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Abstract. We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic
microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of
RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, includ-
ing size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-
controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain
the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the
internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to gen-
erate external markers based on internal markers. Finally, combining the internal and external markers, we modify
the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and exter-
nal markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and
external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined
with our method, which can identify the internal and external markers appropriately. Our experimental results show
that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when
combined with an automated classification of RBCs. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1

.JBO.18.2.026006]
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1 Introduction
Three-dimensional (3-D) computational imaging techniques
have received increased attention with advances in 3-D digital
holographic imaging systems.1–10 Three-dimensional image-
processing of holographic images have been suggested for
the segmentation, recognition, and tracking of macro or micro
objects.11–16 However, because of the unnecessary background
noise in the computational holographic image, it is necessary to
perform holographic image segmentation.16 Since most image
segmentation methods are time-consuming and not very accu-
rate, the need for automated accurate holographic image seg-
mentation is imperative.

Analysis of the red blood cell (RBC) morphological charac-
teristics in the peripheral blood is an important step to assess
hematological functions and the presence of disease. How-
ever, the remarkable morphology variation of RBC represents
a significant challenge for an automated analyzer. Con-
sequently, an important proportion of RBC samples still require
a time-consuming manual examination. Within this framework,
we have developed an original automated segmentation algo-
rithm specifically dedicated to process DHM quantitative
phase images, presenting the advantage to provide relevant
quantitative cell parameters including cell size, shape and vol-
ume, as well as mean corpuscular hemoglobin (MCH) andMCH

concentration for RBCs.17 Furthermore, the segmented quanti-
tative phase images of RBCs also benefit the tracking of single
or multiple RBCs for their dynamics (3-D morphology and
biomass changes) analysis.

Since the quantitative phase images allow the identification
of the internal and external regions for a single RBC, it is better
to separate those different regions, respectively, in order to com-
prehensively analyze RBCs in detail. Thus, segmenting the in-
side and outside RBC regions is also significant. Segmentation
approaches can be classified into two categories.18,19 One is
based on the intensity value and the other is related to the
edge of objects. Some of the regions in the single RBC have
phase values very close to the background value. This is shown
in Fig. 1(a). Consequently, it is not easy to obtain accurate quan-
titative phase image segmentation with only an intensity based
method like threshold algorithms. The other problem is that
most single RBCs, due to their discoid shape, have two gra-
dients. One gradient is between an RBC and the background,
while the other lies inside the single RBC surface, as shown
in Fig. 1(b) and 1(c). This makes it difficult to segment the
RBC cells with an algorithm based only on edge-detection. Due
to the gradient within the RBC, inaccurate segmentation is
always generated. Furthermore, some of the RBCs are con-
nected to each other, as shown in Fig. 1(d). This can also affect
the segmentation of isolated RBC. All of these problems
complicate the quantitative phase images segmentation of
RBCs.
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In a recent paper,20 we demonstrated that it was possible to
extract feature patterns to discriminate between RBC popula-
tions that differ in shape and hemoglobin using RBC quantita-
tive phase images obtained with off-axis digital holographic
microscopy (DHM).21,22 In this paper, we present a detailed
explanation of the automatic method to segment the RBC quan-
titative phase image for the purpose of accurate calculation of
the RBC phase value and show that the proposed segmentation
method efficiently reduces over- and under-segmentation.
Specifically, our automated RBC segmentation algorithm can
be suitable for the quantitative comparison of different types
of RBCs since the phase values in the background parts of
the RBCs quantitative phase image can be set to zero value.
First, an Otsu algorithm is applied to obtain the binary image,
then, a morphology operation is conducted on the binary image.
After a series of morphology operations, such as morphological
opening, erosion and reconstruction, we can get the proper inter-
nal markers of these cells, which can avoid the effect of internal
gradient and connection among different cells. With the internal
markers, we generate the external markers by using the distance
transform algorithm combined with the watershed algorithm.19

Finally, we apply the watershed algorithm to the modified gra-
dient image obtained by the minima imposition technique23 with
the extracted internal and external markers. With these methods,
good experimental results are presented.

