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Abstract. We demonstrate the utility of functional near-infrared spec-
troscopy �fNIRS� as a tool for physicians to study cortical plasticity in
children with cerebral palsy �CP�. Motor cortex activation patterns
were studied in five healthy children and five children with CP
�8.4±2.3 years old in both groups� performing a finger-tapping pro-
tocol. Spatial �distance from center and area difference� and temporal
�duration and time-to-peak� image metrics are proposed as potential
biomarkers for differentiating abnormal cortical activation in children
with CP from healthy pediatric controls. In addition, a similarity
image-analysis concept is presented that unveils areas that have simi-
lar activation patterns as that of the maximum activation area, but are
not discernible by visual inspection of standard activation images.
Metrics derived from the images presenting areas of similarity are
shown to be sensitive identifiers of abnormal activation patterns in
children with CP. Importantly, the proposed similarity concept and
related metrics may be applicable to other studies for the identifica-
tion of cortical activation patterns by fNIRS. © 2010 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.3432746�
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Introduction

erebral palsy �CP� occurs in 2 per 1000 live births every
ear.1 CP describes a set of disorders that prevent proper
ovement and posture often accompanied by loss of sensa-

ion, perception, cognition, communication, secondary mus-
uloskeletal problems, and recurrent seizures.2 This disorder
s caused by damage to the motor control centers of the de-
eloping brain. The damage can occur during pregnancy,
hildbirth, or after birth early in a child’s life. One of the most
revalent types of the disorder is hemiparetic CP, an incom-
lete paralysis of one-half of the body. These motor deficits
rofoundly affect a child’s ability to develop motor skills and
o engage fully in play, exploration, and self-help activities.
hus, children with CP spontaneously undergo plastic
hanges in their neuronal circuitry by recruiting healthy por-
ions of their brain to partially compensate for the affected
reas, resulting in their improved motor performance.3 Clini-
al professionals currently diagnose the functional severity of
child with CP based on qualitative scores derived by observ-

ng the success with which that child handles a prescribed
eries of upper extremity tasks.4–6 However, no standard im-
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ournal of Biomedical Optics 036008-
aging method currently exists for observing the spatiotempo-
ral activation patterns of the motor cortex in children with CP
and how these patterns differ from patterns of healthy chil-
dren.

Although functional magnetic resonance imaging �fMRI�
is the “gold standard” for neuroimaging, it often requires the
patient’s complete body confinement, steadiness, and minimal
interference caused by motion artifacts for the duration of
experiments, which limits the success rate to �50% for nor-
mal children.7 Nevertheless, there are case reports on the use
of fMRI alone or in combination with transcranial magnetic
stimulation, which investigated different aspects of cortical
reorganization in children with CP.8–14 Although CP is thought
to originate mostly from subcortical lesions and less often
from cortical ones,8 there is evidence that associated plasticity
changes occur in the motor cortex.9–14 Certain differences in
cortical activation patterns have emerged from these studies
between healthy and children with CP. For example, in an
fMRI study, children with hemiparesis of their upper extremi-
ties showed stronger ipsilateral activation when tapping with
their affected hand.10 In the future, identifying such differen-
tial activation patterns could potentially provide biomarkers to
help physicians assess the severity of CP in a more quantita-
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ive manner as well as assess the response to a specific treat-
ent.
Functional near-infrared spectroscopy �fNIRS� offers great

romise in becoming the imaging tool of choice for physi-
ians to monitor cortical activation patterns in children with
P. It is cost effective, safe, noninvasive, and less affected by
ovement than other imaging modalities, such as fMRI.15

NIRS detects changes in light absorption and scattering in
issue caused by the changes in concentration of oxyhemoglo-
in �HbO� and deoxyhemoglobin �Hb� secondary to neuronal
ctivity, known as neurovascular coupling.16 Moreover,
NIRS has much higher temporal resolution, up to tens of
illiseconds,17 compared to fMRI, which has a temporal res-

lution measured in seconds.18,19

In this work, we demonstrate how fNIRS image analysis of
otor cortex activation patterns due to finger tapping enables

dentification of spatial and temporal metrics that can be used
o differentiate between normal pediatric subjects and children
ith CP with high statistical significance. The definition and
se of these metrics, namely the distance from center, area
ifference, duration, and time-to-peak, is described. In addi-
ion, a similarity concept is defined that enables identification
f both areas that have similar activation patterns as that of
he maximum activation area, as well as dissimilar activation
atterns within that area, which are not readily discernible in
nprocessed activation images. It is shown that some of the
etrics quantified from similarity images can serve as sensi-

ive discriminators of abnormal activation patterns in children
ith CP.

Materials and Methods
.1 Subjects
ive pediatric controls, Subjects 1–5 �two female and three
ale, 8.4�2.3 years old�, and five children with hemiparetic
P, Subjects 6–10 �three female and two male,
.4�2.3 years old�, were included in this study. All the con-
rols were right handed. Only children with CP that had a
uccessful anatomical magnetic resonance imaging scan per-

ig. 1 �a� Placement geometry of the fNIRS probes over the motor co
verall instrumentation setup.
ournal of Biomedical Optics 036008-
formed, indicating a single subcortical lesion in one of the
two brain hemispheres, were included in this study. Three of
the children with CP, Subjects 6–8, had a subcortical lesion in
the left hemisphere �LH�, which affected movement of their
right hand. Subjects 9 and 10 had a subcortical lesion in the
right hemisphere �RH�, which affected movement of their left
hand. Informed consent was obtained from all subjects and
their legal guardians. Except for Subjects 4 and 6, it was
possible to attain a second visit for fNIRS measurements
within two months of the first. These studies were performed
under the approval of The University of Texas Southwestern
Medical Center at Dallas �UTSW� Institutional Review Board
protocol �IRB No. :042007-064�.

2.2 Measurements
A continuous-wave �CW� fNIRS brain imager �CW-5, Techen
Inc., Milford, Massachusetts� was used to map the HbO and
Hb changes induced by motor cortex stimulation. The source-
detector geometry is shown in Fig. 1�a�. Eight detectors were
placed over each brain hemisphere to cover a relatively large
area of the motor cortex. The geometrical arrangement of
sources and detectors was attached onto the subjects’ heads by
perforated Velcro straps. Eight laser sources emitted at
690 nm and eight at 830 nm, such that each optical fiber
bundle delivered light of both wavelengths at each source
location �circles in Fig. 1�a��, simultaneously. Each source
bundle had up to four detectors �squares in Fig. 1�a�� within a
3-cm distance, and each detector received signals from up to
two source bundles. As a result, there were 28 possible
source-detector channel combinations for each wavelength, as
indicated by the straight lines connecting sources to detectors
in Fig. 1�a�. Activation in cortical areas within the probes’
field of view �6�20 cm� was monitored simultaneously by
all source-detector pairs, because the CW-5 enables all laser
sources to be on at the same time with distinct modulation
frequencies �6.4–12.6 kHz, with an increment of 200 Hz�.
The backreflected light detected was sampled at a rate of

he circles represent sources, and the squares represent detectors. �b�
rtex. T
May/June 2010 � Vol. 15�3�2
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00.16 Hz, which was later demodulated and downsampled
o 20.03 Hz to reduce data-set sizes.

