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Abstract. In the last two decades, both diffuse optical tomography
�DOT� and blood oxygen level dependent �BOLD�-based functional
magnetic resonance imaging �fMRI� methods have been developed as
noninvasive tools for imaging evoked cerebral hemodynamic changes
in studies of brain activity. Although these two technologies measure
functional contrast from similar physiological sources, i.e., changes in
hemoglobin levels, these two modalities are based on distinct physi-
cal and biophysical principles leading to both limitations and
strengths to each method. In this work, we describe a unified linear
model to combine the complimentary spatial, temporal, and spectro-
scopic resolutions of concurrently measured optical tomography and
fMRI signals. Using numerical simulations, we demonstrate that con-
current optical and BOLD measurements can be used to create cross-
calibrated estimates of absolute micromolar deoxyhemoglobin
changes. We apply this new analysis tool to experimental data ac-
quired simultaneously with both DOT and BOLD imaging during a
motor task, demonstrate the ability to more robustly estimate hemo-
globin changes in comparison to DOT alone, and show how this
approach can provide cross-calibrated estimates of hemoglobin
changes. Using this multimodal method, we estimate the calibration
of the 3 tesla BOLD signal to be −0.55% ±0.40% signal change per
micromolar change of deoxyhemoglobin.
© 2008 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2976432�
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Introduction

n recent years there has been an emergence of an assortment
f imaging modalities for noninvasively studying the brain.
mong these, functional magnetic resonance imaging

fMRI�1–4 and diffuse optical tomography �DOT�5–8 are two
echniques that have been developed largely in parallel to
tudy cerebral functional hemodynamic responses. While both
f these technologies are being applied successfully to a wide
ange of similar neuroscience and clinical topics, there are
ntrinsic limitations to each method, which are imposed by the
overning physics of each technology �reviewed in Refs. 9
nd 10�. For example, while fMRI techniques such as blood
xygen level dependent �BOLD� can provide a measurement
f blood oxygen saturation changes with fairly high spatial
esolution �typically 2 to 4 mm for functional studies�, these
ignals are physiologically ambiguous, owing to the indirect
elationship between changes in the transverse relaxation rate
f hydrogen nuclei ��R

2
*� and physiological hemodynamic

arameters �i.e., deoxyhemoglobin and blood oxygen satura-
ion� �reviewed in Ref. 11�. Although such ambiguity does not

ddress all correspondence to Theodore Huppert, Univ. of Pittsburgh, Dept. of
adiology, UPMC-Presbyterian Hospital, Rm B804 200 Lothrop St., Pittsburgh,
A 15213; E-mail: huppertt@upmc.edu
ournal of Biomedical Optics 054031-
impede the use of BOLD for mapping the spatial patterns of
evoked changes, this does limit the use of BOLD to directly
relate physiological parameters between subjects without ad-
ditional calibration methods. Calibration of the BOLD signal
is possible by inducing isometabolic changes in cerebral
blood flow using hypercapnia or similar vasoactive
agents.12–18 However, these hypercapnic-calibration methods
require the subject to inhale increased levels of carbon diox-
ide gas for prolonged periods of time �up to several minutes�.
This procedure is both technically challenging and subject to
several possible sources of systematic error19 that may render
the technique difficult to translate to clinical applications.
While the use of hypercapnia-calibrated fMRI techniques to
provide quantitative measurements of blood oxygen saturation
changes has been important in applying MR techniques to
study metabolism, an alternative to hypercapnia calibration is
needed to make the estimation of functional CMRO2 changes
more routine. As CMRO2 is more directly related to neural-
metabolic coupling, these measurements could have signifi-
cant impact in better understanding the connections between
neural and hemodynamic function in health and disease �re-
viewed in Ref. 20�.

1083-3668/2008/13�5�/054031/15/$25.00 © 2008 SPIE
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Continuous wave �cw�-based DOT has several comple-
entary features to fMRI methods, including the ability to

ecord a spectroscopic measurement of both oxygenated �oxy-
emoglobin, HbO2� and deoxygenated �deoxyhemoglobin,
bR� forms of hemoglobin. In comparison to fMRI, optical
ethods generally have very high temporal resolutions, with

cquisition rates capable of more than several hundred hertz.
his resolution is much faster than needed to capture the typi-
al slow evoked responses and fast enough to prevent aliasing
f systemic physiological signals, such as cardiac pulsation
nd other physiology, which can be a major source of noise in
MRI studies due to undersampling.21,22 A drawback of the
OT technology is its lower spatial resolution, which is in-

rinsically limited by the propagation of photons through
ighly scattering biological tissue �reviewed in Ref. 23� and
y the typically low number of optical measurement pairs
ecorded. Although DOT has the theoretical potential to pro-
ide quantitatively accurate measurements of hemoglobin
oncentration changes in the brain, in practice this can seldom
e achieved because of the partial-volume effects introduced
y the low spatial resolution and depth sensitivity of this
ethod. In addition, the tomographic reconstruction of hemo-

lobin changes from optical measurements is generally an un-
erdetermined and ill-posed inverse problem.7 Tomographic
mages can be improved with a greater number of measure-

ent combinations, including overlapping measurements to
rovide more uniform sensitivities;24,25 however, regulariza-
ion schemes must still be used to constrain the image recon-
tructions of the underlying absorption changes. In general,
he accuracy of these reconstructions depends on the method
nd amount of regularization applied. In recent years, a great
eal of attention has been given to this topic �reviewed in Ref.
6�; however, more work is still needed. One promising
pproach—the incorporation of prior knowledge of the spatial
ocation of the hemodynamic change by either
natomical-based8,27–29 or functionally-based priors30—
mproves the quantitative ability of DOT by constraining the
olutions to the image reconstruction problem, and thus mini-
izing the errors introduced by partial-volume effects. With

espect to optical imaging of the brain, the use of functional
RI data as such a statistical prior for the location of brain

ctivation area has been suggested to improve DOT
econstructions.31 While it is believed that the introduction of
tatistical priors from structural or functional MRI may im-
rove the localization of the optical signal, the implementa-
ion of such methods still has several unresolved issues. In
articular, regularized reconstructions require a choice for the
roper weight of the prior, as recently reviewed in Gibson,
ebden, and Acridge.26 In one extreme, the use of a strict