This paper is organized as follows. Sections 2 and 3 briefly
describe the off-axis holographic microscopy and the marker-

controlled watershed algorithm. In Sec. 4, the procedure of
the proposed method for RBC segmentation is presented.
Then, the performance evaluation method and experimental
results are given in Sec. 5. Finally, we conclude this paper
in Sec. 6

2 Sensing and Imaging of RBCs by Using
Off-Axis DHM

Figure 2 shows a schematic of the off-axis digital holographic
microscopy for 3-D sensing and imaging of RBCs used in the
experiments. In this optical setup, the coherent beam coming
from the laser with a wavelength of 682 nm is divided into refer-
ence and object beams. A 40 × ∕0.75 NA microscope objective
magnify the object beam diffracted by the RBC specimen. The
magnified object beam interferes with the reference beam in
the off-axis geometry. The CCD camera records the off-axis
digital hologram of RBCs. From the recorded digital hologram,
the RBC 3-D imaging is achieved by using the numerical
algorithms.21,22

3 Marker-Controlled Watershed Algorithm
The watershed transform algorithm is particularly suitable for
generating a closed boundary of the objects in question.24 It
also shows good performance, but it may often result in over-
segmentation. To address this problem, a standard watershed
transform algorithm has been enhanced with marker control.
In this section we will discuss both algorithms.

Fig. 1 Some characteristics of red blood cells quantitative phase image. (a) Some regions in the single RBC have phase values similar to the background
value, (b) the original RBCs quantitative phase image with two kinds of edges (inside and outside parts), (c) the gradient image of (b), and (d) some of
the RBCs connected to each other.

Fig. 2 Schematic of the off-axis digital holographic microscopy used in the experiments.
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3.1 Watershed Transform Algorithm

The watershed transform algorithm is based on flooding simu-
lation. We consider intensity values as terrain elevations, where
regional minimal values are regarded as valleys and regional
maximal values as the peaks. When water floods the terrain,
dams are built among different valleys. The watershed transform
algorithm finds the peak value between the two valleys as shown
in Fig. 3. These peaks form the watershed line.

Let us see how this is implemented using Meyer’s algo-
rithm.25 First, a set of markers is selected as “valleys” and is
assigned different labels. Then, all neighboring pixels of each
labeled area are added to the priority queue with a priority
level, which depends on the label’s intensity value. After
that, the label with the highest priority is picked from the priority
queue. If the neighbors of the selected value, which are already
labeled, have the same label, these neighboring values are
labeled the same. At that, all nonlabeled neighbors are added
to the priority queue. This step is repeated until the priority
queue is empty. Finally, nonlabeled intensity values are the
peak values (see Fig. 3) that are included in the watershed lines.

3.2 Marker-Controlled Watershed

In the watershed transform algorithm, water floods the terrain
starting from the regional minimal value. This goes, however,
according to the markers and the maximum values between
every two markers are calculated. These maximal values are
the watershed lines. The marker-controlled watershed algorithm
further distinguishes between internal and external markers.
Internal markers represent objects that we are looking for.
So, in order to get correct objects, we should mark all objects
as internal markers. Usually, internal markers are obtained with
a threshold algorithm. On the other hand, external markers re-
present the background around the objects. A better way to
obtain external markers is the distance transform algorithm com-
bined with the watershed algorithm with internal markers.
Distance transform is the distance from every pixel to the nearest
non-zero-valued pixel.19

Usually, the watershed transform is applied to gradient
images because the objects and the background both have
low values, while edges correspond to high values in the gra-
dient image. Unfortunately, due to noise and other local irregu-
larities of the gradient image, it always contains a large number
of regional minimal values. Accordingly, the segmentation
result is not good enough. In marker-controlled watershed,
after internal and external markers are obtained, they are used
to modify the gradient image. Using the minimal imposition
technique,23 only positions where marker values are located
become regional minima. Thus, unnecessary regional minimal

values can be efficiently removed and we can apply the water-
shed transform algorithm to the modified gradient image. An
example of such processing is shown in Fig. 4.