In addition to measuring the cortical hemodynamic re-
ponse by optical means, the finger-tapping, respiration, and
ardiac pulsation patterns were also measured simultaneously
or each subject. The finger-tapping rate was measured using a
ustom-built, capacitance-based tapping board that produced
bilevel voltage output for each tap. The respiration and car-

iac pulsation measurements were amplified with a Brownlee
odel 410 amplifier �AutoMate Scientific, Berkeley, Califor-

ia�, and recorded by the CW-5 system. The respiration and
ardiac measurements were amplified by a factor of 200 and
0 mV /mV, respectively. Breathing patterns were measured
sing a respiration belt with a piezoelectric transducer �Sleep-
ate Technologies, Glen Burnie, Maryland�. The belt was
rapped around each subject’s lower chest while keeping the

ransducer away from the heart in order to prevent cardiac
ulsation noise from leaking into the respiration measure-
ent. Cardiac pulsation was measured using a pulse oximeter

Nellcor Inc., Boulder, Colorado� attached to the index finger
n the hand not in use for tapping. In addition, movement of
he forearm flexor muscles controlling the fingers was mea-
ured by electromyography ��EMG�, B & L Engineering,
anta Ana, California�. The EMG measurements were not
sed in our filtering procedures but instead served as quality
ontrol sentinels for our measurements, making sure that the
pecified hand was the only hand tapping, while the other was
ept still. A diagram of the overall instrumentation setup is
hown in Fig. 1�b�, in which EMG �R� and EMG �L� stand for
he EMG taken from the right forearm and left forearm, re-
pectively. All nonoptical physiological measurements were
ed into the CW-5 and digitized by an analog-to-digital con-
erter, sampled at 100.16 Hz and later downsampled to
0.03 Hz, to reduce data-set sizes, as was done for the reflec-
ance signals. Therefore, all signals had a common time base
ith the fNIRS measurements, which enabled the use of the

eference physiological measurements in the subsequent fil-
ering procedures described in Section 2.5.

.3 Protocol
he fNIRS probe placement was done according to the mea-
ured coronal �ear-to-ear� and sagittal �forehead-to-back-of-
ead� distances. The center of the probe set was placed at half
he distance of the aforementioned measurements, which was
onsidered the estimated midpoint of the motor cortex. A
owerPoint animation on a computer screen guided subjects

hrough the finger-tapping protocol. No set tapping frequency
as required of the pediatric subjects. Thus, the tapping fre-
uency was self-paced, which resulted in average finger-
apping rates in the 1–2 Hz range within the 15-s tapping
eriod. Tapping consisted of moving all fingers of one hand,
hile the wrist was held down by soft straps to keep it from
oving. The subjects touched the tapping board while tapping

nd rested their hand on the board during the no-tapping in-
ervals. The data acquisition protocol consisted of a 30-s
aseline �no tapping�, immediately followed by a series of ten
onsecutive epochs of 15 s of tapping and 25 s of rest, and
nded with a 20-s baseline measurement, resulting in a total
cquisition time of 450 s. Measurements were separately ac-
uired for both left and right finger tapping. The subjects sat
ournal of Biomedical Optics 036008-
up straight with their head resting back in a quiet, dimly lit
room. All subjects were video recorded during the measure-
ments in order to verify, along with the aforementioned EMG
measurements, that they performed the finger-tapping tasks
properly.

2.4 Visualization of fNIRS Signals
Processing and visualization of the time-series reflectance
data acquired by the CW-5 system is usually performed by the
open-source HOMER software implemented in MATLAB

�Mathworks, Natick, Massachusetts�.20 HOMER filters the
signal using low-pass and high-pass Butterworth filters to re-
duce noise from frequencies outside the known physiological
range. Furthermore, the software applies principle component
analysis �PCA� to reduce any global hemodynamic signals,
detrends signals to reduce any long-term drifts, and averages
the detected signal for individual source-detector pairs over
user-selected time intervals of tapping and rest. Subsequently,
using the reflectance measurements from all detector channels
activation images are reconstructed by use of the Tikhonov
perturbation solution to the photon-diffusion equation,21

which employs a regularized Moore–Penrose inversion
scheme.22 The reconstructed, two-dimensional images �21
�20 pixel� represent maps of Hb and HbO changes on the
brain cortex surface, within the detector’s field of view �rect-
angle in Fig. 1�a�� as a result of finger tapping. As Hb dynam-
ics are highly correlated with those of HbO23 and have sig-
nificantly lower amplitudes than the latter, making them
susceptible to cross-talk from HbO24 and to interference from
physiological artifacts, we have focused on the analysis of
HbO dynamics only.

2.5 Filtering
In addition to detecting evoked hemodynamic changes, fNIRS
is sensitive to cerebral hemodynamic fluctuations of systemic
origin. Such systemic fluctuations can be caused by cardiac
pulsation, respiration, and Mayer waves. For typical motor
cortex activation protocols, the cortical hemodynamic re-
sponse can be found in the 0.1–0.4 Hz frequency range,
while physiological artifacts, such as cardiac pulsation, can be
found between 0.8–2.0 Hz, respiration in the 0.1–0.3 Hz
range, and Mayer waves at �0.1 Hz or lower.25,26 Because
there is a significant overlap between the frequency spectra of
respiration and Mayer waves and of the hemodynamic re-
sponse due to brain activity, and there is an overlap in fre-
quency spectra of cardiac pulsation and the tapping frequency,
bandpass filtering is not effective in removing such physi-
ological artifacts. Previous attempts in the removal of these
physiological artifacts from fNIRS signals have used compo-
nent analysis27–30 or adaptive filtering.30–34

Two types of component analysis have previously been
used to filter fNIRS signals, PCA,27 and independent compo-
nent analysis.28–30 Component analysis is advantageous be-
cause no additional measurements are used to track the physi-
ological artifacts. The disadvantage of these algorithms is that
they need training data to properly identify the physiological
artifacts and that the physiological artifacts may contribute to
the signal differently once the study begins, thus making it
difficult to attribute each component to a specific artifact or to
define the number of components needed to be removed.27
May/June 2010 � Vol. 15�3�3
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To better track the physiological artifacts, additional physi-
logical measurements can be simultaneously taken or the
hysiological artifacts and the hemodynamic response can be
odeled, as in adaptive filtering. The least mean square

LMS� filter is a finite impulse response �FIR� filter in which
he filter coefficients adjust in order to minimize the least-
quared error in fitting the measured noise measurements to
he noisy signal.30–33 The extended Kalman filter, otherwise,
an filter the fNIRS signals by statistically modeling the
hysiological artifacts and the hemodynamic response due to
rain activity.34 Unfortunately for the extended Kalman filter,
model of the hemodynamic response for children with CP is
nknown and may vary, depending on the type of lesion the
hild has.

In order to overcome the disadvantages of individually fil-
ering with component analysis or adaptive filtering, a combi-
ation of PCA and LMS filtering was used in this work. Using
he additional reference physiological measurements, physi-
logical artifacts that were within the same frequency range
s the tapping frequency or the cortical hemodynamic re-
ponse were filtered. More specifically, the fNIRS signals
ere first bandpass filtered between 0.01 and 2 Hz, using a
utterworth filter, to exclude frequencies of nonphysiological
rigin from the signal. Subsequently, baseline correction com-
ensated for the baseline drift that could occur throughout the
epeated cycles of activation and then PCA was applied to the
NIRS signals. In contrast to the baseline procedure imple-
ented in HOMER, which uses only the first time point of the

xperiment as baseline reference, we corrected the baseline
or each activation interval individually by taking the average
f the 5 s of data before the beginning of each activation
nterval and then subtracting that value from the activation
ata in that interval. In the implementation of PCA, we em-
irically found that removing the two largest eigenvalues,
hich represented components in the frequency range of
ayer waves and cardiac pulsation physiological artifacts, re-

ulted in the best compromise between the reducing global
ackground signal while not substantially reducing the con-
rast of activation areas in the reconstructed images as was
one by Zhang et al.27 In our analysis, we saw that the percent
f the first two eigenvalues to the sum of all eigenvalues
epresented most of the baseline signal �93.04%�3.88%�. In
ddition, in some cases the second eigenvector contributed to
arger variations in the baseline signal than the first eigenvec-
or. It was thus decided that the removal of the first two eigen-
ectors was optimal for removing baseline noise without com-
romising signal quality. Finally, the signal was adaptively
ltered for respiration first, and then cardiac pulsation,35 using
n LMS algorithm.31–33 The reference noise signals �Fig. 1�b��
hat were used in this adaptive filtering procedure were first
ow-pass filtered at 5 Hz to reduce the contribution of elec-
ronic noise. No difference was found in the order in which
he adaptive filters were applied, but using PCA after adaptive
ltering was found to greatly decrease the signal quality.

