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Abstract. Infrared neural stimulation (INS) is becoming an important complementary tool to electrical stimulation.
Since the mechanism of INS is photothermal, describing the laser-induced heat distribution is fundamental to deter-
mining the relationship between stimulation pulses and neural responses. This work developed both a framework
describing the time evolution of the heat distribution induced by optical fluence and a new method to extract
thermal criteria (e.g., temperature change and rate of change) for neural activation. To solve the general problem
of describing the temperature distribution, a Green’s function solution to the heat diffusion equation was deter-
mined and convolved with the optical fluence. This provided a solution in the form of a single integral over
time, from which closed-form solutions can be determined for special cases. This work also yielded an expression
for thermal relaxation time, which provides a rigorous description of thermal confinement for INS. The developed
framework was then applied to experimental data from the cochlea to extract the minimum temperature increase
and rate of that increase to stimulate the cochlear spiral ganglion. This result, and similar analyses applied to other
neural systems, can then shed light on the fundamental mechanism for INS and aid the development of optical
neuroprostheses. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.9.098001]

Keywords: infrared neural stimulation; optical stimulation; Green’s function; heat diffusion; laser tissue interaction; thermal time constant;
thermal confinement; cochlea.

Paper 130268PR received Apr. 19, 2013; revised manuscript received Jul. 19, 2013; accepted for publication Jul. 24, 2013; published
online Sep. 3, 2013.

1 Introduction
Infrared neural stimulation (INS) is a relatively new technique
that is becoming an attractive complementary approach to con-
ventional electrical nerve stimulation (ENS). It has now been
demonstrated in numerous applications, including the coch-
lea,1–3 vestibular system,4 peripheral motor nerves,5–7 facial
nerve,8 vagus nerve,9 cavernous nerves of the prostate,10,11

somatosensory cortex,12,13 and cardiomyocytes,14 among others.
Depending on the application, INS offers several well-described
advantages over ENS, including spatial precision, contact-free
delivery, and lack of stimulation artifacts.15 However, two
related limitations of INS, particularly for neural prosthesis
use, are the low electrical-to-optical conversion efficiencies of
infrared laser devices and the potentially damaging thermal
effects of the stimulating beam.16 Since both of these limitations
deal with heat deposition into tissue, minimizing optical (and
thus electrical) energy usage while achieving neural stimulation
is an important consideration.

The optimal INS parameters for several applications have
been experimentally derived, but within the constraints of cur-
rently available laser sources. There is also little debate that the
mechanism for INS is photothermal in nature,17,18 but the exact
underlying mechanism remains unclear. Several studies have
demonstrated contributions to the action of INS by membrane
capacitance changes,19 transient receptor potential (TRP) chan-
nels,20 and intracellular calcium ion transients,21 though the

relative importance of each of these in various cell types has
not yet been elucidated. Regardless of the cellular mechanism,
no clear understanding of the minimum thermal criteria, such as
temperature change and rate of temperature change at the excit-
able tissue, for safe and effective INS exists at this time.

Due to the difficulty of performing precise, parametric stud-
ies to investigate the thermal aspects of INS in vivo, there has
been recent interest in applying numerical simulations to pro-
vide insight. In a work by Thompson et al.22,23 and previous
work by the authors,24 Monte Carlo simulations were used to
determine photon distributions in tissue for typical INS experi-
ments, and finite element analysis was then performed to deter-
mine heat distributions. This kind of analysis can be very useful
for investigating peak temperatures and general temperature dis-
tributions in tissue as needed to examine general device safety,
but it does not provide significant insight into how these temper-
ature changes lead to neural activation.

The goal of this work was thus to develop an analytical
approach to thermal changes during INS that can predict
what thermal changes (e.g., temperature increase and rate of
increase) are necessary for neural activation. The approach does
not depend on the specific cellular mechanism of INS, but
its identified thermal parameters for a given application can
help evaluate the validity of proposed mechanisms.19–21 The
approach is broken into three sections. In the first (Sec. 2 of the
manuscript), a three-dimensional expression for the time evolu-
tion of the temperature profile resulting from the absorption of
an optical beam is presented. This is a general analytic solution,
unlike thermal models that rely on finite element analysis. Most
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importantly, it delivers a set of equations used in the subsequent
section to invert the stimulation problem to find thermal criteria
for stimulation.

A simple set of assumptions compatible with current knowl-
edge of INS is then proposed in Sec. 3, and thermal variables
within this model are investigated. Specifically, we are inter-
ested in how stimulation depends on pulse width, energy, peak
power, and stimulation geometry. Finally, the framework to
extract thermal stimulation criteria is applied to cochlear INS
data from Richter et al. at Northwestern University in Sec. 4.
Although additional work to validate this analysis with in vivo
work is required, in general, this kind of analysis should inform
future decisions on INS device parameters such as spot size,
pulse width, pulse energy, stimulation frequency, and stimula-
tion depth. More efficient, and therefore feasible, devices will
be realized.

2 General Solution

2.1 Theoretical Framework

In this section, the problem of determining the temperature dis-
tribution that results from absorption of light in a medium is
considered. In the case that absorption dominates scattering,
the radial fluence distribution in the medium follows the inci-
dent radiant exposure distribution. The depth dependence
takes the form of a decaying exponential. This is the case for
INS because wavelengths have been chosen to have strong
absorption in tissue, such that the intense localization of temper-
ature produces stimulation.7,17 Single-mode optical beams
propagating in free space have a strictly Gaussian intensity dis-
tribution. Optical beams from highly multimode sources (e.g.,
multimode optical fibers) are not strictly Gaussian but, as a
result of greater propagation attenuation for high mode angle
light, tend toward a Gaussian-shaped envelope. An acceptable
and desirably simple representation of the fluence in tissue is
thus a radially Gaussian distribution with decaying exponential
depth intensity. To determine the temperature distribution, the
heat diffusion equation is needed.

∂T
∂t

¼ α2
�
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

�
þ fðtÞ γP

4π2ab
e

−x2

2a2e
−y2

2b2e−γz;

(1)

where T is the temperature, t is time, α is diffusivity, x and y are
spatial coordinates transverse to light propagation, z is the spa-
tial coordinate longitudinal to light propagation, γ is the attenu-
ation coefficient (z coordinate), P is instantaneous power, a is
the radius of heat distribution (x coordinate), and b is the radius
of heat distribution (y coordinate).