4 Segmentation Based on Marker-Controlled
Watershed

Although the existing marker-controlled watershed method
described in Ref. 19 provides a better way to reduce overseg-
mentation, it cannot efficiently extract internal and external
markers. Thus, we present a method for efficient extraction
of markers in the quantitative phase image of RBCs based
on the enhanced marker-controlled watershed algorithm. By
using this method, we can solve problems shown in Fig. 1.
Furthermore, undersegmentation can be avoided. The steps of
the enhanced marker-controlled watershed for RBCs quantita-
tive phase image segmentation are as follows:

Step 1: Normalize RBC phase image. Denote as Inom.
Step 2: Segment Inom using Otsu’s method26 and fill the holes

using morphological reconstruction.19 Denote as Ibin. TheOtsu’s
method can be represented as following:

σ2ðtÞ ¼ ω1ðtÞω2ðtÞ½μ1ðtÞ − μ2ðtÞ�2; (1)

where σ2ðtÞ is the variance of the inter-class, ωiðtÞ and μiðtÞ
are the class probability and class means, respectively. The var-
iable t, which can maximize the inter-class variance σ2ðtÞ, is
the required threshold.

Step 3: Obtain the gradient magnitude of the original phase image.
Denote as Igrad. Here, Sobel operator was used to calculate the
gradient in both vertical and horizontal directions:

gx ¼

2
64
−1 0 1

−2 0 2

−1 0 1

3
75 � Ibin and

gy ¼

2
64
−1 −2 −1
0 0 0

1 2 1

3
75 � Ibin (2)

Igrad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2x þ g2yÞ

q
(3)

where Igrad is the image of gradient magnitude, Ibin and � are
source image and the symbol of convolution operation,
respectively.

water

valley

peak

Fig. 3 Flooding simulation model of the watershed algorithm.
Fig. 4 An example of experimental results for marker-controlled
watershed algorithm.
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Step 4: Obtain internal markers.

a. Apply morphological opening19 to Ibin with disk-
structuring element of radius 9 denoted as Iopen1.
Such an element is much smaller than the smallest
RBC, so all required objects will be preserved
while additional noise is removed.

b. Apply morphological erosion to Iopen1 with disk-
structuring element of radius 17. Get image Iero1.
Such an element is about medium size of RBC.
As a result, connected objects will be separated.

c. Take image Iero1 as a marker and image Iopen1 as a
mask, and apply the morphological reconstruction
operation to them. Denote the obtained image as Irec1.

d. Subtract Irec1 from Iopen1. Denote the obtained image
as Isma1. When separation of the connected cells is
necessary, as shown in Fig. 5(a), use a disk-structur-
ing element with radius 17 as described in Step 4a to
erode the image. This can, however, totally erode
small RBCs as shown in Fig. 5(b). If no precautions
are taken, this will result in under-segmentation;
small RBCs will be lost. So, the purpose of this
step is to get back small-size cells.

e. Apply the morphological dilation to image Iero1
with disk-structuring element of radius 11. This
step reduces the effect of internal gradients as
described in Fig. 1(b), as it extends the center
area so that it now covers the internal gradient.
Denote as Idila.

f. Combine the image Isma1 (Step 4d) with the image
Idila (Step 4e) The result, which has marked most of
the objects, can be used as internal markers. Denote
as Iinter.

Step 5: Obtain external markers from image Iinter (Step 4e) using
the distance transform algorithm and watershed transform.
Denote as Iexter. To calculate the distance from each pixel
to the nearest nonzero-value pixel, use the equation below:

�Dðxi;yiÞ ¼ 0 if Oðxi;yiÞ ¼ 1

Dðxi;yiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxi− xjÞ2þðyi− yjÞ2�

q
if Oðxi;yiÞ ¼ 0

(4)

where Dðx; yÞ is the distance transform image, Oðx; yÞ is the
source image and Oðxj; yjÞ is the nearest nonzero value pixel
of Oðxi; yiÞ.

