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Abstract. Optical topography �OT� signals measured during an ex-
periment that used activation tasks for certain brain functions contain
neuronal-activation induced blood oxygenation changes and also
physiological changes. We used independent component analysis to
separate the signals and extracted components related to brain acti-
vation without using any hemodynamic models. The analysis proce-
dure had three stages: first, OT signals were separated into indepen-
dent components �ICs� by using a time-delayed decorrelation
algorithm; second, task-related ICs �TR-ICs� were selected from the
separated ICs based on their mean intertrial cross-correlations; and
third, the TR-ICs were categorized by k-means clustering into TR
activation-related ICs �TR-AICs� and TR noise ICs �TR-NICs�. We ap-
plied this analysis procedure to the OT signals obtained from experi-
ments using one-handed finger-tapping tasks. In the averaged wave-
form of the TR-AICs, a small overshoot can be seen for a few seconds
after the onset of each task and a few seconds after it ends, and the
averaged waveforms of the TR-NICs have an N-shaped pattern.
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Introduction

ndependent component analysis1–5 �ICA� is a useful method
or analyzing functional magnetic resonance imaging �fMRI�
r optical topography6–8 �OT� signals because they both con-
ain components due to system noise and due to physiological
hanges other than neuronal activation-induced blood oxygen-
tion changes.9–14 ICA, however, still has some problems

ddress all correspondence to Takusige Katura, Hitachi, Ltd., Advanced Re-
earch Laboratory, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan. Tel:
1 49 296 6111; Fax: 81 49 296 5999; Email: takusige.katura.ny@hitachi.com
ournal of Biomedical Optics 054008-
when used in practical applications. One of these problems is
that the separated ICs need to be assigned by using another
procedure for each case. In fMRI studies, we can extract neu-
ronal activity-related ICs by calculating the correlation be-
tween the ICs and well-established model functions for neu-
ronal activation signals. However, in OT studies, we have not
obtained such model functions yet. We have developed an
analysis procedure for extracting ICs related to neuronal acti-
vation separated from OT signals that does not need any
model functions.

1083-3668/2008/13�5�/054008/11/$25.00 © 2008 SPIE
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Functional brain imaging studies involve investigating the
esponse of localized cortical activations to experimental
asks. Regional cerebral hemodynamic changes are thought to
e related to localized cortical activations. However, these
hanges are sometimes affected by systemic hemodynamics.
ny systemic hemodynamic changes occurring during experi-
ental tasks interfere with the measured cerebral hemody-

amic changes and obscure the results even if the actual neu-
onal activations related to the experimental tasks are
ocalized in certain cortical areas.15 These systemic hemody-
amic changes are considered global noise components when
he measurement is intended to examine a localized brain
unction. When the amplitudes of these components are neg-
igible, the interference caused by them may not be a serious
roblem. However, in experiments using motor tasks that af-
ect systemic hemodynamics, the measured hemodynamic
hanges may contain systemic changes, such as noise that are
ot negligible. Nonnegligible systemic changes may also oc-
ur in experiments involving cognitive tasks that may affect
he autonomic nervous system. Any analysis of these noisy
T signals must take this effect into account and treat the
oise as appropriately as possible. Using a simple bandpass
lter is not the best way to remove signals caused by systemic
emodynamic changes because the signals always fluctuate
cross a wide range of frequencies, including fluctuations due
o hemoglobin changes caused by cortical activation.12,13