.6 Averaging
fter filtering the signals as described in Section 2.5 and ex-

luding the tapping-rest intervals that were not executed prop-
rly, as judged by video recording and EMG, data from all
ource-detector pairs were processed by HOMER. Because
ournal of Biomedical Optics 036008-
the sampling frequency was 20.03 Hz, each time point repre-
sents every 0.05 s. The properly executed 40-s tapping-rest
intervals were averaged at each time point �total of 800 time
points� giving a 40-s averaged temporal response for each
source-detector pair. Activation images of the motor cortex
were then reconstructed for every time point from the aver-
aged temporal response of all source-detector pairs.17 Time-
averaged HbO activation images were formed by averaging
HbO activation images within a window that started 5 s after
the tapping began to 5 s after the tapping had stopped
�5–20 s relative to the beginning of each 15-s tapping inter-
val� because that was the time window during which most of
the activation signal was observed.

2.7 Identifying Areas of Activation
Activation areas were identified by a k-means clustering
algorithm36 implemented in MATLAB. The algorithm was ap-
plied to identify areas of activation in two different images:
the time-averaged HbO images and the two-dimensional spa-
tiotemporal plots representing a concatenation of the 40-s av-
eraged temporal responses of each pixel.

The algorithm employed three cluster means that were ini-
tialized at the maximum pixel value, minimum pixel value,
and zero. The algorithm then placed each image pixel into one
of the clusters, as judged by the closest Euclidean distance
�Eq. �1�� of the value of each pixel �of coordinates x ,y� to the
mean of the three clusters. However, if the minimum distance
was equal between two clusters, then the pixel was placed
into the cluster with the smaller mean

Distancecluster�x,y� = �pixel_value�x,y� − meancluster� . �1�

The algorithm recalculated the mean of each cluster after
processing the whole image and repeated the process until the
means of each cluster no longer changed, in which a maxi-
mum of 11 iterations were necessary for the time-averaged
HbO images. The cluster that initially had a mean equal to the
maximum pixel value in the image represented pixel values
related to activation �Fig. 2�a��. The cluster that initially had a
mean equal to zero represented pixel values related to the
baseline. Lastly, the cluster that initially had a mean equal to
the minimum pixel value in the image represented deactiva-
tion.

Similarly, the temporal responses of each pixel were clus-
tered to identify activation, baseline, and deactivation. The
40-s averaged temporal responses of each pixel were concat-
enated from the LH to RH to give a two-dimensional plot, in
which the y-axis represented the pixels and the x-axis repre-
sented time. Then the previously discussed k-means clustering
algorithm36 was applied to the two-dimensional plot, in which
a maximum of 20 iterations were needed to identify the three
clusters. The pixels with activation in the two-dimensional
plot �Fig. 2�b�� showed the time and location of areas of ac-
tivation during finger tapping. Subsequently, a number of spa-
tial and temporal metrics were derived from the resulting
time-averaged and two-dimensional activation images, as de-
scribed here below.

2.8 Metrics Derived from the Reconstructed Images
We identified spatial metrics �distance from center and area
difference� from the time-averaged HbO images and temporal
May/June 2010 � Vol. 15�3�4
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etrics �duration and time-to-peak� from the two-dimensional
lots. The identified spatial and temporal metrics presented
ifferences between controls and children with CP. We have
lso identified similar temporal patterns spatially over the mo-
or cortex, as will be shown in Section 3, which has great
romise for differentiating between the two subject groups.

.8.1 Distance from center
o show differences in activation location in the time-
veraged HbO images between healthy controls and children
ith CP, a vertical line was used as a reference at the center of

he motor cortex and the horizontal distance between the near
dge of the activation area closest to the centerline �distance
rom center� was measured for each hemisphere �Fig. 2�a��.37

ince the distance from center metric is dependent on the
dentification of areas of activation, this metric was not quan-
ified in the cases where there was no activation identified in
he ipsilateral or contralateral hemisphere relative to the tap-
ing hand.

.8.2 Area difference
ecause it was observed that children with CP consistently
ad activation closer to the motor cortex centerline, a metric
as defined to quantify the amount of activation observed by

his difference. The metric was defined as the difference in

ig. 2 Pictorial descriptions of the spatial and temporal image metrics:
as computed as the average temporal length of activation �white are
rea difference metric measured as the difference in activation area be
and �i.e., RH for left finger tapping or LH for right finger tapping�. �d
ignal took to reach its peak from the beginning of the tapping interv
ournal of Biomedical Optics 036008-
area of activation �area difference� occurring near the edge of
the contralateral hemisphere of the tapping hand and the
middle region of the motor cortex. More specifically, the de-
tector field of view was divided in three nearly equal areas of
6 cm in length and a width of 7 cm for the RH and LH and
6 cm for the motor cortex center �Fig. 2�c��. Areas of activa-
tion in each subdivision of the motor cortex were identified
using the same clustering algorithm previously used to iden-
tify activation over the entire motor cortex �see Section 2.7�.
The metric of interest for differentiating between the two sub-
ject groups was defined as the difference of the identified
activation area found by the clustering algorithm in the time-
averaged HbO images between the contralateral hemisphere
and the middle region of the motor cortex.

2.8.3 Duration and time-to-peak
The temporal aspects of the change in HbO were quantified
with metrics �duration and time-to-peak� devised from the
two-dimensional plots �Fig. 2�b��. Lines of activation in these
two-dimensional plots represented the change of HbO in each
pixel that was above baseline, as identified by the activation
cluster from the clustering algorithm. The length of these lines
therefore represented the duration of activation for each pixel
�Fig. 2�b��. The metric of duration was then defined as the
average value of activation duration over all pixels. Addition-

asurement of distance from center for both hemispheres. �b� Duration
pixel. The pixels were concatenated from the LH to the RH. �c� The

the middle area �MA� and the contralateral hemisphere to the tapping
to-peak measurement in which the arrow represents the time that the
�a� Me
as� per
tween
� Time-
al.
May/June 2010 � Vol. 15�3�5
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lly, the 40-s average temporal response data were sorted to
dentify pixels with maximum activation from the two-
imensional plots, as identified by the clustering algorithm.
rom the pixels with maximum activation, the average time
ifference between the beginning of the tapping interval and
he time point of maximum HbO change was defined as the
ime-to-peak metric �Fig. 2�d��.

.8.4 Similarity
mage areas, which were spatially distinct from the primary
ctivation region, were observed to have demonstrated tem-
oral profiles of HbO change similar to those of the primary
ctivation region. Because the amplitudes in HbO change of
hese secondary regions were lower in magnitude, they were
ot always assigned to the cluster of pixels with activation, as
dentified by the clustering algorithm discussed above.36 To
dentify these areas, a similarity concept was defined that
uantified aspects of resemblance between the temporal pro-
le of the maximum activation area and other regions in the
otor cortex.
Only pixels that had a value greater than or equal to zero

rom the time-averaged HbO activation images were com-
ared in the similarity analysis. Before checking the similarity
etween the temporal profiles of each pixel, these were first
moothed to remove high-frequency instrumentation noise us-
ng a third-order Savitzky–Golay FIR filter.38,39 After smooth-
ng, each pixel was normalized to the peak activation value
uring the 40-s tapping-rest interval because the similarity
nalysis focuses on the shape of activation curves and not
heir magnitude.