Step 6: Combine internal markers from Iinter with external markers
from Iexter, and get final markers image Imark. Now, we can
modify the gradient magnitude image Igrad obtained in Step
3 by using the minimal imposition technique23 as follows
(see Ref. 27):

Imodify ¼ RεðIgradþ1Þ∧Imark
ðImarkÞ; (5)

where Rε
ðIgradþ1Þ∧Imark

ðImarkÞ is the morphological erosion
reconstruction of Imark from ðIgrad þ 1Þ ∧ Imark, and symbol
∧ stands for the point-wise minimum between ðIgrad þ 1Þ
and Imark. Finally, the watershed transform algorithm is applied
to the modified gradient image Imodify, and we get a reasonably
segmented phase image Iobj.

Figure 6 is the flow chart of the proposed method. In this
enhanced marker-controlled watershed, we can efficiently and
correctly extract internal and external markers. It also has the
advantage of reducing problems with both over- and under-
segmentation.

After obtaining the segmented RBCs, we move to segment-
ing the inner and the outer parts of the RBC based on the seg-
mented phase image Iobj. The segmentation procedure can be
described as follows:

Step 1: Get the gradient image (using Sobel operation on both ver-
tical and horizontal directions) and binary mask image of Iobj.
Denote these as Igrad2 and Ibin, respectively.

Step 2: Obtain external markers.
Erode the binary mask image Ibin using disk structur-

ing elements of radiuses 5 and 7, respectively. Get
images Ierod1 and Ierod2. Then apply the complement
operation to Ierod1 and Ierod2, denote the obtained images
as Icomp1 and Icomp2. The image Icomp1 is the needed
external markers, denote as Iexter2.

(a) (b)

connected
object

small
object

Fig. 5 (a) Connected and small objects (b) erosion of the image in (a) where disk structuring element is so large that small objects are lost.

normalization opening erosion dilation

reconstruction

subtracted
image

Internal markers
(added image)

external markers

final markers

modified
gradient image

gradient image

segmented image

threshold
input

watershed

Fig. 6 Flowchart of the proposed phase image segmentation method.
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Step 3: Obtain internal markers.

a. Multiply Iobj by Ierod2, add the resulting image with
Icomp2, and get image Iadd.

b. Segment Iadd using the threshold method (set
threshold to 0.45). Denote the segmented image
as Ithre1.

c. Obtain internal markers Iinter2 by applying morpho-
logical close to the complemented image Ithre1 with
a disk-structuring element of radius 5.

Step 4: Get new markers Imark2 by combining internal markers
from Iinter2 and external markers from Iexter2.

Step 5: Modify the gradient phase image Igrad2 with Imark2 using
the minimal imposition technique. Get image Imodify2.

Step 6: Obtain the inner part of the RBC image Iinside by applying
the watershed algorithm to Imodify2.

Step 7: Obtain the outer part of RBCs image Ioutside by subtracting
Iinside from Iobj.