There are three stages in the analysis procedure we pro-
ose �Fig. 1�. In the first stage, we use ICA to separate the
ignals measured by OT, which are a combination of source
ignals. In the second stage, ICs are selected based on mean
ntertrial cross-correlation �MITC�, which is a measure of ap-
ropriateness for task-related ICs �TR-ICs�. If a given IC is
eproducible over repeated trials, it can be regarded as a TR-
C. However, both systemic changes and cortical activation
hanges are sometimes TR changes.10,11,13 Therefore, in the
hird stage, we first categorize TR-ICs into two clusters using

k-means clustering method. One of the two clusters is ex-
ected to consist of TR neuronal activation-related ICs �TR-
ICs� and the other of TR noise ICs �TR-NICs�. This method
orks well when the waveforms of the two types of TR-ICs

re significantly different. Then, after categorizing the TR-ICs
nto two clusters, we classify the clusters. We use locality of
rain function to determine whether a cluster corresponds to
R-AIC or TR-NIC. If the cluster indicates an explicit local-

ty, then it can be classified as TR-AIC. Such an approach will
e also be useful for model-based analysis methods because it
ill provide helpful information for constructing empirical
odels for task-induced cerebral hemodynamic changes.
There have been numerous fMRI studies that used the ICA

ethod to separate mixed activation signals �i.e., signals con-
aining activation signals and noises�.16–25 For example, Bar-
els and Zeki16 reported using a spatial-ICA method. To
larify whether ICs were appropriate, they checked the spatial
nd temporal attributes of ICs. They also determined the re-
ationships between ICs using the IC’s temporal aspects.

In OT studies, new analysis approaches that treat noises in
bserved signals have been developed.15,26–29 Shroeter et al.29

nd Plichta et al.28 used a model-based analysis approach
ased on a general linear model to extract cortical activation
hanges from noisy OT signals. Zhang et al.15 proposed using
n analysis procedure without using a hemodynamic model.
ournal of Biomedical Optics 054008-
They assumed that the signals measured in the resting period
contain only systemic or other noises and filtered out noises in
the activation period by eigenvector-based filtering to reduce
physiological interference in diffuse optical imaging. Morren
et al.27 demonstrated the potential of the ICA method in ex-
tracting fast neuronal signals in the motor cortex. For the data
from finger tapping at �2.5 times the heart beats, they used a
second-order blind-identification algorithm, which is the same
as the ICA algorithm we use. They found that the power of
selected ICs at a given finger-tapping frequency was larger in
a task period than in a rest period in 9 out of 14 subjects.
Akgul et al.26 also applied the ICA method �FastICA30� to
extract cognitive activity-related waveforms. They checked
the correlation coefficient �CC� between separated ICs and a
Gamma function model for brain hemodynamic response
�BHR�. The CC for an oddball task period was larger than the
CC for a rest period. They concluded that it was plausible that
waveforms extracted using the ICA method were related to
BHR. In our study, to demonstrate the general applicability of
the ICA method, we analyzed the data for a block-design
paradigm and evaluated the results without using the hypo-
thetical hemodynamic model function.

2 Method
2.1 Participants and Experimental Paradigm
OT data obtained from 30 healthy adult participants �20
males, 10 females�, all of whom were righthanded, was used

Fig. 1 Schematic diagram of data analysis. Participant data was sepa-
rately analyzed in first and second stages. Then, TR-ICs, results from
second stage, were collected from all participants and classified in
third stage.
September/October 2008 � Vol. 13�5�2
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n this study. All participants gave informed consent before
articipation. The data set we used in this study was the same
ata described by Sato et al.31

In the task period, participants were asked to tap their left
r right thumb and one of their other fingers sequentially and
ontinuously after the visual cue, an asterisk, began blinking
t 3 Hz. The experimental paradigm consisted of five repeti-
ive sets. Each set consisted of a 30-s rest period and a 30-s
ask period. All participants performed the task once with
heir left hand and once with their right hand. Participants
ere told to relax in a dark room. In addition, 29 of the 30
articipants were assigned no tasks but still saw the same
isual cues as were presented in the experimental tasks.

.2 Data Acquisition
ll data were measured using an ETG-100 �Hitachi Medical
orporation, Japan�, which had 24 measurement positions.
he wavelengths of the irradiation light were 780 and
30 nm. The light was modulated at different frequencies.
he signals for all measurement positions were sampled si-
ultaneously at a frequency of 10 Hz. Twelve probes used to
easure responses were arranged on a 3-by-3 probe holder

Fig. 2�, with one probe holder on each side of the partici-
ant’s head. The center of the probe holder was C3 or C4 �as
efined by the international 10–20 system32�, which is where
he sensorimotor cortex is located.