hard� prior �e.g., Ref. 32� will produce images with identical
patial resolution as the original prior �e.g., the functional MR
mage�. However, this constraint assumes that the value, loca-
ion, and boundaries of the prior have negligible uncertainty.
lthough the signal quality of fMRI images has greatly im-
roved in recent years due to advancements in pulse-sequence
esign, RF coil design, and a move to higher magnetic field
trengths, background physiology, intertrial variability, and
ther subject-related factors are still non-negligible sources of
rror in these measurements and will contribute to uncertainty
n a fMRI-based prior. On the other hand, the use of a statis-
ical prior �e.g., Refs. 30 and 33�, while favorable in respect to
ournal of Biomedical Optics 054031-
the inclusion of the statistical uncertainty about the prior MRI
information, requires knowledge of the proper statistical
weight for the constraint. The optimal choice of this weight-
ing depends on the relative measurement noise in both the
fMRI and optical signals, and requires a proper statistical
model of measurement noise. Concurrent multimodal mea-
surements are unique in that physiological noise �for example,
intertrial variability of the evoked response� is simultaneously
recorded by each modality, while measurement noise is usu-
ally independent between instruments. This property of con-
current measurements provides an opportunity to use mutual
information within multimodal measurements to help define
the optimal statistical weighting of each modality in a joint
image reconstruction. This concept of a bottom-up data fusion
model has been previously introduced for neural imaging
methods such as multimodal electroencephalography �EEG�
and magnetoencephalography �MEG�,34,35 but has not yet
been demonstrated for multimodal hemodynamic measure-
ments or optical methods. In this work, we describe a new
analysis method for fusion of simultaneously acquired DOT
and BOLD data that provides a joint estimate of the underly-
ing physiological contrast giving rise to the concurrent mea-
surements from both modalities. This approach makes use of
the statistical properties of concurrent measurements and the
commonality of the underlying physiology and fluctuations
giving rise to these measurements. We use a Bayesian frame-
work to jointly estimate brain activation changes from MR
and optical using a single image reconstruction step. This ap-
proach enables us estimate oxy- and deoxyhemoglobin
changes in the brain, with better spatial accuracy than DOT
image reconstructions alone through the incorporation of
time-varying spatial information from BOLD observations.
Because the fMRI information constrains the spatial extent of
the reconstruction, this helps to correct partial volume errors
associated with optical reconstructions alone. Likewise, the
spectroscopic information of the optical data defines the de-
oxyhemoglobin calibration of the BOLD signal. We find that
the resulting fusion images contain quantitative information
about micromolar changes in hemoglobin based on the cross-
calibration of these two modalities.

We first present numerical simulations to examine the
quantitative accuracy of hemoglobin estimates by our data
fusion methods. Next, we apply the model to experimental
data recorded simultaneously with DOT and BOLD imaging
during a 2-s duration finger-walking task in five subjects.

2 Theory
2.1 Notation
In the following descriptions, we use the notations superscript
T for the transpose operator, � for the Kronecker tensor prod-
uct, and I for the identity matrix. In addition, for modality
specific operators, a subscript will be used to reference the
modality.

2.2 General Model Description
The functional contrast underlying both the BOLD and DOT
signals derives from similar changes in hemoglobin concen-
trations and blood oxygen saturation. However, the details of
the relationships between the measurements and underlying
physiology are based on vastly different biophysical prin-
September/October 2008 � Vol. 13�5�2



c
e
i
o
e
m
m
i
b
d
o
m
f
l
t
c

2
T
b
c
t
a
a
h
a
a
b
w

F
b
T
k
l
m
o
d
B
t
m

Huppert, Diamond, and Boas: Direct estimation of evoked hemoglobin changes…

J

iples in the two modalities. These principles must be prop-
rly considered to incorporate both MRI and optical datasets
nto a single model. In Fig. 1, we present a schematic outline
f our state model, which outlines how the measurement mod-
ls for both MRI and optical are connected to a common
odel of physiological contrast. The framework for this
odel is described by three components, which are described

n the following sections: 1. a multidimensional linear model
y which a set of spatial-temporal basis functions is used to
escribe functional and systemic components of oxy- and de-
xyhemoglobin concentration changes; 2. a set of measure-
ent model equations describing the measurement biophysics

or each modality and connecting the observations and under-
ying physiology; and 3. the least-squares minimization rou-
ine in which the experimental observations are fused to
reate a joint estimate of the underlying physiology.

.3 Multidimensional Linear Model
o describe the underlying physiological changes within the
rain, we assume that changes in oxy- and deoxyhemoglobin
an be described as linear combinations of a set of spatial and
emporal basis functions designated to capture the functional
nd physiological hemodynamic fluctuations. In principle, this
pproach is similar to the general linear model �GLM� which
as been previously introduced for fMRI36,37 and optical38,39

nalysis, but has been modified here to include both spatial
nd temporal basis supports. Motivated by the anatomy of the
rain and head and physiology of hemodynamic fluctuations,
e introduced four distinct pairings of spatial and temporal

ig. 1 Schematic outline of model. The multimodal fusion model is
ased on a state-space approach and consists of three components.
he set of coefficients to be estimated ��� multiplies a convolution
ernel of spatial and temporal basis functions in the multidimensional
inear model to model the volumetric changes in oxy- and deoxyhe-
oglobin due to evoked activation and systemic fluctuations. Linear
bservation models connect the underlying changes in these hemo-
ynamic variables to expected measurements by both DOT and
OLD technologies. The states are finally estimated by minimizing

he error with respect to the experimental data using a Bayesian for-
ulation of the linear inversion operation.
ournal of Biomedical Optics 054031-
basis functions in our model. These groups were; 1. the func-
tional brain elements �denoted as subscript “functional” or F�,
2. a global brain physiology basis �subscript “brain global” or
B�, 3. the cerebral spinal fluid �CSF� layer surrounding the
brain �subscript CSF or C�, and 4. the superficial skin layer
�subscript “skin” or S�. These four groups of spatial basis
functions are diagrammed in Fig. 2.

The first group of canonic functions representing the indi-
vidual functional brain elements was derived from a spatial
basis set composed of overlapping Gaussian spheres posi-
tioned on a hexagonal grid �as shown in Fig. 2�. This basis is
equivalent to a spatial smoothing kernel and is used in place
of a separate smoothing operation applied to the data, as is
usually typical of fMRI analysis. This basis also serves to
reduce the unknown degrees of freedom of the model and
makes the model more computationally tractable. We used a
6-mm standard deviation Gaussian kernel, which generated
between 200 and 250 independent spatial functions �depend-
ing on the exact anatomy of the subject’s brain�. These basis
functions are restricted to those voxels that had been identi-
fied as either gray or white cortical matter by a tissue segmen-
tation algorithm using the MRI anatomical images �see Meth-
ods in Sec. 3�. The Gaussian spatial kernels were truncated at
the anatomical boundaries between the brain and the CSF
layers to impose a cortical constraint on the reconstruction of
functional activation. The basis functions and reconstructions
were limited to the contralateral hemisphere �opposite to hand
movement� where optical measurements were recorded. The
matrices representing each of the four types of spatial basis
sets �denoted G in our model� have matrix dimensions of the
number of independent basis functions �e.g., 200 to 250 for

Fig. 2 Basis functions in linear model. A set of spatial and temporal
basis functions are used to regularize the model estimates of evoked
and systemic hemodynamic changes. To model the different aspects
of the physiology, four sets of basis sets are used. In the volume cor-
responding to either gray or white brain matter, a gamma-variant func-
tion �and derivative� was used as a temporal basis �subplot C�. These
allow the modeling of the differing temporal dynamics of both oxy-
and deoxyhemoglobin changes. A spatial basis of overlapping Gauss-
ian spheres is used to reduce the dimensionality of the state space and
replace a smoothing operation on the data �subplot B�. To model the
systemic contributions, the volume corresponding to skin, skull, and
cerebral spinal fluid �CSF� layers are grouped into basis functions and
given sine and cosine temporal functions to model their dynamics.
September/October 2008 � Vol. 13�5�3
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he functionally associated regions� by the number of voxels
n the volume used for the optical and MRI forward models.

