is probably because accurate depiction of the
scalp curvature requires additional points.

3.3 Effects of Co-Registration Accuracy in
Simulated HD-DOT Data

We tested the effect of the amount of co-registration error on
HD-DOT data. A 1-cm 10%-increase absorption change was
simulated in the primary visual cortex. Figure 10 shows the
reconstructed absorption changes for different co-registration

errors, overlaid on the anatomical image of one representative
subject. The absorption changes are reported in different colors
as a function of optode displacement (blue: TF ¼ 0 mm, green:
TF ¼ 3 mm, red: TF ¼ 9 mm). For each TF level, the colored
area represents the voxels for which the 3-D reconstruction
method indicates the presence of a signal of at least 50% of
the peak value. When no displacement is introduced (0 mm), the
reconstructed absorption change is located in the primary visual
cortex and its dimensions are comparable with the original
dimensions [average of full width half maximum (FWHM)
13mm�1.1mm, average displacement (DS) 0.8mm�0.4mm].
When a small TF is introduced (3 mm), similar results are
obtained (no statistical difference on group analysis: average
FWHM 15 mm� 1.3 mm, DS 1.2 mm� 0.2 mm, tð4Þ ¼ 1.2,
n.s.). When a bigger TF is introduced (9 mm), the reconstructed
absorption change is shifted by a significant amount and
appears to be more superficial, with bigger FWHM and higher
levels of noise (group analysis: FWHM 29 mm� 2.2 mm,
DS 18.2 mm� 2.2 mm; TF 9 mm versus TF 0 mm, FWHM
tð4Þ ¼ 4.2, p < 0.01, DS tð4Þ ¼ 6.6, p < 0.01).

4 Discussion
For all functional brain imaging techniques that do not provide
anatomical information directly, accurate, stable, and fast

Fig. 8 Group mean TEs and related standard errors as function of
number of digitized points. Fid + LMA = fiducial alignment followed
by LMA, Fid + ICP2P = fiducial alignment followed by ICP2P.

Fig. 9 Group mean TEs and related standard errors as function of
number of extracted scalp points (semilogarithmic scale). Fid + LMA =
fiducial alignment followed by LMA, Fid + ICP2P = fiducial alignment
followed by ICP2P.

Fig. 10 Reconstructed primary visual cortex absorption changes
plotted on the MRI of one representative subject. Different colors
represent different optodes displacement (translational factors)
between the forward and inverse solutions. Absorption changes are
displayed up to an attenuation of 50%.
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procedures are required for co-registering digitized sensor loca-
tions to their correct anatomical locations. An automatic algo-
rithm stream is desirable in order to avoid time-consuming
approaches and errors.

In this paper, we considered two (nonmutually exclusive)
approaches: fiducial alignment and surface fitting. Fiducial
alignment is simple and relatively fast. However, in our study,
its accuracy was limited (errors are ∼9 mm on average). Further,
it is very sensitive to human errors, which can easily occur as it
is largely based on manual placement of the fiducial markers.
Surface-fitting algorithms can be more accurate than fiducial
alignment (errors can be <3 mm on average, depending on
the procedure used). However, they require a large number of
digitized points (250 to 300) spread evenly over the head sur-
face, an accurate scalp extraction algorithm, and an accurate
initial guess.

Whalen et al.23 showed that fiducial alignment followed by
LMA outperformed fiducial alignment alone when co-register-
ing the digitized points to the extracted head surface. However,
LMA requires a relatively accurate initial guess and, therefore,
needs to be coupled with fiducial alignment. The data indicate
that the coupling of initial guess estimation based on fiducial
alignment and the application of LMA for surface fitting pro-
duce reliable results. The accuracy of the fitting, however,
still largely relies on the accuracy of the initial guess—with
unstable results if the initial guess is incorrect. In addition,
this procedure requires manual placement of fiducial markers
during the digitization and the anatomical MR recording ses-
sions, as well as manual tracing of the markers from the MR
image. Both of these steps are time-consuming and require
expertise.

In this paper, we introduced an alternative surface-fitting
method never used before for scalp recording co-registration,
ICP2P. This method differs from LMA (and other previously
proposed surface-fitting methods21–24) in that it is not only
based on the minimization of the distances between points
on the two surfaces to be fit (the surface formed by the digitized
points and that of the scalp obtained from an MR image), but
also relies on normals to the destination surface. Because of this,
the point-to-plane minimization method emphasizes regions of
high curvature. This is useful because there are very few areas
with high curvature on the surface of the scalp (which is gen-
erally locally smooth). The paucity of these points may help to
reduce ambiguity in the results of the fitting algorithm and
facilitates the search for a true minimum. For this reason, we
expected this algorithm to generate stable results even in the
presence of large errors in the initial guess.

We evaluated the methods using both simulated and actual
data from the Whalen et al.23 study. Simulations indicate that
ICP2P is, in fact, less sensitive to initial guess displacement
when compared to LMA and is also less affected by low spatial
sampling density when just Gaussian noise is present. However,
ICP2P appears to be more sensitive to low spatial sampling den-
sity than LMA when spatially correlated noise is present at the
digitized locations. This requires a high sampling rate to reach
a good level of accuracy for all noise conditions. Real scalp digi-
tizations frequently have some amount of correlated noise in the
data, and this needs to be taken in consideration. Based on the
simulation results (Fig. 5), if the average noise of the digitization
process is not too high (∼3 mm), a spatial sampling of 1 to 2 cm
(for a total of 250 to 300 points digitized) is needed to get
optimal co-registration accuracy. Real data indicated that the

different fitting procedures had equivalent overall accuracy (pro-
vided that scalp curvature correction was used). Note, however,
that in order to reach this level of accuracy with LMA, it is nec-
essary to use fiducials to generate the initial guess. Instead,
the ICP2P algorithm reached this level of accuracy when either
the fiducial method or the CoMmethod (a completely automatic
method not requiring additional action by the experimenter) was
used to generate the initial guess.