In the above partial differential equation, the diffusion
rate (left hand side) is driven by the sum of the curvature of
the distribution and the heat load (right hand side). No algebraic
or transcendental expression describes the solution to this
equation. Instead, a Green’s function formalism can provide
insight.

Taking the heat diffusion equation for a point heat source in
Cartesian R3 and time leads to

∂g
∂t

¼ α2
�
∂2g
∂x2

þ ∂2g
∂y2

þ ∂2g
∂z2

�

þ δðx − x 0Þδðy − y 0Þδðz − z 0Þδðt − t 0Þ: (2)

Finding a solution to the above partial differential equation
provides a description of the temperature distribution resulting
from a point source of heat. This description can be used to
find specific solutions to any general heat distribution. The
full derivation is left to the Appendix, but the solution takes
the form of

gðx;y;z;tjx0;y0;z0;t0Þ¼ 1

½4πα2ðt−t0Þ�23e
−

�
ðx−x0 Þ2
4α2ðt−t0 Þþ

ðy−y0Þ2
4α2ðt−t0Þþ

ðz−z0 Þ2
4α2ðt−t0 Þ

�
:

(3)

This solution describes the time evolution of a unit impulse
of heat. Note that the spatial distribution is Gaussian in
shape. The specific source distribution can be treated by con-
volving the Green’s function with the distribution of interest
(in this case, the inhomogeneous term of the partial differential
equation).

Tðx; y; z; tÞ ¼ γP
2πabρC

Z
t

0

Z
∞

0

Z
∞

−∞

Z
∞

−∞

fðt 0Þ
½4πα2ðt − t 0Þ�23 e

−x 02
2a2 e

−y 02
2b2 e−γz

0
e
−

�
ðx−x 0 Þ2
4α2ðt−t 0 Þþ

ðy−y 0Þ2
4α2ðt−t 0Þþ

ðz−z 0Þ2
4α2ðt−t 0 Þ

�
dx 0dy 0dz 0dt 0; (4)

where ρ is the density of tissue, and C is the specific heat of tissue.

The three spatial convolutions have closed-form solutions that yield an integral solution for temperature at any point in
space and time, given by

Tðx; y; z; tÞ ¼ Pγe−γz

4πρCb2

Z
t

0

fðt 0Þ e
−ðx2þy2Þ

2b2þ4α2ðt−t 0 Þþγ2α2ðt−t 0Þ

1þ �
α
b

�
2ðt − t 0Þ erfc

�
2γα2ðt − t 0Þ þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðt − t 0Þ
p �

dt 0; (5)

Within the suppressed derivation, a has been set
equal to b, forcing the optical spot to be round in profile.
This has been done to make the resulting expression

simpler, but was not necessary to perform the convolu-
tions. The result is an integral expression for the temper-
ature resulting from a Gaussian-shaped heat distribution
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anywhere in space or time for any arbitrary optical
pulse format. It is worth noting that this is an exact sol-
ution to the heat diffusion equation for the assumed
heat distribution, with no additional limiting assump-
tions or approximation, resulting in an expression that
is useful in all applications with similar heat distribu-
tions. As discussed below, powerful insight can be
gained from some useful approximations that yield ana-
lytic expressions.

2.2 Special Cases

For some interesting idealized cases, fully analytic solutions
exist. These solutions are at the heart of the benefit of this
approach, and significant insight can be gained by understand-
ing the following expressions.

2.2.1 Fast pulse

The assumption that the laser pulse is much shorter in duration
than the rate of diffusion can be expressed by representing the
time dependence of the fluence as a delta function fðt 0Þ ¼ δðt 0Þ.
This yields

Tðx; y; x; tÞFast ¼
Pγe−γz

4πρCb2
e

−ðx2þy2Þ
2b2þ4α2t

þγ2α2t

1þ t
�
α
b

	
2
erfc

�
2γα2ðtÞ þ zffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðtÞ
p �

:

(6)

2.2.2 Thermal confinement limit

Thermal confinement occurs when heat is being deposited into a
system in a time interval much shorter than that during which
significant diffusion occurs. This can be expressed by taking the
limit as t → t 0.

Tðx; y; x; tÞConf ¼ lim
t→t0

Pγe−γz

4πρCb2

Z
t

0

fðt 0Þ e
−ðx2þy2Þ

2b2þ4α2ðt−t0 Þþγ2α2ðt−t 0Þ

1þ
�
α
b

	
2ðt − t 0Þ

erfc

�
2γα2ðt − t 0Þ þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðt − t 0Þ
p �

dt 0; (7)

Tðx; y; z; tÞConf ¼
Pγe−γz

4πρCb2
e

−ðx2þy2Þ
2b2

Z
t

0

fðt 0Þdt 0: (8)

2.3 Thermal Time Constant

The thermal time constant is a useful concept for characterizing
a thermal system. The thermal time constant is the amount
of time the system takes to relax to 1∕e its initial state
Tðt ¼ 0Þ∕e ¼ Tðt ¼ τ1∕eÞ. This relaxation time depends not
only on the thermal properties of the medium, but also on
the specific distribution of the heat load. As a result, its accurate
representation requires nothing less than the preceding analysis.
By combining Eq. (6) with the definition of the thermal time
constant above, the following equality is produced:

1

e
¼ eγ

2α2τ1∕eerfcðγα ffiffiffiffiffiffiffiffi
τ1∕e

p Þ
1þ

�
α
b

	
2
τ1∕e

; (9)

where τ1∕e is the thermal time constant.
This expression can be solved for time numerically to deter-

mine the thermal time constant. Figure 1 is a graphical repre-
sentation of finding the thermal time constant of brain tissue,
whose properties are summarized in Table 1. From this solution,
it takes the system 67 ms to decay to its 1∕e value, and the
deposited heat is 95% contained for up to 764 μs. This result
is a strong justification that the optically induced heat distribu-
tion is thermally confined for experimental pulse dura-
tions <700 μs.