.3 Time-Delayed Decorrelation Algorithm
e used the time-delayed decorrelation algorithm �TDD� to

eparate OT signals. The TDD is based on the time structure
f data �temporal ICA�.1,2,33–36 In this analysis, we assumed
hat the cross-correlations between different source signals
anished with any time delay �i.e., the independence of source
ignals is represented by a zero cross-correlation in any time
elay�. Detailed explanations of the TDD can be found in
revious studies.33,34,36

.4 Analysis Procedure

.4.1 Signal preprocessing
e analyzed all the signals using a software we developed

alled the Platform for Optical Topography Analysis Tools, a
lug-in-based analysis platform that runs on Matlab® 6.5
Math Works, Inc.�. We preprocessed all the data in the fol-
owing way. First, we passed the data through a bandpass

ig. 2 Probe configurations over left and right sensorimotor areas cen-
ered on locations C3 and C4, respectively.
ournal of Biomedical Optics 054008-
filter with a bandwidth of 0.008 to 0.5 Hz with a rectangular
window. Second, we detected motion artifacts based on the
criteria that the signal change between two successive sam-
plings is �0.3 mM mm or that the support of the signal val-
ues for each measurement position is �1.0 mM mm. The
measured positions of a motion artifact were excluded from
the analysis even if the artifact was found only once.

2.4.2 Signal separation
We conducted principal component analysis �PCA� on the ob-
tained data to denoise the data set and to truncate the data
dimension as the first step in signal separation. The original
data were collected from 24 measurement positions that took
3000 samplings �at a sampling frequency of 10 Hz�. The PCA
truncation neglects components that contribute �1.0% of the
total energy. Thus, the component numbers of all the data sets
were reduced from 24 to �18.

In the second step, we applied TDD to the PCA denoised
data set separately for each participant. We set the time delay
between 0 and 15 s in 1.5-s steps. In the third step, we se-
lected TR-ICs from all the ICs from all participants. The cri-
terion for detecting TR-ICs was intertrial reproducibility,
which was measured by using the MITC obtained from the
time course data for ICs alone. This was not a model-based
method, but rather a data-based one. The MITC is the average
value of the interblock correlation coefficients over all the
pairs of blocks. In this study, the number of pairs is 10 be-
cause the number of blocks is 5 for each session �5C2=10�.
To select TR-ICs from all the ICs, in our group analysis, we
set a criterion that MITC was �0.2. This threshold was de-
termined for each experimental condition based on the distri-
bution of the MITC values. As shown in Fig. 3, for all the
experimental conditions the MITC value symmetrically dis-
tributes around zero within a range of −0.2 to 0.2, where the
corresponding IC does not seem to be task related. We nor-
malized all TR-ICs �mean 0, s.d.=1� for further group analy-
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Fig. 3 Histograms of MITC distributions for LT, RT, and NT. �a�, �c�,
and �e� represent oxy-Hb, and �b�, �d�, and �f� represent deoxy-Hb for
LT, RT, and NT, respectively.
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is. Note that we applied smoothing to all trial data with a
aussian kernel in order to calculate MITC �FWHM 5 s�.

Another criterion for finding TR-ICs is a model-based one
hat checks cross-correlation between the ICs and the model
unction. This method relies entirely on the accuracy of the
odel. The problem is that such accuracy has not yet been

stablished for OT signals. However, OT signals are clear
nough compared to fMRI signals for their wave-form char-
cteristics to be determined. Therefore, it is possible to select
R-ICs based on the reproducibility of waveforms for repeti-

ive trials. Such reproducibility is a basic concept in func-
ional brain imaging. This criterion is more robust than the

odel-based one.