5 Performance Evaluation

5.1 Performance Evaluation Method

In this subsection, we have applied a scientific tool developed
by F. Sadjadi,28 which is based on the experimental design
methodology and independent of the system’s output, for per-
formance evaluation. The performance comparison of two algo-
rithms with biased results is mainly dependent on the varied
parameters in segmentation. The procedure of the performance
evaluation approach can be briefly described as steps of data
characterization, data sampling, primary parameter selection,
parameter sampling, performance metrics definition, perfor-
mance model calculation and statistical analysis. The quantita-
tive phases of RBCs in this study are numerically reconstructed
from their digital hologram, which is recorded by using off-axis
digital holography microscopy (see Fig. 2) and the RBC quan-
titative phase images (QPIs) are given to two categories, namely
newer (with a 14-day storage period) and older (with a 38-day
storage period) RBC QPIs. The primary parameter that largely
affects the segmentation result in our procedure is the value of
threshold obtained by Otsu’s method in Step 2 of Sec. 4 while
the main parameter for the marker-controlled watershed in
Ref. 19 is also a threshold used to find the regional minimum
values. We will not analyze the performance evaluation of the
watershed algorithm since there are no parameter in it and the
result is intuitively unsatisfactory [see Fig. 7(c) and 7(d)]. Also,
the assessment of segmentation results for RBC inner and outer
parts are not conducted because they rely heavily on the
previous segmentation results. For the performance metrics,
the segmentation accuracy is adopted and it is simply defined
as the absolute value of correlation between segmented RBCs
image and reference image, which is manually obtained.
The closer the segmented image is to the reference image,
the closer the segmentation accuracy will tend to approach 1.
Consequently, the analyzed data consist of newer and older
RBC QPIs, while the range of the parameters and segmentation
accuracy is defined between 0 and 1. Accordingly, 21 sample
data were extracted from the parameters range and tested in
order to form performance model for each method. The thresh-
old used in Ref. 19 was sampled by interval of 0.05 and then the
segmentation accuracy was computed correspondingly.
Similarly, the threshold values in our proposed segmentation

method also vary from 0 to 1 with an interval of 0.05. For
curve-fitting, the least square error estimation technique28,29

was employed and the polynomials were examined with degrees
up to 6. Then, statistical analysis of Chi-squared test was per-
formed for checking of the similarity between the obtained
results (the measured data with the segmentation method and
that in the fitted polynomial).29,30

5.2 Experimental Results

As the method presented in Sec. 5.1, the performance model of
segmentation scheme in Ref. 19 was conducted between
segmentation accuracy and varied threshold, as shown in
Fig. 8(a) and 8(b) for new and old RBC QPIs, respectively.
The homologous performance models between segmentation
accuracy and threshold for newer and older RBC QPIs in our
proposed approach are presented in Fig. 8(c) and 8(d).
Consequently, the p-values in Chi-squared test for the null
hypothesis that the predictive performance models approxi-
mately satisfy with the measured response curve were achieved

Fig. 7 RBC phase images. (a) Newer RBCs. (b) Older RBCs. (c) and
(d) are the corresponding segmentation results using standard watershed
algorithm. (e) and (f) Are the results using the marker-controlled
watershed algorithm.
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to be 0.7578, 0.3571, 0.9135, and 0.1213 for Fig. 8(a)–8(d),
respectively. Therefore, the null hypothesis that the fitting
curve is similar to the measured one should be accepted at
the 0.05 level of significance. It is also noted that some values
of segmentation accuracy in the fitted curve go below 0 or above
1, which are beyond the range of segmentation accuracy. This is
because the curve approximately fits the measured data.

It is noted that the maximum segmentation accuracy in our
method outperforms that presented in Ref. 19 and the appropri-
ate threshold is approximated to be 0.27 and 0.30 for newer and
older RBC QPIs, respectively, which is similar with the values
obtained by Otsu’s method used in Step 2 for newer and older
RBC QPIs. Thus, it proves that the Otsu’s method can be used
for automatically finding the threshold that can reduce the
uncertainty of segmentation results by setting a random value.

Next, the segmentation results of RBC QPIs with varied
methods using the found appropriate parameters are presented
for intuitional observation. Furthermore, segmentation results
about inner and outer parts of the RBC QPIs are also shown.
Here, we still use two classes of RBCs corresponding to two
different durations of storage to illustrate the robustness of
our method (more than 100 images are tested). Indeed, it has
been suggested that during storage, preserved blood cells
undergo progressive structural and functional changes that
may reduce red-cell function and viability after transfusion.31

The first class is newer RBCs with a 14-day storage period,
while the second is older RBCs with a 38-day storage period.