Fig. 1 Log plot of thermal relaxation in brain tissue [Eq. (6)]. Horizontal lines mark the points at which the temperature has decayed to 95% (τ95%)
and 1∕e [τ1∕e; see Eq. (9)] of the initial maximum value, which was arbitrarily set to 1°C.
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2.4 Idealized Response in INS Applications

Figure 2 profiles the thermal response of a laser pulse in the
regime in which the heat is essentially completely confined to
the irradiation zone during the pulse, as defined from Fig. 1.
During the pulse, diffusion is negligible, so the temperature
increases linearly to a maximum value determined by the
pulse energy and with a slope determined by peak power. After
enough time has passed for diffusion to be significant, the
temperature rolls off in accordance with the fast pulse approxi-
mation. These analyses can be applied to any application in
which heat is delivered to a homogeneous material fast enough
to be thermally confined, which includes all known current INS
applications.

Specifically for cochlear INS, reports from Richter and col-
leagues indicate that the most relevant pulse widths for future
optical cochlear implant development are in the range of ∼20 to
200 μs,25–27 which satisfy both the thermal confinement and fast
pulse criteria discussed above. Although longer pulse durations
(and therefore lower peak powers) can be used successfully, they
require a greater amount of total energy deposition to produce
neural responses of equivalent magnitude.25–27 To minimize the
effects of tissue heating and prolong potential battery life, the
shorter pulse durations become more relevant; thus, the remain-
der of the manuscript focuses on the 20 to 200 μs range of pulse
durations.

3 Thermal Variable Investigation

3.1 Assumptions and Definitions

Using the established framework, the relationship between
stimulation pulse parameters and activated neural tissue can be
investigated, beginning with simplifying assumptions about a
chosen population of neurons. Assumptions of the neural acti-
vation model include the following:

1. Two thermal criteria must be met for neural activation:
a sufficient increase in temperature at the excitable tis-
sue caused by the optical pulse, ΔTc, and an appropri-
ately quick rate of that temperature increase, _Tc (C/s).
If only one or neither of these criteria is met, the cell
will not fire.

2. The two aforementioned thermal criteria are
independent.

3. The cell population is spatially homogenous.

4. The relationship between compound action potential
(CAP) and number of activated neurons is linear.

CAP ∝ Γ
Z

dVρgðx; y; zÞHðx; y; z; T > TcÞ

�H
�
x; y; z;

∂T
∂t

> _Tc

�
; (10)

where Γ is the voltage scaling factor, V is the volume,
ρg is the neuron density, Tc is the temperature cri-
terion, and _Tc is the temperature rate criterion. The
thermal criteria are encoded as Heaviside functions.

Hðx; y; z; T > TcÞ ¼ 1; Hðx; y; z; T < TcÞ ¼ 0;

H

�
x; y; z;

∂T
∂t

> _Tc

�
¼ 1;

H

�
x; y; z;

∂T
∂t

< _Tc

�
¼ 0: (11)

The objective is to determine thermal criteria necessary for neu-
ral stimulation. Simplifying the dynamics sufficiently to isolate

Table 1 Parameters of brain tissue and heat distribution.

Quantity Symbol Value

Brain tissue: Density ρ 1040 kg∕m2

Specific heat C 3650 J∕Kg°C

Thermal conductivity k 0.527 W∕m°C

Diffusivity α2 ¼ k∕ρC 1.3 × 10−7 m2∕s

Heat
distribution:

Attenuation
coefficient

γ 35.2 cm−1

Distribution radius b 0.01 cm

Te
m

pe
ra

tu
re

P
ow

er

Time
95% Thermal
Confinement

(0-700µs)

Power

Temp.

Thermal Relaxation

Optical Pulse 
Energy

Fig. 2 Pictorial representation of idealized thermal response over time to a fast optical pulse that deposits all of its energy into the tissue as heat before
any thermal relaxation may occur.
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one criterion at a time is accomplished by designing experiments
to eliminate as many complicating variables as possible. For the
case of the current neural activation model, addressing one cri-
terion at a time makes the problem of extracting values tenable.
To this end, the problem is broken up into two cases: one cor-
responding to the temperature increase criterion and one for the
rate of temperature increase criterion. Case 1 assumes the tem-
perature rate criterion is satisfied, which corresponds to an
instantaneous pulse of finite energy (infinite peak power).
Case 2 assumes the temperature increase criterion is satisfied,
which corresponds to a pulse of infinite energy with finite
peak power. These idealizations are not fully achievable exper-
imentally, but to induce the desired behavior, one only needs to
dramatically oversatisfy the criteria.

3.2 Case 1: Temperature Rate Criterion Satisfied

Assuming the temperature rate criterion, _Tc, is satisfied,

H

�
x; y; z;

∂T
∂t

> _Tc

�
¼ 1: (12)

The resulting CAP integral is then

CAP ∝ ρg

Z
Hðx; y; z; T > TcÞdV: (13)

Converting the Green’s function solution to cylindrical coordi-
nates and setting the temperature to an arbitrary criterion, Tc, the
stimulation boundaries are defined by

Tc ¼
PPeakγt
4πρCb2

e
−r2

2b2e−γz; (14)

where PPeak is the peak optical power.
One can then solve for the depth of stimulation, zc, and the

radius of stimulation, rc, as follows:

zc ¼
1

γ

�
ln

�
PPeakγt

4πTcρCb2

�
−

r2

2b2

�
; (15)

rc ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

�
PPeakγt

4πρCTcb2

�
− 2γz0

s
: (16)

As depicted in Fig. 3, the volume of interest is a paraboloid
truncated by the distance to the neural tissue boundary, z0. The
CAP response is described by the following integral, where the
criteria for stimulation (i.e., zc and rc) are carried in the inte-
grand and limits, respectively, thus negating the need to integrate
over dz as well.

CAP ¼ Γρg
Z

2π

0

Z
rc

0

ðzc − z0Þrdrdϕ; (17)

CAP ¼ Γρg
πb2

λ

�
ln

�
PPeaktγ

4πTcρCb2

�
− zoγ

�
2

: (18)

The above CAP growth function includes a geometrically
driven threshold where no CAP exists if the temperature criteria

are not satisfied deeper than zo. Assuming a continuous distri-
bution of cells allows contributions by arbitrarily small volumes
of cells just deeper than zo to be included in the CAP. For large
stimulated volumes, this idealization may be acceptable, but for
low pulse energy, it is inaccurate. The probabilistic nature of the
neurons being activated and the experimental noise floor (i.e.,
one cannot detect neural activity below a certain level) are
neglected here as well. All of this leads to an additional thresh-
old behavior not taken into account within this model. An addi-
tional threshold was therefore included from the outset as a
method to represent relevant behavior not consistent with the
continuous model.