.4.3 Evaluation of task-related independent
components

ssuming that TR-ICs were of two types, we classified them
nto TR-AIC and TR-NIC clusters. We also assumed that time
ourses of two types of TR-ICs differed and used a k-means
lustering method. The distance measure in the clustering pro-
ess was based on the Pearson correlation coefficient. To clas-
ify signals using waveforms rather than amplitudes, we nor-
alized the components and determined the sign of the IC so

hat the correlation between the boxcar waveform and the IC
ecame positive. The data for the three experimental condi-
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ournal of Biomedical Optics 054008-
tions �left-handed finger tapping �LT�, right-handed finger tap-
ping �RT�, and no-task �NT�� were analyzed separately.

To assign classified clusters, we examined the “spatial”
attribute of each IC derived from temporal ICA, which is
based on only the time structure of signals and not on the
spatial attribute. The activation area is thought to be localized
in a certain cortical subdivision; therefore, if a TR-IC is defi-
nitely localized, then the TR-IC can be classified as a TR-
AIC. In this study, however, because we focused only on the
sensorimotor cortex area, the measurement area was not large
enough to determine the general locality. Therefore, we
adopted a laterality index as a measure of locality. If the spa-
tial attribute of a TR-IC represents the definite contralaterality
in a one-hand finger-tapping task, the TR-IC belongs to a
TR-AIC. This criterion was adopted for determining which of
the two clusters corresponds to the set of TR-AICs. We used
the weighted laterality index �wLI�37,38 to quantify the lateral-
ity of each TR-IC. The wLI indicates the degree of laterality
from −1 �completely lateralized to the right hemisphere� to 1
�completely lateralized to the left hemisphere�. To calculate
the wLI, we obtained the spatial weight W� of the TR-IC
under consideration for each measurement position by setting
W� to zero if the spatial weight W was smaller than half the
value of the maximum of W. Using W�, we defined wLI as
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wLI =
�WL� − �WR�

�WL� + �WR�
, �1�

here WL� and WR� are two parts of W�, whose measurement
ositions are in the left and right hemispheres, respectively.
he sums were taken over measurement positions in each
emisphere.

Results
igure 4 shows oxy hemoglobin �oxy-Hb� changes for LT.
he time courses for clusters 1 and 2 continuous and block
veraged over five trials are shown in Figs. 4�a�, 4�c�, 4�b�,
nd 4�d�, respectively. Clear task-related changes can be seen
ith a few-seconds delay. The same tendency is found in the

esults for RT �Fig. 5�.
In cluster 1 �Fig. 4�a� and 4�b��, there is a small overshoot

f a few seconds after the onset of each task and a few sec-
nds after it ends, which is often found in the results of motor
ask experiments. Steady-state periods appear in the middle of
he trial but are not completely stable. The signals increase
ontinuously and converge at a peak a few seconds after the
nd of the task. After the peak, the signals fall rapidly to the
aseline.

Cluster 2 also shows task-related changes. However, it
hows no steady-state period, and the time structure is an
-shaped pattern with its inflection points appearing a few

econds after the start and end of the task period.
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The amplitude power ratios of TR-ICs are shown in Table
1. The mean amplitude power ratios, which are averaged val-
ues of power ratios for all participants for each experimental
condition, are shown in Fig. 6. For evaluation of the power
contribution ratio of selected TR-ICs to all separated ICs,
we defined the amplitude power ratio with the following
equation:

rj =
�iWij

2

�i� jWij
2 � 100, �2�

where index i is the channel number and index j is the com-
ponent number, and Wij is the weight value for the jth com-
ponent uj�t� at the ith channel. The mean amplitude power
ratio of LT-cluster 1 is larger than that of RT-cluster 1 for
oxy-Hb �p�0.015�. The averaged MITC values tend to be
higher in cluster 1 than in cluster 2. The values are �0.2 in
both clusters �Table 2�.