Subsequently, two metrics were defined for describing
ach pixel’s temporal activation profile. These were the angle
efined by the tangent �d�� and the change of signal ampli-
ude �ds� at every time point, as shown in Fig. 3�a�.40 A cost
unction was then defined to quantify the degree of similarity
or these two metrics between the seed pixel �i.e., the peak
ctivation pixel� and other pixels in the image. Though previ-
us works have used the Euclidean distance to find the simi-
arity between two time series,41–43 a dynamic time-warping
DTW�–based cost function was selected to measure similar-
ty to accommodate for small changes in phase between the
eed pixel and activation occurring elsewhere in the
mage.44,45 A brief overview of how DTW was adapted to the
NIRS image analysis is explained next.

Suppose there are two time series, S and P, of length N
nd M, respectively, where S=s1, s2 , . . ., sN and P= p1,

p2 , . . . , pM. An N�M matrix is then formed to align the two
equences in which the entry �n ,m� consists of the distance,
�sn , pm�, of the two points sn and pm �i.e., �sn− pm�2�. A
arping path45 is then found in which a contiguous set of
atrix elements defines a mapping between S and P �Fig.

�b�� and that the warping cost, DTW�S , P�, is minimized
uch that

DTW�S,P� = min��	

k=1

K

wk�� , �2�

here K is the number of warping elements and wk is the
istance found at �n ,m�k. The warping path is subject to spe-
ific constraints such that the warping starts and finishes in
ournal of Biomedical Optics 036008-
diagonally opposite corners, steps are only allowed to adja-
cent cells �including diagonally adjacent cells�, and each wk
must be monotonically spaced in time.45 Furthermore, the
time warping is globally constrained using the Sakoe–Chiba
band,46 where r=10 �i.e., 0.5 s�. The purpose of this con-
straint is to prevent a relatively small section of one time
series to be mapped to a relatively large section of another. In
this case, a maximum of 0.5 s of one time series can be
mapped to a single point of another �i.e., a shift of 0.5 s can
be detected�.

In this study, DTW was not directly applied to the pixel
temporal responses, but to the two metrics that defined the
shape of the temporal responses, d� and ds. N�M matrices
were formed to find the warping costs for both d� and ds.
Instead of looking for the minimum warping cost for d� and
ds separately, the warping cost was redefined such that wk in
Eq. �2� is represented by

Fig. 3 �a� Measurements made for the change in angle defined by the
tangent �d�� and the change in amplitude �ds� for every time point,
�b� illustration of a DTW path, and �c� histogram of the dynamic warp-
ing costs for all control subjects.
May/June 2010 � Vol. 15�3�6
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wk = �d�n − d�m�2 + �dsn − dsm�2. �3�

Subsequently, a threshold needed to be defined to identify
he range of DTW cost corresponding to activation image
ixels that were considered similar to the seed pixel. Because
he dynamic warping cost is directly comparable between
ontrols and subjects with CP, the dynamic warping costs of
he controls, for both right and left finger tapping, were
ooled together in a single histogram that presented the fre-
uency of each dynamic warping cost for all control subjects
e.g., Fig. 3�c��. Because there were no clear divisions found
n the histogram, a k-means algorithm was used to divide the
istogram into five levels, in which the clusters were initial-
zed similar to that of Liu and Yu.47 Though the k-means
lgorithm could divide the histogram into more levels for a
ore stringent similarity definition, dividing it into five levels
as empirically found to be sufficient for finding similar time

eries, as will be shown in Section 3. A flowchart of the simi-
arity algorithm is shown in Fig. 4.

.9 Statistical Analysis
wo-sampled t-tests were performed, using SAS 9.1 �SAS
nstitute Inc., Cary, North Carolina� to see if there was a sig-
ificant difference �p�0.05� of metric means between con-
rol subjects and ones with CP. In cases where the variances
etween the two subject groups were found to be significantly
ifferent �p�0.05�, the Mann–Whitney test was used instead.
he null hypothesis was defined as a zero difference in the
ean between the two groups. For the cases where a statisti-

ally significant difference was found between the two subject
roups, a post hoc power analysis was performed to validate
he statistical power �1-�� of the t-test, which indicates the
robability of not having a false significant difference for the
iven subject population size.48

Fig. 4 Block diagram of the similarity algorithm.
ournal of Biomedical Optics 036008-
3 Results
3.1 Distance from Center
Visual inspection of activation patterns in children with CP
suggested these subjects had time-averaged activation areas
closer to the centerline of the motor cortex compared to con-
trols. The distance from center metric was therefore defined
�Section 2.8.1� to measure this distance. Figures 5�a� and 5�b�
are bar graphs showing the distances separately for the RH
�right horizontal columns� and LH �left horizontal columns�
for control subjects �Subj1–Subj5�, ones with right hemip-
aretic CP �Subj6–Subj8�, and ones with left hemiparetic CP
�Subj9–Subj10�. In Figs. 5�a� and 5�b�, it is seen that controls
consistently had activation further from the centerline in the

Fig. 5 Bar graphs presenting the distance from center measurements
from the time-averaged HbO activation images for �a� left finger tap-
ping and �b� right finger tapping. The distances are presented sepa-
rately for the RH �right horizontal columns� and LH �left horizontal
columns� for control subjects �Subj1–Subj5, LH–black, RH–white�,
ones with right hemiparetic CP �Subj6–Subj8, LH–brick, RH–dots� and
ones with left hemiparetic CP �Subj9–Subj10, LH–trellis pattern, RH–
vertical lines�. x indicates the exclusion of the measurement since no
activation was identified in that hemisphere.
May/June 2010 � Vol. 15�3�7
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psilateral hemisphere than in the contralateral hemisphere
elative to the tapping hand. In contrast, the ipsilateral activa-
ion for children with CP was closer to the centerline, and in a
ew cases, it was even closer than the contralateral activation
or the same subject.

A high statistical significance was found �p=0.0008,
–�=0.98, Table 1� for the mean value difference in

psilateral distance from center between controls
7.29 cm�1.98 cm� and children with CP
3.14 cm�1.46 cm�, but no significant difference �p=0.54�
as observed in the contralateral distance from center be-

ween controls �3.80 cm�1.48 cm� and ones with CP
3.30 cm�2.06 cm�.

.2 Area Difference
lthough the distance from center metric gave information

bout differences in activation location between controls and
hildren with CP, this metric did not capture differences in the

Table 1 Efficacy of the derived metrics for differ
parisons are made between the right or left finge
affected hand for subjects with CP.

Control RFT/LFT versus affected
Distance

from center

Specificity �%� 100

Sensitivity �%� 80

PPV �%� 100

NPV �%� 83

Control RFT/LFT versus unaffected

Specificity �%� 100

Sensitivity �%� 60

PPV �%� 100

NPV �%� 71

ig. 6 Activation area difference for control subjects �Subj1–Subj5,
eft tapping–black, right tapping–white�, ones with right hemiparetic
P �Subj6–Subj8, left tapping–brick, right tapping–dotted�, and ones
ith left hemiparetic CP �Subj9–Subj10, left tapping–trellis pattern,

ight tapping–horizontal lines�.
ournal of Biomedical Optics 036008-
spatial extent of the corresponding activation areas. To quan-
tify the latter, the area-difference metric was defined as de-
scribed in Section 2.8.2.