CAP ¼ Γρg
πb2

γ



ln

�ðEPulse − E0Þγ
4πTcρCb2

�
− zoγ

�
2

: (19)

By shifting the energy domain over by E0, we are merely
encoding the fact that for some low energy values (below E0),
no CAP will be observed.

To illustrate the geometry expressed by the above analysis,
Fig. 3 depicts the optical source and resulting parabolic volume
of stimulated tissue. As discussed previously, within thermal
confinement, the optical distribution and heat load have the
same geometry. The approximate boundary of the optical distri-
bution is represented in Fig. 3 as rays passing through the tissue.
The radius of the fluence distribution is represented as b. The
distance between the optical source and the neural tissue is zo.
Volume within the stimulation boundary, but shallower than zo,
does not contribute to the CAP. The radius of stimulation at the
boundary of the neural tissue is represented by rStim.

3.3 Case 2: Temperature Criterion Satisfied

Assuming the temperature criterion, ΔTc, is satisfied,

Hðx; y; z; T > TcÞ ¼ 1: (20)

Neural
Tissue

Boundary of 
stimulated volume

Fig. 3 Graphical representation of optical source and stimulation vol-
ume paraboloid. The neural tissue lies a distance z0 axially from the
optical fiber, and the stimulated paraboloid has initial radius b and sub-
sequent radius rc.
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The resulting CAP integral becomes

CAP ∝ ρg

Z
H

�
x; y; z;

∂T
∂t

> _Tc

�
dV: (21)

The temperature criteria expression differs only in that it is
the derivative of the one used in case 1 [Eq. (14)].

_Tc ¼
PPeakγ

4πρCb2
e

−r2

2b2e−γz: (22)

For the rest of this case, the arguments are identical to case 1.
The results of each case are summarized in Table 2.

In case 1 (ΔTc limited), the CAP response is limited by pulse
energy. Thus, in the case where heat is imparted to the neural
tissue sufficiently fast to satisfy the rate criteria, the response is
only dependent on pulse energy. In case 2 ( _Tc limited), the CAP
response is limited by peak power. It follows that in the case
where the temperature of the tissue is raised above the temper-
ature criteria, the CAP response is limited by peak power. This
case is far more difficult to manifest experimentally. In case 1,
the rate criteria can be satisfied for the entire stimulation volume
because the pulse can be delivered instantaneously. In case 2,
there is a time period during which the tissue temperature is
increasing, but the criterion (ΔTc) is not satisfied; this results
from the fact that the required tissue temperature cannot be
reached instantaneously.

Figure 4 depicts a set of radial temperature (solid line) and
temperature rate (dotted line) distributions for different relative
stimulation sizes. The distinguishing values are the radius of
stimulation limited by the temperature criteria, rTc

, and the
radius of stimulation limited by the temperature rate criteria,
r _Tc

. The first case (rTc
> r _Tc

) represents the instance in which
the stimulation is limited by peak power. In this case, the tissue
that meets the temperature criterion, but is outside r _Tc

, is wasted
heat, which is represented by the shaded regions of the distri-
bution. The second case (rTc

< r _Tc
) represents the instance in

which the stimulation is limited by pulse energy. This case
does not waste any energy in the stimulation but uses more
peak power than is strictly necessary. This is likely to have a
detrimental impact on the optical stimulation system. The
third case (rTc

¼ r _Tc
) wastes neither energy nor peak power

because the criteria shells are the same physical size. It also
leads to an interesting and useful relationship.

rTc
¼ r _Tc

⇒ PPeak ¼ EPulse

�
_Tc

Tc

�
; (23)

where EPulse is the optical pulse energy.
This formula relates the two thermal criteria, providing a way

to determine the rate given the activation temperature. The
parameter values for which the two shells are equal can be
found experimentally. By collecting data at a constant pulse
energy (constant temperature profile) and increasing the peak
power, the CAP response will flatten when the limited shells
cross. The transition point will be the equal volume parameter
set. Just as important is the ability to determine the pulse width
associated with efficient use of energy and peak power (i.e.,
none wasted). This ideal time is simply the ratio of the critical
temperature to the temperature rate.

τpulse width ¼
�
Tc

_Tc

�
; (24)

where τpulsewidth is the optical pulse width where simulation is
limited by temperature and temperature rate.

4 Extraction of Key Cochlear Stimulation
Parameters

As a test case, this section uses in vivo data from INS of spiral
ganglion cells in the cat cochlea provided by Richter et al. at
Northwestern University. As shown in Fig. 5, these data consist
of CAP amplitudes as a function of pulse energy for a series of
pulse durations ranging from 20 to 200 μs. The data were gath-
ered similarly to how the same group produced Fig. 3 from
Richter et al.,26 Fig. 5 from Izzo et al.,27 and Fig. 3 from
Rajguru et al.25 The one difference is that the previous figures
used radiant exposure (J∕cm2) on the x axis, whereas Fig. 5 sim-
ply uses pulse energy since all measurements used the same spot
size. Comparing this experimental data with the model cases
then enables the determination of whether INS, at least in the
cochlea, is pulse energy or peak power limited.

4.1 Extracting Tc

In vivo electrophysiology data can be plagued with noise and
inconsistencies as a result of the experimental difficulty result-
ing from live animal testing. Thus, the conclusions drawn here
will be restricted to broad behavior. The amplitude of the CAP
response in Fig. 5 saturates as the pulse width is decreased
below 60 μs. This result is dependent on case 1 being satisfied
(pulse energy limited). To test this conclusion as suggested

Table 2 Summarized thermal relations for the two stimulation cases.