hen analyzing the experimental data, there are 28,672 col-
mns in each of these matrixes �the fMRI images had 64
64 in-plane resolution and seven axial slices�. To model the

emporal dynamics of evoked functional changes within each
f these Gaussian bases, we used a linear combination of a
wo-parameter �� and �� modified gamma function and its
erivative �dispersion function�, as given by the equations

t1�t� =
�t − ��2

�2e−1 exp�− �t − ��2

�2 � ,

nd

t2�t� =
2

e−1�� t − �

�
� − � t − �

�
�3� · exp�− �t − ��2

�2 � . �1�

he canonic temporal support vectors �t1 and t2� are generated
rom the evaluation of these respective continuous-time func-
ions �Eq. �1�� at the discrete time points spanning the hemo-
ynamic response �0 to 20 s at 2 Hz�. This basis support is
imilar to the temporal basis often used in GLM analysis �e.g.,
he analysis of functional neuroimages �AFNI�40 or statistical
arametric mapping �SPM�41 software packages�. Since the
emporal dynamics of the oxy- and deoxyhemoglobin re-
ponses are known to differ, we used separate timing param-
ters �� and �� for each hemoglobin species and denote these
ith subscript HbO2 and HbR, respectively. These timing pa-

ameters were empirically estimated by a nonlinear fit to the
roup average of the region-of-interest average of the DOT
ime courses as a preprocessing step of this analysis. The em-
irical values of � and � used in the model were
0.1 s�0.4 s, 6.7 s�0.3 s� and �1.8 s�0.4 s, 6.7 s�0.3 s�
or oxy- and deoxyhemoglobin, respectively �standard errors
stimated from the five individual subjects�. We note that the
nclusion of the second dispersion support in the linear model
llows for sufficient flexibility in the temporal shape of the
stimated response to model each of the individual subject’s
ata, as demonstrated in previous MRI studies �e.g., Ref. 42�.
or example, in this study, we found that a linear combination
f these two temporal functions can account for most of the
voked responses in each of five subjects �R2 	HbO2
ournal of Biomedical Optics 054031-
=0.81�0.08 and R2 	HbR=0.86�0.03; p�0.001 for all;
for the average of five subjects�StdErr�.

The overall temporal model of the functional component
of the hemodynamic signals can be expressed as the convolu-
tion of the experimental stimulus timing �U� and the func-
tional impulse response functions �t1 and t2 in Eq. �1� for
either oxy- or deoxyhemoglobin�:

TFunctional,HbO2
= �t1,HbO2

t2,HbO2

� � U and TFunctional,HbR

= �t1,HbR

t2,HbR
� � U , �2�

where U is the binary vector describing the experimental
paradigm �i.e., the timing of stimulus presentation� and spans
the temporal duration of the experiment. The dimensions of
the T matrix are the number temporal basis functions by the
number of measurement time points.

In addition to the first pairing of spatial-temporal basis
functions, which is used to model the evoked functional re-
sponse, the global brain, CSF, and skin groups of temporal
basis functions are used as systemic regressors of background
physiology. These were included to model nuisance physi-
ological contributions to the BOLD and/or DOT measure-
ments by using larger �“super-voxel”� representations of the
brain, CSF, and skin layers, as described in Fig. 2 and similar
to the methods previously introduced to model systemic con-
tributions to DOT signals.43 For each of these basis groups,
we paired the spatial basis with a series of sine and cosine
functions �1 /20 to 1.0 Hz in 1 /20-Hz steps� to describe the
temporally oscillating systemic physiology. The skin-confined
basis group models the systemic contributions to predomi-
nantly the optical signals and the brain-confined nuisance re-
gressor models physiology common to both modalities.

In total, the set of all spatial-temporal bases is combined
into a single convolution operator �GT�, giving a total of
eight unique basis groups �four groups for both HbO2 and
HbR�. This matrix is formed by the convolution of the indi-
vidual spatial �G� and temporal �T� basis functions at each
time instance for each of the eight groups. The matrix GT is
given by the equation:
GT = ��GF,HbO2
� TF,HbO2

� �GB,HbO2
� TB,HbO2

� �GC,HbO2
� TC,HbO2

� �GS,HbO2
� TS,HbO2

�

�GF,HbR � TF,HbR� �GB,HbR � TB,HbR� �GC,HbR � TC,HbR� �GS,HbR � TS,HbR�
� , �3�
here the subscripts F, B, C, and S indicate the functional,
lobal brain, CSF, and skin basis groups. The matrix GT has
imensions of twice the number of image reconstruction vox-
ls multiplied by the number of discrete measurement time
oints �rows� by the total number of model unknowns �col-
mns�. The total number of model unknowns is equal to the
umber of spatial basis functions times the number of tempo-
ral basis functions and summed over the four tissue classifi-
cations and two hemoglobin species. For example, in our
6 min of experimental data, the GT matrix is approximately
41,000�3000 elements, which would be 200 gigabytes in
size for 16-bit numerical precision. Fortunately, in practice,
this full matrix never needs to be stored in memory, because
in the inverse problem we only need the inner product of two
September/October 2008 � Vol. 13�5�4
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uch matrices �i.e., GTTGT�, and this can be built up on a per
ime-point basis by making use of the block structure of this

atrix and simple matrix operations. The details of this pro-
edure are not discussed in this work.

The basis function matrix �GT� describes the spatial-
emporal supports for the image reconstruction. Following the
tandard notation used previously to describe the general lin-
ar model in fMRI analysis �i.e., Ref. 44�, the spatial and
emporal dynamics of the underlying hemoglobin changes are
escribed by a linear sum of the spatial-temporal basis func-
ion weighted by a vector of unknown coefficients denoted �.
he vector containing the modeled hemoglobin changes �both
ystemic and evoked� at each volume element and time point
s thus given by the equation:



�HbO2	1

]

�HbO2	k

�HbR1

]

�HbRk

� = ��HbO2

�HbR
� = GT · � , �4�

here k is the total number of imaging parameters in the
odel and is equal to the number of time points multiplied by

he number of volume elements. This matrix is a vectorized
orm of the reconstructed image �including time dimension�
nd is reshaped to a volumetric matrix in final analysis before
isplaying the images/movies.

.4 Observation Models
he second component of our fusion model �as shown in Fig.
� incorporates the measurement processes that relate the un-
erlying physiological changes �oxy- and deoxyhemoglobin
iven by Eq. �4�� to the observations of each modality. The
easurement equations for DOT and fMRI describe the bio-

hysics of each instrument measurement. In this work, we
ave approximated this biophysics using linear approxima-
ions to these measurement equations. The validity of these
inear simplifications has been discussed by a number of re-
earchers that have examined the consistency of these DOT
nd fMRI modalities with these hypothesized underlying bio-
hysical theories by correlating the temporal �reviewed in
ef. 10� and spatial45–47 components of measurements. These
orks have suggested that linearity between the change in
eoxyhemoglobin and the BOLD signal can be justified. Note
hat although our current model has been formulated using
hese linear approximations, nonlinear extensions of both the
ptical and fMRI models are theoretically possible using simi-
ar methodologies �although the size of the model and com-
utational memory requirements may currently limit this
mplementation in practice�.