In Fig. 6, the results of the area difference metric show that
for controls the area of activation in the contralateral hemi-
sphere of tapping was always greater than the activation in the
middle area of the motor cortex by at least 2 cm2. Three of
the five subjects with CP �Subjects 6, 9, and 10� showed
greater activation area in the middle portion of the motor cor-
tex when tapping with one of their two hands. Interestingly,
Subject 8, a right hemiparetic subject, presented an area dif-
ference of �1 cm2 when right finger tapping �i.e., even
though he was using his affected hand�. Subject 7 had similar
results as the controls for this metric. Although in some cases,
subjects with CP presented larger activation in the middle
region of the motor cortex than in the contralateral hemi-
sphere, for the current population size there was no significant

g between controls and subjects with CP. Com-
g �RFT/LFT� for controls versus tapping with the

ce
Duration/

time-to-peak
Area difference

�similarity�
Distance
from seed

80 80 100

100 60 60

83 75 100

100 66 71

80 80 100

60 20 60

75 50 100

66 50 71

Fig. 7 Bar graph presenting the ratio of duration over time-to-peak
metrics for control subjects �Subj1–Subj5, left tapping–black, right
tapping–white�, ones with right hemiparetic CP �Subj6–Subj8, left
tapping–brick, right tapping–dotted�, and ones with left hemiparetic
CP �Subj9–Subj10, left tapping–trellis pattern, right tapping–horizontal
lines�.
entiatin
r tappin

Area
differen

60

60

60

60

60

20

33

43
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ifference �p=0.068� in area difference metrics between con-
rols �9.04 cm2�5.96 cm2� and children with CP
3.40 cm2�7.01 cm2�. Also, there was no statistically sig-
ificant difference in the mean values of the area difference
etric when subjects with CP were tapping with their

ffected �0.53 cm2�5.81 cm2� or unaffected hand
6.27 cm2�7.51 cm2, p=0.2135�.

ig. 8 Images shown are for a control subject, Subject 2, in which the
hresholded activation image, �c� the similarity image with color-coord
olor-coordinated similarity levels are shown. Not all five levels of si
ubject with CP, Subject 7, in which �e–h� correspond to �a–d� for the
ournal of Biomedical Optics 036008-
3.3 Duration and Time-to-Peak

The ratio of duration over time-to-peak was identified as a
potentially useful metric for differentiating between the two
subject groups. With one exception, the controls had a dura-
tion over time-to-peak ratio of �1 for both right and left
finger tapping �Fig. 7�, i.e., duration was greater than or equal

rmalized image of the average change in HbO concentration, �b� the
levels, and �d� the corresponding average temporal responses for the
are seen for this control subject. The images at the bottom are for a

ol subject.
�a� no
inated

milarity
contr
May/June 2010 � Vol. 15�3�9
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o time-to-peak. In contrast, duration was found to be less
han the time-to-peak when children with CP were tapping
ith their affected hand �right, dotted column for Subjects
–8 and left, trellis patterned column for Subjects 9 and 10�.
n addition, when children with CP were tapping with their
naffected hand, this ratio often assumed values that were
ubstantially higher or lower than unity for some individuals,
hough no consistent pattern was observed.

No significant difference �p=0.99� was observed between
he mean values of duration over time-to-peak ratios between
ontrols that were left finger tapping �1.19�0.09� or right
nger tapping �1.19�0.26�. Subsequently, these results were
ooled into a single normal subject group and a two-sampled
-test verified the high statistical significance �p=0.0002,
–�=0.99, Table 1� in the difference between the means of

he duration over time-to-peak ratios between controls
1.19�0.18� and children with CP tapping with their affected
and �0.60�0.25�.

.4 Similarity
y using the above-described similarity algorithm �Section
.8.4�, pixel areas were identified having similar temporal
rofiles of HbO concentration change with respect to the pri-
ary area of activation. It was found that these similar areas

id not necessarily coincide with the areas having the highest
ctivation in the time-averaged images, but could have an
bO concentration change in the baseline range. Furthermore,

ubjects with CP demonstrated a greater diversity of temporal
atterns, as quantified by the range of DTW penalty term
alues, within the areas of activation than control subjects. To
llustrate these points, a sample activation image �Fig. 8�a��,
n image processed by an activation cluster algorithm �Fig.
�b��, an image processed by the similarity algorithm �Fig.
�c��, and the color-coordinated normalized, average temporal
rofiles of the areas in the similarity image �Fig. 8�d�� are
hown for a control subject. For purposes of comparison, the
ame types of images are shown for a subject with CP �Figs.
�e�–8�h��. It is seen that the area of activation identified by
he clustering algorithm �Fig. 8�b�� does not coincide with the
rea of pixels with similar activation �Fig. 8�c��. In contrast,

ig. 9 Area difference in similarity images for control subjects �Subj1–
ubj5, left tapping–black, right tapping–white�, ones with right hemi-
aretic CP �Subj6–Subj8, left tapping–brick, right tapping–dotted�,
nd ones with left hemiparetic CP �Subj9–Subj10, left tapping–trellis
attern, right tapping–horizontal lines�.
ournal of Biomedical Optics 036008-1
children with CP had areas of activation �Fig. 8�e�� with dis-
similar activation profiles, except for pixels immediately
neighboring the seed-pixel location �Fig. 8�g��. The temporal
profiles of activation are also shown �Figs. 8�d� and 8�h��, in
order to provide a visual example of the degree of similarity
between the seed pixel �black curves� and the most similar
cluster of pixels �level 1�. Because the dynamic warping costs
of the control subjects were pooled together, not all subjects
individually present all five levels of similarity as seen in
Figs. 8�c� and 8�d�.

The area difference of the most similar pixels to the pri-
mary activation area �level 1� in the similarity images was
investigated as a metric for differentiating between controls
and children with CP. In Fig. 9, it is seen that controls typi-
cally had a greater area difference than children with CP. This
difference between the mean values of area difference of con-
trols �12.14 cm2�12.85 cm2� and children with CP
�−0.29 cm2�4.66 cm2� was indeed found to be significant
�p=0.0383, 1–�=0.77, Table 1�. The results for area differ-
ence demonstrate that the similarity concept can highlight dif-
ferences between controls and subjects with CP much better
than the corresponding metric derived from applying a thresh-
old algorithm to the same subject’s activation images. Addi-
tionally, there was no discernible correlation between area dif-
ference and whether children with CP were tapping with their
affected �1.82 cm2�5.09 cm2� or unaffected hand
�1.25 cm2�4.14 cm2, p=0.3259�.

Although children with CP had smaller areas of similarity,
their most similar areas �level 1� were spatially closer to their
seed pixel than in controls �Fig. 10�. To present this difference
the maximum distance among the most similar areas �level 1�
from the seed pixel was found, in which the difference be-
tween the controls �7.43 cm�6.00 cm� and children with CP
�2.18 cm�1.17 cm� was significant �p=0.0223, 1–�=0.73,
Table 1�. The larger distance in controls can be explained by
some similarity areas being seen in the ipsilateral hemisphere
and the larger areas of similarity neighboring the seed pixel,
whereas in children with CP this is not the case.
Furthermore, there is no significant difference �p=0.7427�
when the children with CP were tapping with their

Fig. 10 Maximum distance of the pixel with the highest similarity
�level 1� to the seed pixel in similarity images for control subjects
�Subj1–Subj5, left tapping–black, right tapping–white�, ones with right
hemiparetic CP �Subj6–Subj8, left tapping–brick, right tapping–
dotted�, and ones with left hemiparetic CP �Subj9–Subj10, left
tapping–trellis pattern, right tapping–horizontal lines�.
May/June 2010 � Vol. 15�3�0
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ffected �2.05 cm�1.53 cm� or unaffected hand
2.31 cm�0.84 cm�.