Case 1 Case2

Description: Instantaneous pulse with finite energy Infinite energy with finite peak power

Assumed criteria: H½ð∂T∕∂tÞ > _Tc � HðT > TcÞ

CAP relation: CAP ∝ ∫H½ð∂T∕∂tÞ > Tc�dV CAP ∝ ∫HðT > TcÞdV

Thermal criteria: _Tc ¼ PPeakγ∕4πρCb2e−γ
2∕2b2

e−γz TC ¼ EPulseγ∕4πρCb2e−γ
2∕2b2

e−γz

CAP growth function: CAP ∝ Γρgfln ½ðPPeak − P0Þγ∕4πTcρCb2� − zγg2 CAP ∝ Γρgðπb2∕γÞfln½ðEPulse − E0Þγ∕4πTcρCb2� − zγg2

Journal of Biomedical Optics 098001-6 September 2013 • Vol. 18(9)

Norton et al.: Analytical approaches for determining heat distributions and thermal criteria. . .



above, the data are replotted in both energy and peak power
domains in Fig. 6.

It is clear from Fig. 6 that INS with the depicted range of
pulse widths is significantly more pulse energy limited than
peak power limited. The pulse energy representation results in
a significantly smaller standard deviation than the peak power
representation (σE < σP). The average of the 20, 40, 50, and
60 μs data was then used to extract the temperature criterion,
Tc. A parameter search was performed to minimize the
difference between the CAP growth function and the pulse

energy–limited experimental data, as seen in Fig. 7. This pro-
vides the values for a1 through a3 (note that a4 in Fig. 7 rep-
resents the zγ product from the CAP expression in Table 2 and is
thus not an extracted value), which are shown in Table 3. There
is particular interest in a3 because it gives the value of Tc, which
comes out to ∼0.8 mK as the minimum temperature change
criterion.

Although this value seems quite low, it represents a minimum
for one criterion to be met, and in practice, most of the irradiated
tissue volume reaches higher temperatures. This low minimum
temperature criterion also suggests that the more practical limit-
ing criterion for neural activation in the cochlea (which is known
to have significantly lower radiant exposure thresholds for INS
than other tissues) would be the rate of temperature increase, _Tc,
as discussed in Sec. 4.2. To put the 0.8 mK value in perspective,
though, Fig. 8 displays calculated isothermal lines for a series of
pulse energies from a 200 μm diameter fiber with tissue proper-
ties from Table 1. The maximum temperature rises induced even
right by the fiber tip (lower left corner of plots) are very small,
given the low pulse energies, and by the time photons pass
through a typical amount of tissue between the fiber and neural
cells, the temperature increases at the neural tissue are even
smaller. By examining the area under the 0.8 mK curve that
falls within the neural tissue volume, one can see the expected
trend consistent with Fig. 7.

4.2 Extracting _Tc

As described above, experimentally satisfying the requirements
for case 2 is not trivial, if at all possible. However, the peak
power saturation point (Fig. 9) can be used to determine the
ratio of the two criteria. As depicted in Fig. 9, holding pulse

Fig. 4 Graphical representation of peak power and pulse energy stimulation widths. Top panel shows the case where the radius of the region in which
the temperature criterion is satisfied (rTc

) is larger than the region in which the rate change criterion (r _Tc
) is satisfied. Middle panel shows the opposite of

the top, in which the rate change criterion is satisfied over a larger region than the temperature criterion. Bottom panel shows the optimal case where
the criteria are equally met.

Fig. 5 In vivo data from Richter et al. demonstrating the growth of CAP
responses in cats as a function of pulse energy for a series of pulse
durations.
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energy constant within thermal confinement and increasing peak
power results in a consistent temperature shell throughout the
experiment. As the peak power shell increases in size and even-
tually eclipses the pulse energy shell, the limiting criterion
switches from power to energy. At this transition point, the
two shells are the same size, and the peak power and pulse
energy are related by the ratio of the two criteria.
Experimentally, these data are available from the CAP versus
energy plot (Fig. 5). In Fig. 10, slices of the data have been
taken for constant energy and increasing peak power. This
plot expresses the desired behavior: each of the pulse energy
plots saturates at a unique value. The transition point for
each pulse energy value and other relevant values are summa-
rized in Table 4.

Extracting _Tc is then a simple matter of finding the temper-
ature rate criterion from the temperature criterion (Table 5).
Thus, the optimal pulse width (∼50 μs), temperature increase
criterion (>0.8 mK), and the temperature rate criterion
(∼15 K∕s) for INS in the cochlea have all been determined.

4.3 Spot Size

Understanding the relationships that control stimulation allows
the optimization of optical spot size. This is of interest because it
affects not only the safety and perceived loudness of a potential
optical cochlear implant, but also the required beam shaping and
stimulator system power. The radius of the stimulation heat load,
b, plays two roles in the CAP growth function [Eq. (18)]: first, as
a term inside the natural log and second, as a multiplicative
amplitude factor. The spot size’s role inside the log is related
to the minimum input required for stimulation. The multiplica-
tive amplitude dependence of spot size tells us about how the
stimulation cross-section relates to nerve cell recruitment
growth.

4.3.1 Minimum criteria for stimulation

The 1∕e stimulation radius’s (b) role inside the log describes the
minimum penetration depth to stimulate neurons. The
assumption for this is that the natural log term is larger than
the depth term. The inequality below [Eq. (25)] must be satisfied
for the stimulation shell to reach the neural tissue. Here, the spe-
cific energy or power variables, as well as the temperature or rate
criteria, are replaced with a placeholder (Op and Thermc,
respectively) to represent both concepts. This prevents redun-
dant statements.

ln

�ðOpinput −Op0Þγ
ð4πρCb2ÞThermC

�
− z0γ > 0; (25)

Fig. 6 Comparison of experimental CAP responses from selected data in Fig. 5 in (a) peak power and (b) pulse energy domains.

Fig. 7 Comparison of experimental data from Fig. 6(b) and CAP growth
model using extracted thermal criteria (values in Table 3). The red
dashed line represents the pulse energy below which no neural activity
can be detected, even if it is elicited.

Table 3 Table of extracted values from Fig. 7.