.4.1 Blood oxygen level dependent measurement
model

he BOLD signal has a complex origin arising from both
ntra- and extravascular tissue.4,48,49 These signals depend on
ot only the user acquisition parameters, such as echo time,
agnetic field strength, and imaging echo type, but on fea-

ures of the subject anatomy as well, such as vascular archi-
ournal of Biomedical Optics 054031-
tecture and the orientation between blood vessels and the im-
aging fields.50 In this work, we simplify the BOLD
measurement model by considering only the extravascular
�EV� signal contribution. The EV signal is believed to com-
pose the majority component of the BOLD signal at the 3
tesla �T� field strength.49 The EV signal is linear to changes in
the concentration of deoxyhemoglobin per volume tissue and
is given by the equation4,48,51

�S�t�
S0

= BOLD�t� � − 4.3 · �o · Vo · Eo · TE ·
��HbR�t��

�HbR0�
,

�5�

where Vo is the frequency offset in hertz of water at the outer
surface of a magnetized vessel �=80.6 s−1 at 3 T52�. Eo is the
resting oxygen extraction fraction, and Vo is the baseline
blood volume to tissue fraction. TE is the echo time used in
the MR pulse sequence �30 ms in this study�. �HbR0� is the
baseline deoxyhemoglobin concentration. In general, the co-
efficients of this equation are not known with the certainty
required for quantitative imaging, and moreover, may vary
between subjects according to the baseline state or spatial
region.53 For this reason, empirically calibrated fMRI tech-
niques have been proposed to remove the influences of these
parameters by using ratios of the blood flow and oxygen satu-
ration �i.e., BOLD� signals.12

To account for these unknown calibration parameters in the
BOLD measurement equation, these factors are lumped into a
single parameter �	
−4.3·�o ·Vo ·Eo ·TE / �HbR0��. In our
method, we use the information in the optical data to help
determine the BOLD calibration factor, as we describe in
Methods in Sec. 3. In our measurement model, the BOLD
signal is a projection of the deoxyhemoglobin component of
the model plus an additive noise term �vBOLD� by the equation

YBOLD�t� = �0 	 · I� · ���HbO2�t��
��HbR�t�� � + �BOLD�t� . �6�

2.4.2 Diffuse optical tomography measurement
model

In the DOT technique, near-infrared light is introduced into
the head and propagates through the dense scattering layers of
the scalp and skull into the brain. A small fraction of the light
introduced eventually exits the head and is recorded a dis-
tance away from the source position. Hemodynamic changes
in oxy- and deoxyhemoglobin concentrations affect the ab-
sorption properties of the brain and thus result in changes in
the intensity of light as it migrates along a diffuse trajectory
through the head. Using multiple measurements taken by an
array of light source and detector positions spaced several
centimeters apart �shown in Fig. 3�, the DOT method can be
used to spatially resolve these absorption changes and relate
these to changes in oxy- and deoxyhemoglobin. The DOT
measurement equation is described by the spatial profile of
the light propagation through the head, which determines the
sensitivity of these measurements. To derive the distribution
of photons in a medium with a complex distribution of ab-
sorption and reduced scattering coefficients �
a�r� and 
s��r�,
respectively�, such as the human head, the photon density
September/October 2008 � Vol. 13�5�5
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ust be modeled by empirical means using computerized
imulations. In Monte-Carlo-based modeling, the distribution
f these photons is statistically modeled based on the prob-
bility of an absorption or scattering event at each region of
pace as described by 
a�r� and 
s��r�.54,55

For brain activation, the changes in the optical properties
re generally small �on the order of a few percent�, and thus,
ournal of Biomedical Optics 054031-
a linear approximation is believed to be sufficient for predict-
ing the changes in optical measurements produced by local-
ized changes in the optical properties �reviewed in Ref. 23�.
The spectroscopic forward model for such optical measure-
ments is of the form56–58
�YDOT
830 nm�t�

YDOT
690 nm�t� � = ��HbO2

830 nm · A830 nm
�HbR

830 nm · A830 nm

�HbO2

690 nm · A690 nm
�HbR

690 nm · A690 nm� · ���HbO2�t��
��HbR�t�� � + ��DOT

830 nm�t�
�DOT

690 nm�t� � , �7�
here Y is the vector of measured optical signal changes for
ach source-detector pair and A� is a matrix describing the
inear projection from absorption changes from within the
olume to optical signal changes between each measurement
air. � indicates wavelength dependence �690- and 830-nm
avelengths were used in this study�. Each row of the matrix
describes the light propagation between a particular optical

ource and detector pair �shown in Fig. 3�, which describes
he spatial sensitivity for that measurement. The A� matrix is

projection operator, which integrates absorption changes
ver the volume to predict the measurements between sources
nd detectors. It has been shown that this linear operator is
pproximated by the adjunct product between the photon den-
ity distributions for each given source and each given detec-
or involved in each optical measurement.7 In Eq. �6�, the

ig. 3 Diffuse optical tomography. Diffuse optical tomography uses
pectroscopic measurements of optical absorption changes to record
emoglobin concentration changes. �a� The optical probe was placed
ver the subject’s primary motor area. �d� The probe contained four
ource and eight detector positions spaced 2.9 cm apart. �b� and �c�
iducial markers on the probe were visible in the anatomical MR
mages. �e� The position of the probe and a segmented layer model for
ach subject were used to generate the optical sensitivity profiles us-
ng Monte Carlo methods.
projection operators are combined with the spectral extinction
coefficients ���� to give a direct forward operator between the
concentration changes in HbO2 and HbR �per volume ele-
ment� and the measured optical density changes at multiple
wavelengths. In our model, v� is an additive measurement
noise term specific to each measurement channel and wave-
length.

2.5 Data Fusion Model

Rather than treating the DOT and BOLD measurements inde-
pendently or first computing an MR-based spatial map to be
used as a reconstruction prior, our model tries to preserve the
mutual information in the multimodal data by simultaneously
considering measurements from both instruments. We concat-
enate the two measurement equations �Eqs. �6� and �7�� into a
single joint-observation operator

L = 
�HbO2

830 nm · A830 nm
�HbR

830 nm · A830 nm

�HbO2

690 nm · A690 nm
�HbR

690 nm · A690 nm

0 	 · I
� . �8�

The joint set of multimodal data can be expressed as the mul-
tiplication of the underlying model of oxy- and deoxyhemo-
globin changes by the linear observation operator. Combining
Eqs.�4� and �8�, the complete model equation can be written
as


YDOT
830 nm

YDOT
690 nm

YBOLD
� = �L � In� · GT · � + 
�DOT

830 nm

�DOT
690 nm

�BOLD
� , �9�

where In is an identity matrix with size equal to the number of
measured time points �n�. The total model considers both time
and space simultaneously �as defined by the spatial and tem-
poral basis matrix GT�. This final model can be written as a
single matrix equation,

Y = L · �GT · �� + � , �10�

where Y has dimensions of total number of measurements
�number of optical plus MRI measurements for all time
September/October 2008 � Vol. 13�5�6
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oints� and can be written by concatenating the set of mea-
urements for all time points �t� �1 n�� as

Y = �y1
T y2

T
¯ yn

T�T. �11�

imilarly, the measurement model matrix L must be extended
y replicating this matrix along the diagonal for each of the
easurement time points. In our experimental data, both op-

ical and MRI data have the same sample rate �2 Hz� and thus
ll discrete observation points use the same joint measurement
quation, which includes both optical and fMRI measurement
odels. However, in general, the fMRI acquisition rate will

e considerably slower than that of the DOT, and this can be
ccounted for in our model by time indexing the measurement
perator �L� to use observations for one or both of the appro-
riate modalities at each observation point, depending on the
amples acquired at that time. Thus, this model can be used to
nterpolate the reconstructed image using the higher temporal
esolution DOT data, while maintaining a solution that is less
requently spatially constrained by fMRI measurements.