.5 Validation Analysis to Differentiate between
Controls and Subjects with CP

hough four of the five presented metrics gave statistically
ignificant differences between controls and children with CP
distance from center, duration/time-to-peak, area difference
f similarity images, and maximum distance from seed�, there
ere still false positives or false negatives found. Table 1

hows the sensitivity, specificity, positive predictive value
PPV�, and negative predictive value �NPV� for each of these
etrics. Subjects were considered to be in the CP group if

heir metrics were beyond one standard deviation of the cor-
esponding mean value of the same metric for controls.

Table 2 The ipsilateral distance from center and
for four subjects in each group.

Control
Ipsilateral distance

�cm�

Visit 1

LFT Subject 1 5

Subject 2 X

Subject 3 8

Subject 5 9

RFT Subject 1 9

Subject 2 X

Subject 3 8

Subject 5 8

mean±std. �7.83±1.47� �

Paired t-test p=0.294

LFT Subject 7 �RH� X

Subject 8 �RH� 2

Subject 9 �LH� 2

Subject 10 �LH� 2

RFT Subject 7 �RH� 5

Subject 8 �RH� 3

Subject 9 �LH� X

Subject 10 �LH� X

mean±std. �2.80±1.30� �

Paired t-test p=0.835

X is shown when no activation was found in the ipsilate
ournal of Biomedical Optics 036008-1
From Table 1, it is clear that each fNIRS metric performs
differently in each category. For example, the specificity, sen-
sitivity, PPV, and NPV values for area difference in activation
images are low, which supports the t-test conclusion
�p-value=0.068� that this metric may be less useful for dif-
ferentiating between the two subject populations. On the other
hand, distance from center and distance from seed clearly tell
if a subject is a control �PPV=80%, NPV=100%�, while
duration/time-to-peak clearly tells if a subject is in the CP
group �PPV=100%, NPV=80%�. However, the area differ-
ence of similarity does not clearly show if a subject is a con-
trol or with CP, but it does have a higher specificity �80%�
than the area difference in activation images �60%�. Because
no single metric has 100% success, an approach for distin-
guishing between the two subject populations where multiple
metrics are quantified is warranted.

ifference metrics measured in two separate visits

enter Area difference
�cm2�

2 Visit 1 Visit 2

41.04 42.75

19.95 19.95

26.22 26.22

36.48 34.20

22.80 23.94

19.38 19.38

6.84 15.39

15.96 16.53

1.10� �23.58±11.01� �24.80±9.44�

p=0.3181

31.92 30.78

31.92 31.35

17.67 15.96

−2.85 −4.56

15.39 15.39

3.42 5.70

−19.38 −20.52

33.63 35.91

1.69� �13.97±19.10� �13.75±19.54�

p=0.7231

isphere.
area d

from c

Visit

6

X

6

6

8

X

8

8

7.00±

0

7

3

2

3

4

2

3

5

3.62±

0

ral hem
May/June 2010 � Vol. 15�3�1



3
T
o
f
c
f
r
m
i
f
h
r
�

F
t
t

Khan et al.: Identification of abnormal motor cortex activation patterns in children with cerebral palsy…

J

.6 Repeatability
he exact anatomical placement of probes and the quality of
ptical contact with the scalp are common causes of concern
or the repeatability of fNIRS measurements. To reduce such
oncerns in this study, measurements were performed twice
or four subjects in each group �Table 2�. As an example, the
eflectance time series for the source-detector pair with maxi-
um signal, which was the same for both visits, are presented

n Figs 11�a� and 11�b� for a control subject �Subject 2� and
or a subject with CP �Subject 8� tapping with their right
and. It is seen that these time-series signals, as well as the
econstructed activation and activation-threshold images
Figs. 11�c� and 11�d�� have similar patterns for both visits.

ig. 11 Repeated fNIRS measurements for a control �Subject 2� and a
ime-series reflectance patterns for the same source-detector pair, whi
hreshold images �bottom� for each visit.
ournal of Biomedical Optics 036008-1
Furthermore, spatial metrics �distance from center and area
difference� were quantified for both visits and a paired t-test
was performed on these metrics for each subject group. For
both groups, there was no significant difference in these met-
rics between the two visits �Table 2, X is shown when no
activation was found in the ipsilateral hemisphere�. The re-
peatability findings were similar for all other metrics �not
shown�.

4 Discussion and Conclusions
A CW fNIRS instrument was used to image patterns of
change in HbO concentration in the motor cortex of five con-

t with CP �Subject 8� performing right finger tapping: �a,b� show the
show the activation images �top� and their corresponding activation-
subjec
le �c,d�
May/June 2010 � Vol. 15�3�2
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rol children and five children with CP for a finger-tapping
rotocol. A signal-processing method, involving a combina-
ion of bandpass filtering, PCA, and adaptive filtering, was
eveloped to remove global physiological artifacts, such as
espiration, cardiac pulsation, and Mayer waves. The 40-s
apping-rest intervals were averaged together at each time
oint giving a 40-s averaged tapping-rest response for each
ource-detector pair. Images were subsequently reconstructed
or each time point �0.05 s� from the averaged temporal re-
ponses of all source-detector pairs. These series of images, or
heir corresponding time-averaged images, were processed by

clustering algorithm to identify the location and spatial ex-
ent of areas of activation. Additionally, the same recon-
tructed images were analyzed by a similarity algorithm that
dentified areas of lower change in HbO concentration com-
ared to primary activation areas that nevertheless had similar
emporal change patterns to the latter. Therefore, the similar-
ty algorithm unveiled secondary activation areas that to our
nowledge have not been studied before. Because of their
maller activation values, compared to the primary activation
egion, these areas were not easily discernible in the time-
veraged activation images and were considered to be in the
ange of the baseline data according to the clustering algo-
ithm.

After application of the activation threshold or of the simi-
arity algorithm, a number of metrics were quantified in the
rocessed images. These metrics were either spatial �distance
rom center and area difference� or temporal �duration and
ime-to-peak� in nature. The thresholded activation images
resented differences between controls and children with CP
sing the distance from center metric and the ratio of duration
ver time-to-peak. Similarity analysis provided the area dif-
erence metric �Fig. 9� with higher statistical significance for
ifferentiating between controls and children with CP com-
ared to the corresponding metric from thresholded time-
veraged images of activation �Fig. 6�. Moreover, similarity
isplayed a significant difference in spatial location of areas
f similarity by measuring the maximum distance of the most
imilar areas of the seed pixel from the seed pixel. It was
ound that some of the above-described metrics could differ-
ntiate between controls and children with CP with high sta-
istical significance and statistical power, despite the small
umbers of subjects involved, as summarized in Table 3. It is

able 3 Summary of results of the differences found between con-
rols and children with CP.

Metric p value Statistical power

Distance from center
�Ipsilateral hemisphere of activation

image�

�0.0001 0.98

Duration/time-to-peak
�CP affected hand, activation image�

0.0002 0.99

Area differencea

�Similarity image�
0.0383 0.77

aximum distance from the seed pixela

�Similarity image�
0.0223 0.73

Indicates the use of the Mann-Whitney test instead of a two-sampled t-test.
ournal of Biomedical Optics 036008-1
important to point out that the identified differences between
subject populations for any one metric were deduced by sta-
tistical analysis. Therefore, a subject with CP may have had
some metrics with values that overlapped with the range of
corresponding values for control subjects. It is conceivable
that as the subject population increases with future fNIRS
studies, it will be possible to differentiate more clearly be-
tween subject groups by training a classification algorithm
�e.g., a support vector machine or a neural network�47 to ac-
cept as an input a set of fNIRS image metrics for each indi-
vidual and correctly classify them.