To assign the two clusters, we checked the spatial at-
tributes of the clusters by introducing wLI. The wLI values
are −0.47�0.64 and −0.11�0.74 for LT-clusters 1 and 2,
respectively �Table 2�. The wLI of LT-cluster 1 shows clear
contralaterality �p�0.01; hypothesis is wLI=0�, but cluster 2
does not �p=0.55�. The same results are also found in the
wLI values for RT clusters.

Results for deoxy hemoglobin �deoxy-Hb� are shown in
Figs. 7 and 8 and Tables 1 and 2. The extracted time courses
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re almost the same as those for oxy-Hb �Figs. 7 and 8�. The
mplitude power ratios of deoxy-Hb differ significantly be-
ween clusters 1 and 2 for deoxy-Hb but not for oxy-Hb
Table 1�. The averaged MITCs for deoxy-Hb are similar to
hose for oxy-Hb �Table 2�. The values of wLI show contralat-
rality for both LT and RT that is statistically significant in LT
p=0.01� but not in RT �p=0.20�.

The mean-amplitude-power ratios of TR-ICs are
.5�7.2% and 1.3�2.6% for oxy- and deoxy-Hb concen-

Table 1 Amplitude power ratio of T

Oxy

LT RT

cluster 1 cluster 2 cluster 1 cluster 2

p1a 14.9 0.0 — —

p2 28.6 0.0 0.0 10.0

p3 4.8 28.1 0.0 16.1

p4 16.6 0.0 14.6 0.0

p5 18.2 0.0 10.1 0.0

p6 12.8 21.2 6.6 7.4

p7 5.8 0.0 5.5 9.5

p8 2.6 0.0 2.0 24.8

p9 9.6 0.0 14.5 0.0

p10 3.1 44.2 10.1 0.0

p11 10.9 0.0 0.0 0.0

p12 18.5 38.1 15.7 21.1

p13 45.1 0.0 14.9 24.9

p14 15.2 0.0 7.2 20.5

p15 11.1 0.5 6.0 0.0

p16 0.0 4.0 0.0 11.6

p17 4.7 0.0 7.8 0.0

p18 67.9 0.0 12.2 43.2

p19 21.8 0.0 7.5 32.7

p20 12.1 24.2 14.0 29.7

p21 4.7 24.8 12.7 21.6

p22 15.6 0.0 5.3 0.0

p23 6.5 2.9 11.2 3.1

p24 29.2 0.0 11.8 0.0

p25 28.3 10.2 21.7 3.3

p26 47.1 21.6 50.9 22.8

p27 38.3 20.1 42.6 13.2

p28 6.2 2.8 8.1 2.9

p29 26.2 2.6 21.4 0.0

p30 10.8 3.6 11.3 14.1

mean 17.9 8.3 11.9 11.5

s.d. 15.5 12.9 11.3 12.1
Note: For participant 1, “—” means that no data was available because of m
ournal of Biomedical Optics 054008-
tration changes, respectively, for NT �Table 1�. These ratios
are smaller than those for LT and RT. The numbers of TR-ICs
found in all extracted ICs from all participants are also
smaller than those in LT and RT. For oxy-Hb concentration
changes, the numbers of the TR-ICs found are 55, 51, and 14,
while the total number of ICs are 522, 503, and 476 for LT,
RT, and NT, respectively. For deoxy-Hb concentration
changes, the numbers of the TR-ICs found are 44, 42, and 8,
while the total numbers of ICs are 540, 512, and 512 for LT,

or all 30 participants in percent.