.6 Bayesian Inversion Routine
o estimate the coefficients for the spatial-temporal basis sets
escribing changes in HbO2 and HbR, the linear model �Eq.
10�� is solved using a Bayesian formulation of the linear
nverse operator59

�̂ = �HT · R−1 · H + 
2 · O−1�−1 · HT · R−1 · Y . �12�

In Eq. �12�, R−1 and 
2Q−1 represent the inverses of the
ovariance for the observation noise and state noise models,
espectively. We have chosen this formulation over the
ikhonov regularization �Moore-Penrose generalized inverse�,
hich is more commonly used in DOT, because the Bayesian

ormulation separates the regularization parameters into both
n observation noise �R−1� and a state noise �
2Q−1� precon-
itioning term. A similar regularized inverse scheme was re-
ently described by Yalavarthy et al.60 This weighted least-
quares method provides a better framework to introduce
ifferential observation noise for each modality. From a sta-
istical standpoint, 
2Q−1 is a covariance prior on the states �.
his definition offers some intuitive guidance on how to tune

he inversion, since we expect physiological fluctuations to be
pproximately on the order of micromolar magnitudes. In
ractice, however, the multidimensional linear model is only
n approximation of the actual physical system, and the as-
umed Gaussian distributed prior on � is imperfect. These
pproximations effectively mean that the Bayesian inverse is
regularization scheme that must be tuned, and we have in-

roduced a scalar parameter 
 for that purpose. In addition,
e define the variance of the observation �measurement�
oise model ��� as a diagonal matrix formed from the vari-
nce �var� �� of each measurement, i.e.,

R = 
var��DOT
830 nm� 0 0

0 var��DOT
690 nm� 0

0 0 var��BOLD�
� . �13�

hus, the measurement noise covariance can be estimated
rom experimental data and is used to reflect our confidence in
he measurements taken from the two different modalities as a
ournal of Biomedical Optics 054031-
statistical prior, as described in Methods in Sec. 3. In this
model, we have assumed that both the process and the mea-
surement error for each modality are zero-mean random vari-
ables.

3 Methods
3.1 Experimental Methods
The experimental protocol used in this study has been previ-
ously described.61 The data used in this analysis have been
previously reported in that paper for comparison of the tem-
poral characteristics of optical methods and fMRI. Five
healthy, right-handed subjects �4 male, 1 female� were imaged
in this experiment. The task consisted of a two-second dura-
tion finger-walking on the right �dominant� hand. The Institu-
tional Review Board at Massachusetts General Hospital ap-
proved these procedures.

3.2 Diffuse Optical Tomography Acquisition and
Preprocessing

We used a multichannel continuous-wave optical imager
�CW4, TechEn Incorporated, Milford, Massachusetts� to ob-
tain the measurements as previously described.62 The DOT
imager has 18 lasers—nine lasers at 690 nm �18 mW� and
nine at 830 nm �7 mW�—and 16 detectors of which only
four source positions and eight detectors were used here. The
laser wavelengths were 690 and 830 nm �18 and 7 mW, re-
spectively�.

The DOT probe was made from flexible plastic strips with
plastic caps inserted in it to hold the ends of the
10-m-source/detector fiber optic bundles. The probe consisted
of two rows of four detector fibers, and one row of four
source fibers arranged in a rectangular grid pattern and spaced
2.9 cm between nearest neighbor source-detector pairs
�shown in Fig. 3�. This plastic probe was then secured to the
subject’s head centered over the contralateral primary motor
cortex �M1� via Velcro straps and foam padding. The 10-m
fibers were run through the magnet bore to the back of the
scanner and through a port into the control room, where they
were connected to the DOT instrument.

Following collection and separation of source-detector
pairs, the timing of the DOT data was synchronized to the
MRI images �as described in Ref. 61�. The data were down-
sampled using a Nyquist filter to the same 2-Hz sample fre-
quency as the fMRI. The raw light fluence measurements
were converted to changes in optical density by the negative
log of the normalized incident light intensity ��OD��t�
=−log�I��t� / I��0���.

Monte Carlo methods were used to generate the optical
sensitivity profiles describing the DOT measurement equation
�Eq. �6��.45,55,63 Anatomical MP-RAGE images acquired dur-
ing the session were segmented into a five-layered head
model for each of the subjects,45 which was used for these
Monte Carlo simulations and also to define the spatial basis
functions used in the linear model. From the vitamin E fidu-
cial markers used to mark the optical probe, the locations of
the DOT optodes were located. The photon migration paths
were sampled from the simulated trajectories of 108 photons
at both 690- and 830-nm wavelengths. These simulations
were used to calculate the linear optical forward matrices
September/October 2008 � Vol. 13�5�7
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A�� and substituted into Eq. �7� �see Fig. 3�. To create the
pectroscopic forward operator, the hemoglobin extinction co-
fficients were used from the Oregon Medical Laser Center
http://omlc.ogi.edu/�.

.3 Functional Magnetic Resonance Imaging
Acquisition and Preprocessing

OLD-fMRI measurements were performed using a 3 tesla
llegra scanner �Siemens Medical Systems, Erlangen
ermany�. fMRI data were collected using a gradient echo
lanar imaging �EPI� sequence �TR /TE /	
500 ms /30 ms /90 deg� with seven 5-mm oblique orienta-

ion slices �1-mm spacing� and 3.75-mm in-plane spatial res-
lution. Structural scans were performed using a T1-weighted
PRAGE sequence �1�1�1.33-mm resolution,
R /TI /TE /	=2530 ms /1100 ms /3.25 ms /7 deg�. The
OLD time series was preprocessed using a motion-
orrection algorithm64 and mean normalized before being
sed in the model.

.4 Numerical Simulations
e used simulation studies to test the quantitative accuracy of

his method. This enables us to examine the ability to quantify
emoglobin changes, since no empirical “gold-standard”
ethod exists that can provide quantitative measurements
ith which to validate our experimental results. Simulated

nclusions were placed shallow ��18 mm� and deep
�25 mm� from the surface of the head �shown in Fig. 4�.
he hemodynamic response was simulated with a maximum
eak value of 8 
M and −2.5 
M for oxy- and deoxyhemo-
lobin concentration changes, respectively. Varied levels of
easurement noise were added to the simulated measure-
ents to create varied levels of contrast-to-noise ratios.

ig. 4 Characterization of model quantitative accuracy. The quantita
shallow �18 mm, toprow� and deep �25 mm, bottomrow� inclusion.
rojections�. The boundaries of the cortex are outlined in white. Meas
atio �CNR�. Hemoglobin changes were reconstructed using the fusi
ormed at various regularization amounts to examine the dependence
he images are shown for the reconstruction at 1/
=1 
M �indicated
ournal of Biomedical Optics 054031-
3.5 Optical Calibration of the Blood Oxygen Level
Dependent Signal

The BOLD measurement model depends on an unknown cali-
bration factor �	�, which depicts the several baseline and
structural unknown factors within Eq. �5�. This calibration
factor is determined empirically by comparing the spatial and
temporal profiles of the DOT and BOLD data as described in
Ref. 45. Using the linear forward operator describing the
DOT measurement model �Eq. �7��, we project the model es-
timate of the BOLD signal from its natural volume space
representation into the optical measurement �i.e., source-
detector� space. By substituting Eq. �6� into Eq. �7�, the ex-
pected optical signals due to a change in deoxyhemoglobin
can be modeled from the model estimated BOLD signal, as
discussed in Ref. 45.