Although fNIRS may not be needed for the initial diagno-
sis of the CP condition, it can become a practically imple-
mentable method that will enable clinicians to study cortical
plasticity. The analysis methods presented above offer quan-
titative tools that may help differentiate between individuals
that appear to have the same CP disability phenotype as quan-
tified by standard upper extremity motor skill classifications
schemes �e.g., MACS, SHUEE, and Nine Hole Peg Test�.4–6

In addition, the current work is a first step toward the en-
deavor to establish fNIRS as an easily accessible tool for
monitoring plastic changes in the cortex of patients with CP
during and after therapy, which should be feasible as recent
fMRI studies have indicated.49–52

Acknowledgments
This work was supported by a grant from the William Ran-
dolph Hearst Foundation and The United Cerebral Palsy Re-
search and Educational Foundation. We also acknowledge the
clinical staff at the Texas Scottish Rite Hospital in Dallas for
its time and support. We show our gratitude to Dr. George
Kondraske of the University of Texas at Arlington for provid-
ing the tapping board.

References
1. J. Rice, R. Russo, J. Halbert, P. Essen, and E. Haan, “Motor function

in 5-year old children with cerebral palsy in the South Australian
population,” Dev. Med. Child Neurol. 51, 551–556 �2009�.

2. W. Kulak, W. Sobaniec, J. Kuzia, and L. Bocknowski, “Neurophysi-
ologic and neuroimaging studies of brain plasticity in children with
spastic cerebral palsy,” Exp. Neurol. 198, 4–11 �2006�.

3. J. A. Eyre, “Corticospinal tract development and its plasticity after
perinatal injury,” Neurosci. Biobehav Rev. 31, 1136–1149 �2007�.

4. A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M.
Arner, A. M. Öhrvall, and P. Rosenbaum, “The manual ability clas-
sification system �MACS� for children with cerebral palsy: scale de-
velopment and evidence of validity and reliability,” Dev. Med. Child
Neurol. 48, 549–554 �2006�.

5. J. R. Davis, L. C. Peace, L. V. Wagner, M. Gidewall, D. W. Black-
hurst, and W. M. Roberson, “Validation of the Shriners Hospital for
Children upper extremity evaluation �SHUEE� for children with
hemiplegic cerebral palsy,” J. Bone Jt. Surg. 88, 326–333 �2006�.

6. K. Oxford Grice, K. A. Vogel, V. Le, A. Mitchell, S. Muniz, and M.
A. Vollmer, “Adult norms for a commercially available nine hole peg
test for finger dexterity,” Am. J. Occup. Ther. 57�5�, 570–573 �2003�.

7. M. Wilke, S. K. Holland, J. S. Myseros, V. J. Schmithorst, and W. S.
Ball, “Functional magnetic resonance imaging in pediatrics,” Neuro-
pediatrics 34�5�, 225–233 �2003�.

8. I. Krageloh-Mann and V. Horber, “The role of magnetic resonance
imaging in furthering understanding of the pathogenesis of cerebral
palsy,” Dev. Med. Child Neurol. 49, 144–151 �2007�.

9. L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns
of central motor reorganization in hemiplegic cerebral palsy,” Brain
116, 1223–1247 �1993�.

10. Y. Maegaki, Y. Maeoka, S. Ishii, I. Eda, A. Ohtagaki, T. Kitahara, N.
Suzuki, K. Yoshino, A. Ieshima, T. Koeda, and K. Takeshita, “Central
May/June 2010 � Vol. 15�3�3

http://dx.doi.org/10.1111/j.1469-8749.2008.03182.x
http://dx.doi.org/10.1016/j.expneurol.2005.11.014
http://dx.doi.org/10.1016/j.neubiorev.2007.05.011
http://dx.doi.org/10.1017/S0012162206001162
http://dx.doi.org/10.1017/S0012162206001162
http://dx.doi.org/10.2106/JBJS.E.00298
http://dx.doi.org/10.1055/s-2003-43260
http://dx.doi.org/10.1055/s-2003-43260
http://dx.doi.org/10.1111/j.1469-8749.2007.00144.x
http://dx.doi.org/10.1093/brain/116.5.1223


1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

Khan et al.: Identification of abnormal motor cortex activation patterns in children with cerebral palsy…

J

motor reorganization in cerebral palsy patients with bilateral cerebral
lesions,” Pediatr. Res. 45, 559–567 �1999�.

1. G. W. Thickbroom, M. L. Byrnes, S. A. Archer, L. Nagarajan, and F.
L. Mastaglia, “Differences in sensory and motor cortical organization
following brain injury early in life,” Ann. Neurol. 49, 320–327
�2001�.

2. M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-
Mann, “Two types of ipsilateral reorganization in congenital hemi-
paresis. A TMS and fMRI study,” Brain 125, 2222–2237 �2002�.

3. Y. Vandermereen, M. Davare, J. Duque, and E. Olivier, “Reorganiza-
tion of cortical hand representation in congenital hemiplegia,” Eur. J.
Neurosci. 29, 845–854 �2009�.

4. Y. Vandermereen, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlö-
gel, and A. G. De Volder, “Functional reorganization of brain in
children affected with congenital hemiplegia: fMRI study,” Neuroim-
age 20, 289–301 �2003�.

5. S. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei,
“Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag.
25�4�, 54–61 �2006�.

6. M. Schweiger, J. Gibson, and S. R. Arridge, “Computational aspects
of diffuse optical tomography,” IEEE Comput. Sci. Eng. 5�6�, 33–41
�2003�.

7. M. Franceschini, S. Fantini, J. Thompson, J. Culver, and D. Boas,
“Hemodynamic evoked response of the sensorimotor cortex mea-
sured noninvasively with near-infrared optical imaging,” Psycho-
physiology 40, 548–560 �2003�.

8. L. Hernandez, D. Badre, D. Noll, and J. Jonides, “Temporal sensitiv-
ity of event-related fMRI,” Neuroimage 17, 1018–1026 �2002�.

9. B. Dilharreguy, R. Jones, and C. Moonen, “Influence of fMRI data
sampling on the temporal characterization of the hemodynamic re-
sponse,” Neuroimage 19, 1820–1828 �2003�.

0. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas,
“HomER: a review of time-series analysis methods for near-infrared
spectroscopy of the brain,” Appl. Opt. 48�10�, D280–D298 �2009�.

1. M. Kilmer, P. C. Hansen, and M. I. Espanol, “A projection-based
approach to general-form Tikhonov regularization,” SIAM J. Sci.
Comput. (USA) 29�1�, 315–330 �2007�.

2. J. Wang, “Recurrent neural networks for computing pseudoinverses
of rank-deficient matrices,” SIAM J. Sci. Comput. (USA) 18�5�, 1479–
1493 �1997�.

3. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and
D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS
hemodynamic responses to motor stimuli in adult humans,” Neuroim-
age 29, 368–382 �2006�.

4. G. Strangman, M. A. Fraceschini, and D. A. Boas, “Factors affecting
the accuracy of near-infrared spectroscopy concentration calculations
for focal changes in oxygenation parameters,” Neuroimage 18, 865–
879 �2003�.

5. T. Sato, M. Ito, T. Suto, M. Kameyama, M. Suda, Y. Yamagishi, A.
Ohshima, T. Uehara, M. Fukuda, and M. Mikuni, “Time courses of
brain activation and their implications for function: a multichannel
near-infrared spectroscopy study during finger tapping,” Neurosci.
Res. 58, 297–304 �2007�.

6. C. Julien, “The enigma of Mayer waves: facts and models,” Cardio-
vasc. Res. 70, 12–21 �2006�.

7. Y. Zhang, D. Brooks, M. Franceschini, and D. Boas, “Eigenvector-
based spatial filtering for reduction of physiological interference in
diffuse optical imaging,” J. Biomed. Opt. 10�1�, 011014 �2005�.