Relationship Value extracted Symbol Criteria values

a1 a1 ¼ Γπρgb2∕γ 5 μV Γρg 159.1 kg∕As3

a2 a2 ¼ E0 0.83 μV E0 0.83 μJ

a3 a3 ¼ γ∕TcρCb2 115.12 μJ−1 Tc 0.8 mK

Journal of Biomedical Optics 098001-8 September 2013 • Vol. 18(9)

Norton et al.: Analytical approaches for determining heat distributions and thermal criteria. . .



where Opinput is the general optical input and ThermC is the
general thermal criteria.

This relation then sets requirements on b (the 1∕e heat load
radius).

0 < b2 <
ðOpinput −Op0Þγ
ð4πρCÞThermC

e−zoγ: (26)

Per unit of optical input, as the distance from the source to
the neural tissue, z, increases, the radius of stimulation must
decrease in order to have the photon concentration necessary
to reach the neural tissue. In contrast, as the optical input
increases, the acceptable radius also increases. This can be con-
sidered an energy or power density criterion with one adden-
dum: it is not with respect to raw input, but that which is
above the threshold introduced in Sec. 2.

Opinput −Op0

A1∕e
>

ð4ρCÞThermC

γ
ezoγ: (27)

Here, A1∕e is the area defined by b, the 1∕e radius of the heat
distribution (A1∕e ¼ πb2).

4.3.2 Recruitment growth

The overall amplitude factor of b2 reflects the fact that recruit-
ment gained by increasing the radius of stimulation requires less
energy than doing so by increasing the depth (i.e., depth recruit-
ment costs more than width). The most efficient stimulation
comes from the largest spot possible that satisfies the power
and energy density equation [Eq. (27)]. The limit to this is
the width of the neural population; if the thermal profile is
above threshold [see Eq. (16)] outside this region, that heat
is being wasted. Similarly, if the thermal profile is above

Fig. 8 Temperature distribution in tissue immediately following 1, 5, and 10 μJ optical pulses from a 200 μm diameter fiber placed at the lower left of
the plots. All properties are the same as from Table 1. The 500 μm distance between the fiber tip and neural tissue represents a typical amount of non-
neural tissue that must be penetrated.

Fig. 9 Conceptual representation of CAP saturation behavior depend-
ence on peak power at constant energy. The marked point represents
the transition point between pulse energy– and peak power–limited
responses.

Fig. 10 Representation of experimental data in the peak power domain
with constant pulse energy. Heavy markers note the peak power at
which the CAP growth saturates for each noted series of pulse energy.
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threshold [see Eq. (15)] deeper than the neural cells exist, heat is
again wasted.

Figure 11 depicts a family of iso-CAP curves plotted in terms
of required optical input and spot size to maintain a constant
CAP. The family is framed by the stimulation threshold limit
on the bottom, the depth of the neural population for small
spot sizes, and the width of the neural population limit for larger
spots. In general, larger spot sizes require less optical input for
equal CAP. The point at which the range switches from being
limited by depth to width is where the maximum dynamic range
achievable without wasting optical energy is found. However,
this may not represent the optimal spot size in every application.
For some applications, a somewhat smaller dynamic range may
be acceptable and achievable by using a larger spot with signifi-
cantly less optical input.

5 Discussion
This work has provided an analytical framework for a deeper
understanding of the thermal criteria required for infrared neural

stimulation. In particular, it has shown that in the cochlea, INS
requires a laser pulse that provides a minimal but rapid temper-
ature increase. This finding supports many previous studies
focused on understanding the mechanism of INS. Wells et al.
first demonstrated that a change in temperature, rather than an
absolute temperature, was a key factor for initiating INS. The
authors measured temperature profiles with peripheral nerves at
normal body and lowered temperatures and saw no differences
in neural responses for identical increases from the different
baseline temperatures.17 Rajguru et al. saw similar results in
the vestibular system of toadfish at normal and lowered body
temperatures.4

The Northwestern group has published several pieces of
data supporting the specific cochlear result. In Moreno et al.,
they note that no temperature change could be detected in a
thermochromic ink prep (sensitivity of ∼1°C) with typical
INS pulse energies,28 and in Izzo et al., they calculate that the
maximum temperature rise from a typical stimulation pulse
at the spiral ganglion cells should be <0.1°C.27 As noted in
Sec. 2.4, several reports from Northwestern have also shown
that for a fixed pulse energy, longer pulse durations that provide
slower heating evoke smaller neural responses than shorter pulse
durations.25–27

The dependence on the rate of temperature change also
largely aligns with the work of Shapiro et al. in examining
membrane capacitance changes during INS.19 Using artificial
bilayers, HEK cells, and Xenopus oocytes, they showed that
the rapid temperature change induced by infrared pulses alters
the ionic double layers around the plasma membranes, thus
altering the total membrane capacitance and causing a depolari-
zation.19 The magnitude of the capacitance change is fairly small
though (∼8% max), and the authors noted that cells expressing
the requisite sodium and potassium channels to fire an action
potential had to be brought close to threshold for infrared pulses
to evoke an action potential.19 To investigate this finding further,
Peterson and Tyler modeled the magnitudes of capacitance
changes required for cells to be stimulated via this mechanism.29

They found that regardless of beam diameter, pulse width, and
dependence on illuminating nodes of Ranvier, it was unlikely
that the capacitance change alone would be responsible for

Table 4 Saturation points for each pulse energy.

EPulse (μJ) PPeak (W) τwidth ¼ Tc∕ _Tc (μs)

10 0.2 50

15 0.3 50

20 0.4 50

25 0.5 50

30 0.5 63

Table 5 Extracted thermal criteria.

hTc∕ _Tci (μs) Tc (mK) _Tc (K/s)

53 0.8 15.1

Fig. 11 Family of iso-CAP curves depicting the relationship between optical input (i.e., power or energy) and spot size to maintain the same neural
response. These are overlaid with limits imposed by the stimulation threshold, the depth of the neural population, and the width of the neural pop-
ulation. The maximum dynamic range occurs at the intersection of the depth and width limits.
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INS, though they hypothesize that it does play some important
role.29 It is also possible that the effect of capacitance changes is
different in different cell types due to variations in physiology,
such as presence and thickness of myelin.