��ODBOLD
830 nm�	�

�ODBOLD
690 nm�	� �

= ��HbO2

830 nm · A830 nm
�HbR

830 nm · A830 nm

�HbO2

690 nm · A690 nm
�HbR

690 nm · A690 nm�
· � 0

ŶBOLD/	
� . �14�

These BOLD derived multiwavelength optical density
changes can be used to estimate the change in deoxyhemoglo-
bin predicted by the spatial location and magnitude of the
BOLD signal ���HbR�BOLD� for each source-detector pair us-
ing the modified Beer-Lambert law,65,66 and compared to the
measured optical data to find the calibration factor �	� using
the equation

curacy of the model was examined with observations simulated from
mulated inclusions are shown contoured �black� in each image �axial
t noise was added to achieve a 5:1, 50:1, and 500:1 contrast-to-noise

del and DOT data alone for comparison. Reconstructions were per-
recovered magnitude of the response on the regularization parameter.
e vertical red line� for the CNR=50:1 case.
tive ac
The si

uremen
on mo
of the
by th
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��HbR�BOLD
source-detector�	� =

�HbR
830 nm · �ODBOLD

830 nm�	�/�L · DPF830 nm� − �HbR
690 nm · �ODBOLD

690 nm�	�/�L · DPF690 nm�
�HbR

830 nm · �HbO2

690 nm − �HbR
690 nm · �HbO2

830 nm ,

	 = arg min
	

	��ĤbR�DOT
source-detector − ��HbR�	��BOLD

source-detector	 . �15�
In the modified Beer-Lambert equation �top in Eq. �15��, L
s the linear distance between the position of a source and
etector, and DPF is the differential path-length factor, which
s a dimensionless coefficient defined as the effective path
ength through the head divided by the source-detector
eparation.63,65,66 This is calculated from the Monte Carlo
imulations. Since this projection uses the optical forward
odel, it accounts for the DOT partial volume errors in the

alibration of the BOLD signal. A single calibration factor �	�
as used, which is consistent with findings of the spatial cor-

elation of response amplitudes between the two
odalities.45,46 To estimate this parameter in the model, we

mploy an iteration routine between state and parameter esti-
ation. Alpha �	� is first estimated via Eq. �15� using the raw

ptical and MRI data, and then the states ��� are estimated
sing Eq. �12�. The estimated optical and BOLD signals are
ecovered from the forward model using the estimated value
f beta, and the alpha is re-estimated from the modeled
OLD and optical signals using the bottom of Eq. �15�. This
eta and alpha estimation process was repeated for 20 itera-
ions. Alpha was found to converge below a + /−10% varia-
ion after a few iterations �approximately five iterations�.

.6 Estimation of Noise Covariance
o estimate the covariance of the measurement noise �R�, we
alculated the variance of the residual for each measurement
y iteratively solving the state estimate and estimating R to be
he variance of the residual of the measurements. The initial
eed of R was calculated from linear regression of the data
ith the temporal basis.

An identity matrix was used for the state covariance matrix
. The regularization tuning parameter �
� was adjusted in

he analysis, as noted in Sec. 4. A single regularization param-
ter was used to scale the variance of both the oxy- and de-
xyhemoglobin states.

Results
.1 Simulation Studies
o investigate the improvements in the reconstruction accu-
acy, forward simulations of synthetic data and inverse recon-
tructions were first performed as described in Sec. 3. The
imulated observation vectors were reconstructed using the
OT only and the multimodal fusion �DOT and BOLD� data

n the reconstructions. Reconstructed axial slices are shown in
ig. 4 for the shallow and deep simulated inclusions. Using
nly the DOT data, the image reconstruction of both oxy- and
eoxyhemoglobin depend strongly on the regularization pa-
ameter used �
�. In Fig. 4, reconstructions are represented at
egularization values of 1 /
= �1 
M�. To examine the de-
ournal of Biomedical Optics 054031-
pendence of the reconstruction accuracy on the regularization
parameter, we looked at the reconstructed response amplitude
and goodness-of-fit of the model for varied levels of regular-
ization. This was repeated for both the shallow and deep in-
clusions and at several levels of simulated instrument noise
�5:1, 50:1, or 500:1 contrast-to-noise ratio�. The results,
shown in Fig. 4, demonstrate the robustness of the fusion
model to the choice of this regularization for deoxyhemoglo-
bin reconstructions. Since the estimate of deoxyhemoglobin
change is overdetermined in the presence of both optical and
BOLD measurements, accurate estimates of the response are
recovered at minimal regularization. When over-
regularization is applied, the response is underestimated, as
expected. In contrast, reconstructions using only the DOT
data show high dependence on the regularization amount.
This result is consistent with prior expectations of the behav-
ior of the DOT inverse problem with our measurement geom-
etry. The fusion reconstruction of oxyhemoglobin changes is
also dependent on the regularization applied. This is due to
the fact that the reconstruction of oxyhemoglobin changes is
only indirectly informed by the fMRI data through the off-
diagonal terms in the spectroscopic optical forward model
�Eq. �7��. Since only the DOT measurements contain direct
information about oxyhemoglobin, this component of the in-
verse problem is still ill posed and requires significant regu-
larization. However, the oxyhemoglobin reconstructions are
still modestly improved by the fusion reconstruction over the
DOT-only reconstruction.

4.2 Experimental Studies
Images of evoked hemoglobin changes were reconstructed
from the BOLD alone, DOT alone, and multimodal �fusion�
experimental datasets for all five subjects, as shown in Figs. 5
and 6. In Fig. 5, we show an in-depth look at the results for a
single subject �subject A�, and show the reconstructions of
deoxyhemoglobin �upper rows� and oxyhemoglobin �bottom
rows�. The right column of images in Fig. 5 shows the surface
rendering of the activation regions with the central sulcus
marked for clarification. In Fig. 6, we show the reconstructed
results for the data-fusion method for subjects B through E
and comparison to the BOLD model. In agreement with pre-
vious analysis of this data,61 we found localized functional
activation in the motor-cortex �M1; precentral gyrus� and pri-
mary sensory �S1; post-central gyrus� regions for each of the
individual five subjects for the fMRI and fusion reconstruc-
tions. The peak amplitudes of the estimated evoked oxy- and
deoxyhemoglobin responses are given in Table 1. In general,
the multimodal fusion and BOLD images were similar, al-
though a few notable differences were observed. These differ-
ences are most likely the result of differences in the regular-
September/October 2008 � Vol. 13�5�9
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ization in the two models. A regularization amount �1 /
� of
10 
M was used in the DOT and fusion reconstructions, and
10% in the BOLD images, which may account for these dif-
ferences. In addition, the fusion images are more sensitive
than single modality methods to both temporal and spatial
registration errors between the two modalities, which can in-
clude intrinsic differences due to differential vascular sensi-
tivity. This can introduce disinformation between modalities,
which will result in the loss of confidence of an activation
event and lower functional effects statistics �e.g., more likely
to reject a null hypothesis�.

In the model reconstructions that only used the DOT data,
we found that the amplitudes of the estimated hemoglobin
changes were dependent on the regularization applied, which
was consistent with the simulation results and prior expecta-
tions on the behavior of the ill-posed inversion of the optical
forward model and minimum norm estimator. The reconstruc-
tions shown in Figs. 5 and 6 and values given in Table 1 were
obtained at a regularization value of 1 /
=10 
M, which pro-
vided the best reconstruction from the optical data alone when
qualitatively compared to the fusion or BOLD reconstruc-
tions. We have chosen to present images using this regular-
ization point to give the best possible representation of
optical-only reconstructions for comparison to the data fusion
method. With this choice of regularization, the optical-only
results were qualitatively close to the fMRI images �as dem-
onstrated in Fig. 5 for subject A�, although distinct biases in
the spatial locations were notable. Even with the cortical con-
straint of our model, we noted that our optical-only recon-
structions tended to be biased toward the locations of optodes,
which, in most cases, displaced the location of the DOT re-
constructions relative to the BOLD alone or fusion derived
estimates. In contrast to the deoxyhemoglobin reconstruc-
tions, the improvements of the fusion model to estimate of
oxyhemoglobin changes over the DOT alone model were less
dramatic. However, we found that the fusion estimates of oxy-
hemoglobin were less susceptible to biases toward the optode
positions, although they were still superficially biased toward
the head’s surface. The optical probe used in this study was
based on a simple nearest-neighbor geometry. Recent work
has shown that optical-only reconstructions could be further
improved using tomographic probe designs, including the use
of overlapping measurements �e.g., Refs. 24 and 25�. These
methods would be expected to further improve the accuracy
of the reconstructions performed here for both optical-only
and fusion methods.