8. S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T.
Amita, and K. Shimizu, “Removal of the skin blood flow artifact in
functional near-infrared spectroscopic imaging data through indepen-
dent component analysis,” J. Biomed. Opt. 12�6�, 062111 �2007�.

9. C. B. Akgul, A. Akin, and B. Sankur, “Extraction of cognitive-
activity related waveforms from functional near-infrared spectros-
copy signals,” Med. Biol. Eng. Comput. 44, 945–958 �2006�.

0. G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton,
L. De Lethauwer, and S. Van Huffel, “Detection of fast neural signals
in the motor cortex from function near infrared spectroscopy mea-
surements using independent component analysis,” Med. Biol. Eng.
Comput. 42, 92–99 �2004�.
ournal of Biomedical Optics 036008-1
31. Q. Zhang, E. Brown, and G. Strangman, “Adaptive filtering for glo-
bal interference cancellation and real-time recovery of evoked brain
activity: a Monte Carlo simulation,” J. Biomed. Opt. 12�4�, 044014
�2007�.

32. Q. Zhang, E. Brown, and G. Strangman, “Adaptive filtering to reduce
global interference in evoked brain activity detection: a human sub-
ject case study,” J. Biomed. Opt. 12�6�, 064009 �2007�.

33. Q. Zhang, G. Strangman, and G. Ganis, “Adaptive filtering to reduce
global interference in non-invasive NIRS measures of brain activa-
tion: How well and when does it work?,” Neuroimage 45, 788–794
�2009�.

34. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain
function by near-infrared spectroscopy using an adaptive general lin-
ear model,” Neuroimage 46, 133–143 �2009�.

35. G. Alexandrakis, B. Khan, F. Tian, N. Asanani, K. Behbehani, M.
Delgado, and H. Liu, “Translation of near infrared brain imaging to
assess children with cerebral palsy,” Proc. SPIE 7180, 718005
�2009�.

36. J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proc. 5th Berkeley Symp. on Math. Stat.
Prob., pp. 281, University of California, Berkeley �1967�.

37. N. Asanini, “Study of NIRS based motor cortex activation patterns in
cerebral palsy affected kids using image based metrics,” Masters
Thesis, University of Texas at Arlington, Arlington �2008�.

38. S. Xie, B. Xiang, L. Yu, and H. Deng, “Tailoring noise frequency
spectrum to improve NIR determinations,” Talanta 80, 895–902
�2009�.

39. C. Vaiphasa, “Consideration of smoothing techniques for hyperspec-
tral remote sensing,” Photogrammetry Remote Sens. 60, 91–99
�2006�.

40. T. Sebastian, P. Klein, and B. Kimia, “On aligning curves,” IEEE
Trans. Pattern Anal. Mach. Intell. 25, 116–124 �2003�.

41. R. Agrawal, K. I. Lin, H. S. Sawhney, and K. Shim, “Fast similarity
search in the presence of noise, scaling, and translation in times-
series databases,” in Proc. 21st Int. Conf. on Very Large Databases,
490–501 �1995�.

42. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,” in Proc. ACM SIGMOD
Conf., Minneapolis, pp. 419–429, ACM, New York �1994�.

43. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimension-
ality reduction for fast similarity search in large time series data-
bases,” J. Knowl. Inf. Syst. 3�3�, 263–286 �2001�.

44. X. Xi, E. Keogh, C. Shelton, and L. Wei, “Fast time series classifi-
cation using numerosity reduction,” in Proc. 23rd Int. Conf. on Ma-
chine Learning, pp. 1033–1040, ACM, Pittsburgh, PA �2006�.

45. E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” J. Knowl. Inf. Syst. 7, 358–386 �2005�.

46. H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” IEEE Trans. Acoust., Speech, Sig-
nal Process. 26, 43–49 �1978�.

47. D. Liu and J. Yu, “Otsu method and K-means,” in Proc. of 9th Int.
Conf. on Hybrid Intelligent Systems, pp. 344–349, IEEE Computer
Society, Washington, DC �2009�.

48. J. H. Zar, Biostastical Analysis, 3rd ed., Prentice Hall, pp. 65–178,
Englewood Cliffs �1996�.

49. J. Kamruzzaman and R. K. Begg, “Support vector machines and
other pattern recognition approaches to the diagnoses of cerebral
palsy gait,” IEEE Trans. Biomed. Eng. 53�12�, 2479–2490 �2006�.

50. S. You, S. Jang, Y. Kim, I. Barrow, and M. Hallett, “Cortical reorga-
nization induced by virtual reality therapy in children with hemip-
aretic cerebral palsy,” Dev. Med. Child Neurol. 47, 628–635 �2005�.

51. J. Phillips, K. Sullivan, P. Burtner, A. Caprihan, B. Provost, and A.
Bernitsky-Beddingfield, “Ankle dorsiflexion fMRI in children with
cerebral palsy undergoing intensive body-weight-supported treadmill
training: a pilot study,” Dev. Med. Child Neurol. 49, 39–44 �2007�.

52. T. L. Sutcliffe, W. J. Logan, and D. L. Fehlings, “Pediatric constraint-
induced movement therapy is associated with increased contralateral
activity on function magnetic resonance imaging,” J. Child Neurol.
24�10�, 1230–1235 �2009�.
May/June 2010 � Vol. 15�3�4

http://dx.doi.org/10.1203/00006450-199904010-00016
http://dx.doi.org/10.1002/ana.68
http://dx.doi.org/10.1093/brain/awf227
http://dx.doi.org/10.1111/j.1460-9568.2009.06619.x
http://dx.doi.org/10.1111/j.1460-9568.2009.06619.x
http://dx.doi.org/10.1016/S1053-8119(03)00262-3
http://dx.doi.org/10.1016/S1053-8119(03)00262-3
http://dx.doi.org/10.1109/MEMB.2006.1657788
http://dx.doi.org/10.1111/1469-8986.00057
http://dx.doi.org/10.1111/1469-8986.00057
http://dx.doi.org/10.1016/S1053-8119(01)91017-1
http://dx.doi.org/10.1016/S1053-8119(03)00289-1
http://dx.doi.org/10.1364/AO.48.00D280
http://dx.doi.org/10.1137/050645592
http://dx.doi.org/10.1137/050645592
http://dx.doi.org/10.1137/S1064827594267161
http://dx.doi.org/10.1016/j.neuroimage.2005.08.065
http://dx.doi.org/10.1016/j.neuroimage.2005.08.065
http://dx.doi.org/10.1016/S1053-8119(03)00021-1
http://dx.doi.org/10.1016/j.neures.2007.03.014
http://dx.doi.org/10.1016/j.neures.2007.03.014
http://dx.doi.org/10.1016/j.cardiores.2005.11.008
http://dx.doi.org/10.1016/j.cardiores.2005.11.008
http://dx.doi.org/10.1117/1.1852552
http://dx.doi.org/10.1117/1.2814249
http://dx.doi.org/10.1007/s11517-006-0116-3
http://dx.doi.org/10.1007/BF02351016
http://dx.doi.org/10.1007/BF02351016
http://dx.doi.org/10.1117/1.2754714
http://dx.doi.org/10.1117/1.2804706
http://dx.doi.org/10.1016/j.neuroimage.2008.12.048
http://dx.doi.org/10.1016/j.neuroimage.2009.01.033
http://dx.doi.org/10.1117/12.809340
http://dx.doi.org/10.1016/j.talanta.2009.08.010
http://dx.doi.org/10.1016/j.isprsjprs.2005.11.002
http://dx.doi.org/10.1109/TPAMI.2003.1159951
http://dx.doi.org/10.1109/TPAMI.2003.1159951
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/TBME.2006.883697
http://dx.doi.org/10.1017/S0012162205001234
http://dx.doi.org/10.1177/0883073809341268