Deoxy

LT RT NT

cluster 1 cluster 2 cluster 1 cluster 2 TR-ICs

0.0 0.0 — — —

0.0 0.0 0.0 0.0 0.0

13.4 0.0 2.1 5.0 0.0

0.0 0.0 0.0 2.7 0.0

9.1 0.0 0.0 13.0 0.0

7.9 3.0 0.0 0.0 0.0

0.0 5.3 2.4 0.0 2.3

2.4 0.0 4.9 0.0 0.0

0.0 0.0 9.1 0.0 0.0

0.0 3.8 0.0 2.0 0.0

11.0 0.0 0.0 0.0 0.0

34.1 11.4 11.9 1.2 0.0

7.0 0.0 5.2 0.0 0.0

43.4 0.0 23.0 2.8 0.0

9.7 22.9 9.5 0.0 0.0

0.0 4.0 17.5 0.0 4.5

4.5 0.0 0.0 1.1 0.0

12.7 4.7 41.8 6.1 10.3

3.5 5.5 1.5 6.0 0.0

6.1 0.0 10.2 0.0 0.0

15.5 9.2 25.1 0.0 1.7

5.8 0.0 1.8 3.7 0.0

7.6 6.7 4.5 0.0 6.1

12.7 1.3 7.0 16.1 1.9

6.5 0.0 2.1 0.0 0.0

27.7 2.7 24.5 25.6 0.0
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T, and NT, respectively. Figure 9 shows the time courses of
R-ICs for oxy-Hb concentration changes for NT.

Discussion
.1 Assignment of Cluster 1
luster 1, which is related to TR-AIC based on their wave-

orms, showed definite contralaterality in its spatial weight
atterns. It has been wellknown that cortical activation
aps show contralaterality for one-handed motor

asks10,11,13,15,27,31,39. But the contralaterality found in cluster 1
s not self-evident from our analysis procedure because no
patial attribute was used in selecting ICs. This indicates that
pplication of the ICA to OT signal analysis is valid.

There was no time delay in the peak between oxy-Hb and
eoxy-Hb. If oxy- and deoxy-Hb for cluster 1 are both pure
R-AICs, then it can be said that such peak time property
grees with the results reported by Boden et al.10 They re-
iewed latency differences between oxy- and deoxy-Hb mea-
ured in the visual and the motor cortex. The latency differ-
nces measured in the visual area �1 s, but those measured in
he motor area were �1 s, according to other researchers’
eports.11,40–47 In the study by Boden et al., however, they

Table 2 Derived values av

Oxy

LT

cluster 1 cluster 2 cluster

Number of ICs in a cluster 37 18 27

Mean intertrial
cross-correlation

mean 0.52 0.38 0.56

s.d. 0.18 0.11 0.15

Weighted
laterality index

mean −0.47 −0.11 0.45

s.d. 0.64 0.74 0.63

LT
cluster1

LT
cluster2

RT
cluster1

RT
cluster2

0

5

10

15

20

25

30

*
M
ea
n
po
w
er
ra
tio
(%
)

ig. 6 Averaged power ratios for oxy-Hb changes. Error bar indicates
tandard deviation over ICs in cluster. Averaged power ratio for LT-
luster 1 is larger than that for RT-cluster 1 �p�0.015�.
ournal of Biomedical Optics 054008-
have shown that the latency difference was �1 s in motor
area by using experimental tasks that retain subject’s auto-
nomic load.10 It was considered that the discrepancy in la-
tency differences between the visual and the motor cortex was
caused from the difference of hemodynamic regulatory
mechanism or neuronal activations between two areas.48–50

But the study by Boden et al. provides another possible hy-
pothesis that the systemic changes cause the latency differ-
ences between oxy- and deoxy-Hb in functional NIRS10. As
described in Section 4.2, we can demonstrate that such
systemic changes are closely related to the components in
cluster 2.