In addition to the functionally evoked responses, our
model also includes regressors for the background physiologi-
cal oscillations modeled as global effects using large spatial
basis supports. The inclusion of these regressors accounted for
an average of an additional 8.5% �4.4% of the total model
variance based on partial R2 analysis of the model �average of
five subjects�StdErr; range 3.3%�subject B� to 26.3%�sub-
ject E��. As recently demonstrate by Diamond et al.43 using
optical measurements and Glover, Li, and Ress67 using fMRI
measurements, the use of direct measurements of systemic
physiology by pulse-oximtery or noninvasive blood pressure
methods as additional model regressors may provide further
reduction of these cerebral physiological signals and should
be examined in future work.
ig. 5 Direct hemoglobin reconstructions from empirical data. This
gure shows �b� the model reconstructions using the DOT alone,
OLD alone, and �a� fusion datasets for deoxy- and oxyhemoglobin
hanges. Data are represented for subject A. All responses have been
ormalized for comparison. Reconstructions were performed at a
egularization level of 1/
=10 
M for the DOT and fusion models
nd 1/
=10% for the BOLD model. Functional changes are shown
asked below the half-max response amplitude. In �a� the approxi-
ate location of the optical probe is shown in green. The right-most

mages show the maximum intensity projections of the activation pat-
erns onto the brain pial surface �surfaces generated using Freesurfer
The Massachusetts General Hospital; see http//
urfer.nmr.mgh.harvard.edu�� and displayed using NeuroLens �Univer-
ité de Montréal; �see http://www.neurolens.org��. The central sulcus
s outlined �green line� in each surface image.
ig. 6 Comparison of fusion and MRI image reconstructions. In this
gure, we show the BOLD �a� and fusion reconstructions �b� for sub-
ects B through E �left to right�. Subject A was presented in Fig. 5.
egularization was applied as described for Fig. 5. All images are
hown normalized to the maximum response and masked below the
alf-max amplitude. Axial and coronal projections are shown. The
utline of the boundary between the brain and superficial layers is
hown in green. The blue rectangle indicates the location of the im-
ging volume from the fMRI.
September/October 2008 � Vol. 13�5�0
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.3 Optical Calibration of Blood Oxygenation Level
Dependent

n Table 1, we show the recovered values of the optically
alibrated BOLD scaling factor �	� for each of the five sub-
ects �mean: −0.55%-BOLD /
M�0.40%-BOLD /
M�.
he high variance in the group estimate may be the result of
ifferences in the baseline volume or oxygen extraction levels
etween subjects �particularly subject C�. In addition, the val-
es of the BOLD model parameters given in Eq. �5� are based
n additional assumptions about the size and orientation of
lood vessels �i.e., Ref. 50� and may also contribute to the
ifferences observed between the five subjects. We can com-
are our measured values of alpha with theoretical estimates
erived from Eq. �4� and data from previous literature. As-
uming a baseline blood volume fraction of 3 to 5%,68,69 a
otal hemoglobin concentration of 60 to 100 
M,70 and an
xygen extraction fraction of 30 to 40%,69,71 the expected
alue for this calibration factor can be estimated to be be-
ween −0.3 to −0.9%-BOLD /
M--HbR for the MRI acqui-
ition parameters used in this study. This calibration factor has
lso been determined experimentally by the hypercapnia
ethod of BOLD calibration described by Davis et al.12 The

ypercapnia calibration method determines the maximal
OLD change possible if all deoxyhemoglobin were dis-
laced from the region �reviewed in Ref. 19�. Thus, according
o our approximation of a primarily extravascular water con-
ribution to the BOLD signal, as given by Eq. �5�, this hyper-
apnia calibration factor �usually denoted M� can be related to
ur alpha parameter by multiplying by the baseline deoxyhe-
oglobin levels �i.e., M �	� �HbR0��. The empirical value

f M has been reported between 7 to 25% as tabulated in Ref.
9, which corresponds to a value of alpha between −0.4 and
1.4%-BOLD /
M using the ranges of baseline total hemo-
lobin and oxygen extraction cited before. Indeed, both the
mpirical and theoretical estimates of this calibration factor
re consistent with our values calculated for the five subjects,
s shown in Table 1. In future work, it will be necessary to
alidate the optical-calibration approach against other calibra-
ion methods like the hypercapnic method.

Table 1 Comparison of reconstructed hemogl
amplitude was calculated for a region of interest
the five subjects. Regions of interest were manu
bration factor �	� was calculated as described in
a regularization 1/
=10 
M.

DOT-only

Subject �HbO2 �HbR

A 5.5 
M −2.9 
M

B 0.3 
M −1.8 
M

C 3.1 
M −1.4 
M

D 4.9 
M −1.0 
M

E 7.3 
M −3.0 
M

Group 4.2 
M −2.0 
M
ournal of Biomedical Optics 054031-1
5 Discussion

Concurrent multimodal measurements are observations of
common underlying changes in underlying functional con-
trast. Our fusion model combines this mutual information
from optical and fMRI modalities into a joint estimate of un-
derlying hemoglobin changes. This approach provides a
framework to combine the advantages of the high spatial and
temporal resolutions contained between both modalities. In
this work, we have developed a model that incorporates the
biophysical principles that describe the relationships between
the optical and fMRI measurements and underlying cerebral
physiology. Using a single image reconstruction step, we can
obtain direct estimates of hemoglobin changes that are simul-
taneously consistent with all sets of observations. This allows
us to use the high spatial resolution of fMRI as a spatial prior
to improve the optical reconstruction, while at the same time,
to use high temporal and spectroscopic information from the
DOT as priors on the reconstruction of the BOLD functional
changes. The fusion of the higher spatial information from
fMRI measurements and the spectroscopic information of the
optical technique provided cross-calibrated estimates of he-
moglobin changes. The Bayesian framework used in this
model allows us to optimally incorporate data from different
sensors based on knowledge of the statistical errors in each
measurement type. In comparison to methods using fMRI as a
statistical prior for the optical reconstruction, our approach
incorporates multimodal information based on the statistical
properties of concurrent measurements. We believe that this
approach provides a framework to more efficiently consider
concurrent multimodal datasets and to utilize the mutual in-
formation in the signals to improve the accuracy of estimates
of the functional response. The advantages of this approach
have been discussed for data fusion of magnetoencephalogra-
phy and electroencephalography data using similar mutual in-
formation models �e.g., Refs. 34 and 35�. We believe that
future extensions of our method will offer similar utilities for
hemodynamic imaging.