Figure 7 shows the respective segmented images using the
classical watershed and the marker-controlled watershed
described in Ref. 19.

From Fig. 7 one can see that without further processing, both
the standard and the marker-controlled watershed methods
cannot yield accurate enough segmentation results, as they can-
not properly handle over- and undersegmentation problems.
Figure 9 shows experimental results obtained with the enhanced
marker-controlled watershed. One can see that both internal and
external markers are properly extracted.

Using the proposed enhanced marker-controlled watershed
algorithm, we obtained good experimental results for segmen-
tation of the RBC QPIs. The algorithm is reasonably efficient in
reducing both over- and under-segmentation, as well as properly
separating the cells that touch one another. After successfully
segmenting the RBC QPIs using the method described in
Sec. 4, we can also accurately obtain the internal and external
parts of the holographic QPIs of RBCs, respectively, by using
proposed method. Figure 10 shows the segmentation result of
the inner and outer parts of the RBCs images from Fig. 9(a)
and 9(b).

After segmentation, the background phase value of all QPIs
can be set to zero. Then, the average phase in the background
region can be used to determine the average phase within a sin-
gle RBC so that it is possible for one to directly compare QPIs
with each other, such as the QPIs of the two different RBC
classes. On the other hand, the achieved average phase in the

Fig. 8 Performance models. (a) and (b) Are performance models for newer and older RBC QPIs in the method of Ref. 19. (c) and (d) Are performance
models for newer and older RBC QPIs in our proposed procedure.
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background region will be helpful for the analysis of erythrocyte
membrane fluctuations.32 Figure 11 shows the statistical distri-
bution of the average phase value of single RBC between two
different kinds of RBCs (one with 14 days of storage and the
other with 38 days of storage). The average phase value of single
RBC is estimated by subtracting the average phase value in the
background region of corresponding QPI from the original aver-
age phase value within each RBC. As shown in Fig. 11, the
mean and standard deviation of RBCs with 14 days storage
are 97 deg and 9 deg, respectively. For RBCs with 38 days stor-
age, the mean and standard deviation are 74 deg and 15 deg,
respectively. It is noted that there is a difference of approxi-
mately 23 deg between the average phase values in the RBCs
with the different storage times.

Fig. 9 Key steps of the proposed phase image segmentation. (a) and
(b) are the newer and the older RBC QPIs, respectively. (c) and
(d) are their corresponding original gradient images, respectively.
(e) and (f) are the internal markers, respectively. (g) and (h) are the exter-
nal markers, respectively. (i) and (j) are the modified gradient images,
respectively. (k) and (l) are the segmented QPIs of the newer and the
older RBCs, respectively.

Fig. 10 Segmentation results of the inner and outer parts of the RBC
QPI. (a) and (b) are the inner part of the newer and the older RBC
QPIs. (c) and (d) are the outer part of the newer and the older RBC QPIs.

Fig. 11 Distribution of average phase of single RBC after subtracting the
average background phase.
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6 Conclusion
In this paper, we present a method to successfully segment the
quantitative phase images of RBCs for computation of a correct
phase value of RBC. Advantages of the proposed method
include reducing oversegmentation and undersegmentation.
Furthermore, it can obtain the isolated RBC without touching
other cells. Our automated RBCs segmentation algorithm ena-
bles one to adequately compare the different types of RBCs,
since the phase values in the background parts of the RBCs
phase image can be set to 0 deg value. After segmentation, we
also show that the average background phase for RBCs with
different storage time is not the same. Therefore, it is meaningful
to segment the RBCs so as to get the correct phase by sub-
tracting the mean of phase corresponding to the background
regions. Classification of RBCs traditionally requires a time-
consuming manual examination by skilled personnel. We
believe that the proposed segmentation algorithm can be helpful
for automated classification of RBCs based on RBC character-
istics provided by the quantitative phase images generated by
digital holographic microscopy.
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