We also tested the performance stability of both LMA and
ICP2P on real scalp-sampled points, as a function of variations
in rigid rotation and in the initial guess (based on fiducial align-
ment). In agreement with simulation results, both iterative pro-
cedures yielded small errors when the initial guess was slightly
manipulated, but only ICP2P was able to produce robust results
even when large rotations and translations were added to the
initial guess. These results support the hypothesis that ICP2P
provides robust co-registration, which is largely independent
of the way in which initial guesses are made. This insensitivity
to the initial guessing problem makes it possible to use an
entirely automated co-registration method, such as the one using
the CoM, for generating the initial guess, followed by ICP2P for
surface fitting—which may be very convenient in practical
applications.

This advantage was mitigated by the observation that for real
data (as well as simulated data with correlated noise) ICP2P is
more affected by low density sampling. This probably reflects
the fact that real data often contain correlated noise.

The ICP2P procedure was also sensitive to the level of detail
used to describe the scalp surface. Since ICP2P relies on esti-
mated normals and curvatures of the destination surface, the
need of more scalp points is not surprising. However, most
structural MR images provide sufficient detail (>1000 scalp
points) to generate good co-registration results.

The ICP2P method also benefitted from a procedure called
curvature correction, in which curvature outliers were elimi-
nated from the data. Since this procedure is entirely automatic,
it can be implemented in the software in a manner that does not
require operator intervention, and it, therefore, does not intro-
duce any practical difficulties. In this study, this was a critical
step due to the presence of the donut-shaped markers on the
scalp during MRI scanning.

It should be noted that the co-registration algorithms appear
to reach an asymptotic level of accuracy of ∼3 mm. This level of
accuracy depends on a number of factors that are inherent to the
methods used for co-registration. They include the spatial sam-
pling of the anatomical MRI (∼1 mm), the error provided by the
3-D digitizer (estimated at ∼0.8 mm), the placement error of the
digitizing instrument and of markers (possibly ∼1 to 2 mm for
skilled operators), and various further errors introduced by
spatial filtering, rotations, and so on (possibly ∼1 to 2 mm).
If we assume that all these errors are independent of each
other, their total effect should be equivalent to the square root
of the sum of the squared errors. This, in fact, corresponds
closely to the best observed TE, suggesting that the proposed
methods are very close to reaching the upper limit in terms
of possible co-registration accuracy and that any further
improvement is not likely to come from a better co-registration
algorithm per se but rather from smaller errors in each of the
steps contributing to the data used for the co-registration
(i.e., the co-registration problem is data-limited rather than algo-
rithm-limited).

Journal of Biomedical Optics 016009-10 January 2015 • Vol. 20(1)

Chiarelli et al.: Comparison of procedures for co-registering scalp-recording locations. . .



For the surface-based recording modalities for which these
co-registration methods are likely to be used (such as diffuse
optical imaging and EEG), the error introduced by co-registra-
tion is smaller than the level of spatial resolution that can be
expected from the technique (at least with current methods).
Therefore, in none of these cases does the co-registration
error represent the main limiting factor in the accuracy of the
spatial representation of the data. It should be noted, however,
that this is not necessarily the case for the simplest co-registra-
tion method based on the use of fiducial points alone. In this
case, the error of co-registration may be comparable with, or
even larger than, the possible spatial resolution of the technique
and, therefore, could be an important contributor to errors in
the accurate spatial representation of the data.

To this end, we tested the effects of the amount of co-regis-
tration error on simulated 3-D reconstructed HD-DOT data. The
results indicate that when a small error is introduced (3 mm,
comparable with the errors obtained with surface-fitting proce-
dures), the 3-D reconstruction is not significantly affected by
the co-registration error. However, when a bigger error is intro-
duced (9 mm, comparable with fiducial alignment errors), 3-D
reconstruction shows large errors (bigger than the optode dis-
placement errors) in both the localization of the inhomogeneity
and its dimensions. In other words, when the co-registration
error is close to the intrinsic spatial resolution of the method
(point spread function ∼1.3 cm; Ref. 13), it is likely to lead
to errors in the estimation of the location of the optical signals.

5 Conclusions
Functional brain imaging techniques that rely on scalp recording
sensors require accurate and stable co-registration algorithms
for correct alignment to anatomical locations. An automatic
algorithm is desirable in order to avoid human errors and
time-consuming procedures. We considered two (nonmutually
exclusive) algorithms: fiducial alignment and iterative surface-
fitting procedures. Fiducial alignment is simple, but it is not
automatic and has low accuracy (average errors ¼ 9 mm).
Surface-fitting algorithms (LMA and ICP2P) are more accurate
(average errors ¼ 3 mm). However, they rely on iterative proce-
dures, which require accurate scalp representations, an initial
guess, and a dense and uniform sampling of the head surface
(250 to 300 digitized points). There were trade-offs between
LMA and ICP2P: compared to LMA, ICP2P was less robust
to correlated noise and sampling strategies, but less sensitive
to the accuracy of the initial guess, to the point that it could
be based on a completely automated procedure. Considering
the intrinsic spatial resolution of HD-DOT data, surface-fitting
algorithms may be particularly useful to reduce co-registration
errors.
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