In contrast to the above studies, others have suggested that
absolute temperature changes are required for neural activation
from infrared stimulation. For example, Fried et al. have been
able to observe functional responses from both pulsed and con-
tinuous wave irradiation of the rat cavernous nerves of the pros-
tate, provided that the nerve is heated to the same temperature of
∼43°C.30,31 This temperature is in the range where one would
expect the TRPV family of cation channels to be relevant, par-
ticularly TRPV1, which is typically given an activation temper-
ature of 43°C.32 Indeed, Albert et al. demonstrated that TRPV4
was vital to INS of cultured retinal and vestibular ganglion
cells,20 and Bec et al. followed up with a study showing that
for different wavelengths and pulse durations, the stimulation
thresholds depended largely on absolute temperature achieved.
It should be noted that the activation temperature of TRPV4 is
∼27°C,32 though, so one could reasonably expect a different role
for TRPV4 during in vitro studies with baseline temperatures
<27°C (such as Albert et al.,20 Bec et al.,18 and portions of
Liljemalm et al.33) and in vivo studies with warmer baseline tem-
peratures, where TRPV4 may be constitutively active.32 The
in vitro studies18,20,33 have also shown consistently higher radi-
ant exposure thresholds, and therefore peak temperatures, com-
pared with in vivo stimulation. The reasons for this discrepancy
are currently unclear.

The other primary focus for the cellular mechanism of INS
stems from work by Dittami et al., who showed that intracellular
calcium ions, likely released from the mitochondria, were the
key element for INS in cardiomyocytes.21 They demonstrated
this result by selectively blocking various calcium transporters
in the mitochondrial membrane, some of which are also known
to block TRP channels. Previous studies in cardiomyocytes also
demonstrated the ability to thermally stimulate them via mito-
chondrial release of calcium in the absence of any extracellular
calcium,34 which further supports the lack of TRP channel
involvement.

Given the various findings to date, it is difficult to speculate
on whether there exists a single cellular mechanism by which
infrared light stimulates excitable tissue, or whether different
cell types respond via different mechanisms. It seems likely
that some findings (i.e., membrane capacitance, TRP channels,
intracellular calcium) could be reconciled in at least some cell
types with further physiological studies. The analytical frame-
work presented here may be useful in evaluating such mecha-
nisms as well. By applying the same approach taken in Sec. 4 to
similarly gathered data from other cell types, one could under-
stand how important absolute temperature changes are versus
the rate of those changes for the particular application.
Knowing the exact cellular mechanism is not necessary to use
this framework to benefit device design and development
though. Given proper experimental data, one can easily extract
Tc and _Tc, which enables the determination of the optimal pulse
width such that the stimulation zone is equally limited by peak
power and pulse energy, thus achieving the most efficient
stimulation.

Future work should focus on verifying these preliminary
results in vivo. Thermal criteria should be investigated at even
lower pulse widths to confirm that at least the lower range of
pulse widths follows the pulse energy–limited trend in the

cochlea. Other neural populations should be investigated as
well to determine any differences in their thermal criteria and
behavior. Future models may use a more nuanced heat distribu-
tion to more closely approximate the effects of scattering. In
addition, temperature criteria such as these can be used in con-
junction with Monte Carlo scattering models and finite element
analyses to provide the area of stimulation in more complicated,
biologically relevant geometries. These formalisms and methods
would then allow the construction of much more efficient INS
devices.

Appendix
A detailed solution of the problem described and solved in
Sec. 2 is provided. The goal was to solve the heat diffusion
equation driven by a Gaussian heat distribution in x and y,
and exponentially attenuated by γ in z below.

∂T
∂t

− α2
�
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

�
¼ fðt 0Þ γPPeak

4π2ab
e
−x 02
2a2 e

−y 02
2b2 e−γz

0
:

(28)

The difference between the rate of relaxation and the curva-
ture of the temperature distribution is the heat load; the driving
force is the curvature. We first solve for a point heat source in
Cartesian R3 and time. The heat diffusion equation is

∂g
∂t

− α2
�
∂2g
∂x2

þ ∂2g
∂y2

þ ∂2g
∂z2

�
¼ α2δðx − x 0Þδðy − y 0Þ

× δðz − z 0Þδðt − t 0Þ: (29)

We perform a Laplace transform in time because we are inter-
ested in time after the initial heat load delivery and we perform a
Fourier transform in x and y because we are interested in all
space along the x and y axes. This yields an ordinary differential
equation (ODE) in z.

d2Ḡ
dz2

−
�
k2 −

s
α2

�
Ḡ ¼ δðz − z 0Þe−ikx 0−ily 0−st 0 : (30)

We solve this ODE in two parts, the homogenous solution
(when z ≠ z 0) and the discontinuity (when z ¼ z 0).

d2Ḡ
dz2

−
�
κ2 −

s
α2

�
Ḡ ¼ 0: (31)

The general solution to this equation is

Ḡ ¼ A1e−γzþβ þ A2eγzþβ; (32)

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ s

α2

r
: (33)

To solve the inhomogeneous equation, we integrate over the
discontinuity at z ¼ z 0.
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Z
z 0þε

z 0−ε

d2Ḡ
dz2

dz −
�
k2 −

s
a2

�Z
z 0þε

z 0−ε
Ḡdz

¼ e−ikx
0−ily 0−st 0

Z
z 0þε

z 0−ε
δðz − z 0Þdz: (34)

First, G must be piecewise smooth. This is true because a
temperature distribution cannot be discontinuous. This implies

lim
ε→0

Z
z 0þε

z 0−ε
Ḡdz ¼ 0 if Ḡz 0−ε ¼ Ḡz 0þε: (35)

Second, we know by definition that

lim
ε→0

Z
z 0þε

z 0−ε
δðz − z 0Þdz ¼ 1: (36)

Third, the slope of the distribution at the discontinuity is
defined by the following:

Z
z 0þε

z 0−ε

d2Ḡ
dz2

dz ¼ dḠ
dz

����z
0þε

z 0−ε
: (37)

Given these relationships, the inhomogeneous ODE reduces
to

dḠ
dz

����z
0þε

z 0−ε
¼ Ḡ 0

z 0þε − Ḡ 0
z 0−ε ¼ e−ikx

0−ily 0−st 0 : (38)

Assuming G 0 on each side of z 0 is a linearly independent
solution to the homogeneous equation,

Ḡ 0
z 0−ε ¼ A1γeðz−z

0Þγþβ and Ḡ 0
z 0þε ¼ −A2γe−ðz−z

0Þγþβ:

(39)

As

ε → 0;
dḠ
dz

����z
0þε

z 0−ε
¼ A1γeðz

0þε−z 0Þγþβ þ A2γe−ðz
0−ε−z 0Þγþβ

(40)

reduces to

dḠ
dz

����z
0þε

z 0−ε
¼ A1γeβ þ A2γeβ: (41)

By combining Eqs. (38) and (41), we know that

A1γeβ þ A2γeβ ¼ e−ikx
0−iγy 0−st 0 : (42)

By inspection, we find

β ¼ −ikx 0 − iγy 0 − st 0 and A1γ þ A2γ ¼ 1: (43)

We know A1 ¼ A2 because yielding A1 ¼ 1∕2γ. Now that
we know how each side of the discontinuity is shaped, we
can combine the solutions to obtain a single function defining
the transformed solution.