4.2 Assignment of Cluster 2
The waveforms of the ICs in cluster 2 are different from those
of the TR-AICs. The waveforms are composed of a continu-
ous linear change that appears a few seconds after the onset of
the task and an opposite linear change that appears a few
seconds after the task ended. The spatial pattern has little
laterality. This spatial feature suggests that the ICs in cluster 2
represent systemic changes. Boden et al.10 reported that the
systemic changes related to motor tasks tended to spread glo-
bally and caused short latency for oxy-Hb. The waveforms of
the ICs in cluster 2 seem to have both of these features. Their
study gives further support to this assignment. They reported
that the waveforms for oxy- and deoxy-Hb are the same when
they used an experimental paradigm with alternating contra-
and ipsilateral motor tasks without interspersed rest periods.
As seen in Figs. 4, 5, 7, and 9, the waveforms of oxy- and
deoxy-Hb in cluster 1 are also the same even though our
experiment consisted of alternating task and rest periods
where the systemic changes were not intentionally eliminated.
Therefore, cluster 2 must contain the ICs related to systemic
changes occurring in our experiment. We conclude that cluster
2 corresponds to the TR-NIC of systemic changes.

There are several possible causes of the systemic hemody-
namic changes �e.g., changes in heart rate, blood pressure, and
respiration�. Heart rates increase during motor tasks, includ-
ing finger tapping.11,13 Also in our experiment, the heart rates
increased from 71�9 to 73�10 �p�0.0001� on average for
all participants for LT �these heart rates were derived from

for ICs in cluster.

Deoxy

LT RT

cluster 2 cluster 1 cluster 2 cluster 1 cluster 2

24 28 16 26 16

0.34 0.40 0.37 0.44 0.37

0.11 0.17 0.13 0.22 0.12

0.15 −0.36 −0.02 0.18 −0.05

0.67 0.69 0.62 0.69 0.76
eraged

RT

1
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Fig. 7 Time courses of clusters for RT for deoxy-Hb.
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Fig. 8 Time courses of clusters for LT for deoxy-Hb.
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ulsations observed in OT signals�. Such systemic changes
an disturb OT signals more than fMRI signals because OT
ignals are affected by all the tissues through which the near-
nfrared light travels. The hemodynamic changes in the ex-
racerebral compartment are mainly systemic changes. Further
iscussion on TR-NIC would require simultaneous measure-
ents of various physiological parameters with OT.

.3 Effect of Use of Dominant or Nondominant Hand
here is little difference between the waveforms of the ICs in
lusters 1 and 2 for oxy- and deoxy-Hb for both LT �nondomi-
ant hand� and RT �dominant hand� tasks. The amplitude
ower ratios for deoxy-Hb for LT are approximately equal to
hose for RT. However, there are differences between the am-
litude power ratios for oxy-Hb for LT and RT �Fig. 6�. For
xy-Hb, the power ratio in LT-cluster 1 is significantly larger
han that in RT-cluster 1 and that in LT-cluster 2; however,
here are no differences between those for RT-cluster 1 and
T-cluster 2. Jäncke et al.39 focused on the differences in cor-

ical activation caused by finger tapping with the dominant
nd the nondominant hand in right-handed subjects. They
ound that left-handed �nondominant� tapping tasks activated

larger area of the motor cortex compared to right-handed
dominant� tapping tasks. These differences found in our re-
ults may be related to handedness.

.4 No-Task Condition
here were few TR-ICs for NT. This is because participants
ere instructed not to voluntarily move. A learning effect is a
ossible reason that TR-ICs were detected for NT because the
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Fig. 9 Time courses o
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experiments for NT were performed after the experiments for
LT and RT. The results for NT prove that the results for LT
and RT are not artifacts caused by the analysis.

5 Conclusion
We proposed an analysis procedure for extracting ICs related
to neuronal activation separated from OT signals without us-
ing any model functions. We used a TDD for signal separa-
tion, a MITC as a criterion for selecting TR-ICs, and a clus-
tering method for classifying TR-ICs into TR-AICs and TR-
NICs, such as physiological changes. The data set we used
was obtained from one-handed finger-tapping experiments.
We found that a cluster of TR-AICs showed distinct contralat-
erality, whereas another cluster, thought to be of TR-NICs, did
not. We obtained TR-AICs without using model-based analy-
sis. We conclude that the analysis procedure we proposed in
this study is useful for analyzing OT data.
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