mplitudes. The maximum �minimum� response
of the DOT alone and fusion reconstructions for

fined in the motor cortex area. The BOLD cali-
. The values shown are for the reconstructions at

ata fusion BOLD calibration �	�

�HbR

−1.2 
M −0.41 %-BOLD/
M

−1.5 
M −0.52 %-BOLD/
M

−0.7 
M −1.24 %-BOLD/
M

−0.3 
M −0.19 %-BOLD/
M

−0.5 
M −0.39 %-BOLD/
M

−0.9 
M −0.55 %-BOLD/
M
obin a
in each
ally de
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.1 Comparison of Reconstruction Methods
n the comparisons between the optical only, BOLD only, and
usion reconstructions of the simulated data, we found that
usion methods produced the most accurate estimates of he-
oglobin changes both in terms of spatial localization and

uantitative accuracy. In particular, we found that for the fu-
ion reconstructions of deoxyhemoglobin, the amplitude of
hese changes was relatively independent of the magnitude of
he regularization applied and were fairly robust to errors in
nderestimation of the regularization parameter �
�, as dem-
nstrated in Fig. 4. In the fusion model, enough information is
vailable to make the deoxyhemoglobin reconstruction prob-
em overdetermined. Even at a minimal regularization level,
he quantitatively accurate magnitudes of the deoxyhemoglo-
in responses were still recovered for both the deep and shal-
ow deoxyhemoglobin inclusions. As expected, an over-
egularization of the linear model resulted in underestimation
f the hemodynamic response in all models. In contrast to
eoxyhemoglobin, which is directly informed by the BOLD
odel, we found that reconstructions of oxyhemoglobin

hanges in the fusion were still dependent on the regulariza-
ion. This is because oxyhemoglobin is only indirectly in-
ormed by the BOLD signal and still represents an underde-
ermined problem.

In comparison, we found that our DOT alone model was
enerally more superficially biased than the fusion model at
ecovering the spatial profile of both targets, and that the am-
litude was very sensitive to the amount of regularization ap-
lied. This bias will result in an underestimation of the re-
ponse amplitudes, since the optical sensitivity profiles fall
xponentially with increasing depth. This finding is consistent
ith prior expectations concerning the accuracy of DOT re-

onstructions. Although the spatial basis functions used in this
ork ensured a cortical constraint to functional activations,

he reconstructed amplitudes were underestimated by up to
everal orders of magnitude, in particular for the deep simu-
ated inclusion, and the magnitude of the DOT estimated he-

oglobin changes were highly dependent on the regulariza-
ion parameters used.

The DOT alone and fusion reconstructions of the empirical
ata were consistent with the findings from the simulations.
he spatial locations of the fusion reconstructions were more
onsistent with the profiles from the BOLD alone. Although
he magnitudes of the changes were comparable in our final
mages, the DOT reconstructions were highly dependent on
he regularization applied, which was chosen here to provide
he best possible DOT reconstructions based on the BOLD
esult. Thus, this may be misleading to the quality of the
econstructions that can be obtained routinely by DOT alone.

.2 Optically Calibrated Blood Oxygen Level
Dependent Signals

n addition to the Bayesian fusion model that we have intro-
uced in this work, we have also presented a method for using
he spectroscopic information of the optical data to provide
nsight into the BOLD signal, allowing for optically calibrated
OLD imaging. In this work, we have assumed that a single
alibration factor can be applied to calibrate the BOLD signal.
n both the simulation and experimental results, we found that
he estimate of this factor converged after only a few itera-
ournal of Biomedical Optics 054031-1
tions of the model. In the simulation results, we found that we
could recover this calibration factor. In the experimental re-
sults, we found approximate agreement between our estimates
of this factor and the expectation from theoretical work ap-
proximated at 3T and the empirical hypercapnia-based BOLD
calibration.

5.3 Model Limitations and Future Extensions
While our data fusion method greatly improves the recon-
struction and quantitative accuracy of deoxyhemoglobin
changes, the improvements to oxyhemoglobin quantification
were more modest. In principle, the state covariance matrix
�Q� used in the Bayesian pseudoinverse model �Eq. �12�� can
be used to introduce a statistical prior between deoxy- and
oxyhemoglobin maps with the inclusion of off-diagonal ele-
ments connecting the two matrix quadrants for oxy- and de-
oxyhemoglobin. However, in the work described here, we
have purposefully not included these off-diagonal terms based
on recent work that has suggested that underlying vascular
structures may displace the locations of the two chromophores
due to differential arterial versus venous weightings.45–47,72 In
support of this, several recent fMRI-based studies have also
shown spatial displacements between the BOLD signal and
MR measures of blood volume73 and blood flow,74 which cor-
roborate a spatial displacement of arterial and venous-
weighted measurements. In future studies, we suggest that the
incorporation of an MR measure of blood volume
changes73,75,76 into this data fusion model may be more appro-
priate to constrain total-hemoglobin changes and conse-
quently the quantification of oxyhemoglobin.

An assumption made in this model was that we only ex-
amined the extravascular contribution to the BOLD signal.
This assumption ignores the contribution from the water mol-
ecules within the blood vessels that interact directly with the
deoxyhemoglobin heme group.1,4,48,77 This assumption is sup-
ported by recent work by Lu and van Zijl determined that the
extravascular signal composes approximately 67% of the in-
trinsic relaxation ��R

2
*� at 3 tesla.49 Further evidence of the

dominance of the extravascular signal has also been demon-
strated in the empirical comparison of optical and BOLD sig-
nals, which have shown a strong temporal correlation between
the BOLD signal and the optical measure of deoxyhemoglo-
bin �reviewed by Ref. 10�. Thus, the source of BOLD func-
tional contrast at 3 tesla is expected to be predominantly ex-
travascular, which we believe justifies the assumption in this
model in this current work. However, at lower field strengths,
alternative MR acquisition protocols, or for more quantita-
tively accurate results, the intravascular component may be-
come necessary. The inclusion of the intervascular component
of the fMRI signal creates a nonlinearity in the BOLD mea-
surement equation, which additionally depends on changes in
the venous blood volume that determine oxygen saturation
changes �i.e., Ref. 48�. The future extension of this model to
incorporate this term can be achieved by the replacement of
the linear �extravascular BOLD� measurement model in Eq.
�5� with a more detailed state-space model of the vascular
physiology �i.e., Refs. 78–81�. In future work, vascular mod-
els such as the Balloon77 or Windkessel82 models will enable
the incorporation of more modalities into the model, such as
blood flow.83 This nonlinear extension of this bottom-up
September/October 2008 � Vol. 13�5�2
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odel could allow the direct estimation of cerebral metabo-
ism changes and provide a means to fuse multimodal data
rom a broader scope of methods. Recent work by Riera et
l.79 proposed a similar state-space model for the time-series
nalysis of simultaneous BOLD and EEG, which could di-
ectly extend the work preformed here.

Conclusions
oncurrent multimodal measurements have unique statistical
roperties, and while an increasing number of publications
ave implored multimodal acquisition methods, further ad-
ancements need to be made to improve specific analysis
echniques optimized for this unique form of data. In this
ork, we describe a fusion model that allows the direct re-

onstruction of hemoglobin changes from simultaneous opti-
al and fMRI data. This model combines the advantages of
oth optical and fMRI methods, and allows the estimation of
emoglobin changes with improved temporal, spatial, and
uantitative accuracy. Using concurrent optical and fMRI
easurements, we estimate the calibration of the 3T BOLD

ignal to be −0.55% �0.40% signal change per micromolar
hange of deoxyhemoglobin. This is the first demonstration of
multimodal-based calibration of the BOLD signal.
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