Ḡ ¼ e
−jz−z 0 j

ffiffiffiffiffiffiffiffiffi
k2þ s

α2

p
−ikx 0−ily 0−st 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ s

α2

q : (44)

Now that we have a complete transformed solution for
Eq. (30), we must transform it back to the space and time
domain. Taking the inverse Laplace and Fourier transforms
of the solution to the ODE will give us the Green’s function
for the diffusion equation.

gðx; y; z; tjx 0; y 0; z 0; t 0Þ

¼ 1

½4πα2ðt − t 0Þ�23 e
−
�

ðx−x 0Þ2
4α2ðt−t 0Þþ

ðy−y 0 Þ2
4α2ðt−t 0 Þþ

ðz−z 0 Þ2
4α2ðt−t 0Þ

	
: (45)

The optical pulse is a finite heat source, so we can treat it as a
distribution of point heat sources. We can merge the distribution
of heat sources with the diffusion of a single point source in a
convolution integral.

Tðx; y; z; tÞ ¼ 1

ρC

Z
t

0

Z
∞

0

Z
∞

−∞

Z
∞

−∞
fðx 0; y 0; z 0; t 0Þ

× gðx; y; z; tjx 0; y 0; z 0; t 0Þdx 0dy 0dz 0dt 0: (46)

We represent the heat distribution as a function Gaussian in x
and y and exponentially attenuated by γ in z.

fðx 0; y 0; z 0; t 0Þ ¼ fðt 0Þ γPPeak

2πab
e
−x 02
2a2 e

−y 02
2b2 e−γz

0
: (47)

Our convolution integral is thus

Tðx; y; z; tÞ

¼ γPPeak

2πabρC

Z
t

0

Z
∞

0

Z
∞

−∞

Z
∞

−∞

fðt 0Þ
½4πα2ðt − t 0Þ�23

× e
−x 02
2a2 e

−y 02
2b2 e−γz

0
e
−
h

ðx−x 0 Þ2
4α2ðt−t 0 Þþ

ðy−y 0 Þ2
4α2ðt−t 0 Þþ

ðz−z 0 Þ2
4α2ðt−t 0Þ

i
dx 0dy 0dz 0dt 0:

(48)

According to Gradshteyn and Ryzhik, we have the following
spatial convolutions:

fðx0Þ⊗gðx0Þ¼
Z

∞

−∞
e
−x02
2a2 e

−ðx−x0 Þ2
4α2ðt−t0Þdx0 ¼

ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4a2ðt−t0Þ−
1
2a2

q e
αx2

1−4αa2ðt−t0 Þ

fðy0Þ⊗gðy0Þ¼
Z

∞

−∞
e
−y02
2a2 e

−ðy−y0 Þ2
4α2ðt−t0 Þdx0 ¼

ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4a2ðt−t0Þ−
1
2b2

q e
αy2

1−4αa2ðt−t0 Þ

fðz0Þ⊗gðz0Þ¼
Z

∞

0

e−γz
0
e

−ðz−z0Þ2
4α2ðt−t0Þdz0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα2ðt−t0Þ

p
2

×eγ
2α2ðt−t0Þþγz erfc

�
2γα2ðt−t0Þ−z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðt−t0Þ
p �

:

(49)

These convolutions yield an analytical solution for temper-
ature at any point, given a time of inspection, t, and the timing of
pulses, fðt 0Þ.
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Tðx; y; z; tÞ ¼ PPeakγe−γz

4πρCb2

Z
t

0

fðt 0Þ e
−ðx2þy2Þ

2b2þ4α2ðt−t 0Þþγ2α2ðt−t 0Þ

1þ
�
α
b

	
2ðt − t 0Þ

× erfc

�
2γα2ðt − t 0Þ þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðt − t 0Þ
p �

dt 0: (50)

Assuming a single instantaneous pulse at t ¼ 0, we have
fðt0Þ ¼ δðt0Þ. Evaluation of the convolution with this idealiza-
tion yields

Tðx; y; x; tÞ ¼ PPeakγe−γz

4πρCb2
e

−ðx2þy2Þ
2b2þ4α2t

þγ2α2t

1þ t
�
α
b

	
2
erfc

�
2γα2ðtÞ þ zffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðtÞ
p �

:

(51)

To find the thermal confinement limit, we examine the time
immediately after the pulse, or when ðt − t 0Þ ¼ 0. Thermal con-
finement means taking the limit such that (t − t0) is small.

Tðx; y; x; tÞConf ¼ lim
t→t 0

PPeakγe−γz

4πρCb2

Z
t

0

fðt 0Þ e
−ðx2þy2Þ

2b2þ4α2ðt−t 0 Þþγ2α2ðt−t 0Þ

1þ
�
α
b

	
2ðt − t 0Þ

× erfc

�
2γα2ðt − t 0Þ þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α2ðt − t 0Þ
p �

dt 0: (52)

Tðx; y; z; tÞConf ¼
PPeakγe−γz

4πρCb2
e

−ðx2þy2Þ
2b2

Z
t

0

fðtÞdt 0: (53)

We evaluate this at ðx; y; zÞ ¼ ð0; 0; 0Þ since the peak temper-
ature will exist at the center of the distribution at the depth clos-
est to the heat source.

TðtÞConf ¼
PPeakγ

4πρCb2

Z
t

0

fðtÞdt: (54)
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