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ABSTRACT

The safe and effective use of interstitial thermal therapy (ITT, radiofrequency

ablation) for treatment of lung neoplasms was examined in a preclinical model. Lesions

were reproducibly created in normal lung parenchyma and were affected by conductive

heat loss via air and blood flow and the presence of bronchi. These observations of

controlled injury to lung tissue suggest that clinical application would be appropriate and

may yield advantages to selected patients with lung neoplasms (lung cancer, pulmonary

metastases, etc.) or other pulmonary diseases.
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1. INTRODUCTION

Long term survival may be achieved with local control via resection for patients

with primary and secondary neoplasms of the lung. Open surgical techniques, such as

thoracotomy and removal of lung tissue l'2 are well -defined and provide patients with

early stage disease (Stage I or Stage II), 65 - 40 percent five year survival. In patients

with pulmonary metastasis, isolated spread of an extrathoracic primary neoplasm, a 30 to

40 percent five year survival may be achieved. Surgical interventions carry a small but

identifiable risk of mortality and mortality3 -5. Improved techniques to achieve good local

control with minimizing morbidity have been suggested. These techniques include laser

resection, and video assisted thoracic surgery (VATS) or other minimally invasive
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techniques.6'7 Despite these options, survival for primary lung cancer and pulmonary

metastases remains dependent upon tumor stage or extent of disease. Adequate tumor

stage may be obtained by invasive or pathologic staging using surgical techniques such as

of mediastinoscopy or mediastinotomy or by non -invasive techniques such as computed

tomography of the chest or by positron emission tomography (PET scan)$ -11.

The surgeon must remove the tumor and preserve normal lung parenchyma.

Thoracoscopy or minimally invasive surgical techniques may manipulate the tumor

causing shedding of tumor cells within the pleural spaces, chest wall, or locally within the

lung parenchyma12. Increased recurrences may result. ITT may minimize the associated

trauma and morbidity accompanying standard open or minimally invasive proecdures.

To further study this question, accurate comparisons of treatment effects and

instrument design are required. Firstly, the identification of useful treatment endpoints

must be identified that can be followed over time and, secondly, observation techniques

must be chosen that allow meaningful qualitative and quantitative evaluations of the

treatment and its resolution. 13'14

The basic treatment mechanism of ITT is lethal thermal injury to the targeted

tissue(s) without undue harm to tissues beyond the desired treatment volume.

Specifically, for ITT of cancers, the targeted tissues are the cancer itself and a band of

adjacent non -tumorous parenchyma to encompass the invasive bnborders of the

malignant neoplasm. Currently, the various imaging techniques including x -ray,

comperized tomography (CT), magnetic resonance imaging (MRI) and ultrasound have

been used to define the borders of ITT lesions during, immediately after and at various

intervals after the heating treatment. In general, MRI, CT and ultrasound have been

effective for reliably imaging lesions in the days following treatment but have not been

useful for accurate assessment of the lesions during or in the several hours following

treatment. Therefore, qualitative and quantitative pathologic techniques, albeit that they

are destructive, are useful for describing, mapping and measuring the treatment lesions

and their resolution over time. 13'14

We examined the role of ITT in a preclinical model using radiofrequency

energy. Direct interstitial thermal coagulation may provide local control of primary and

secondary tumors of lung. Interstitial thermal coagulation has previously eradicate liver

metastases successfully we evaluated interstitial thermal graduation in a precritical model

of acute and chronic duration.
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The following hypotheses were tested in this study of ITT in porcine lung: 1)

characteristic and reproducible lethal thermal lesions can be produced with a
radiofrequency probe introduced via a trochar into the inflated lung, 2) the thermal

lesions will be formed of characteristic thermal damage zones, a cental thermal coagulum

and a peripheral red band, whose boundaries can be measured, 3) the configuration of

the acute thermal lesion will be modified by the design and size of the treatment probe

and/or the bronchial and vascular anatomy of the lung, 4) lethal thermal damage

manifest by tissue necrosis at three days will correspond to the outer boundary of the red

thermal damage zone, 5) blood flow with be restored in the open lumens of necrotic

blood vessels within three days of heating, 6) organization and healing of the thermal

lesion will originate from the peripheral viable tissue and 7) the healing lesions will be

the same size as the acute lesion until fibrous scar replaces the necrotic tissue.

2. MATERIALS AND METHODS

Domestic swine (female, 50 - 70 kg) were used in acute and chronic studies.

Animals were housed in a temperature -controlled room and provided a 12 hour light -dark

cycle. Food and water were provided ad lib. The experiments were approved by the

Institutional Animal Care and Use Committee at The University of Texas M. D.

Anderson Cancer Center. Animals received humane care in accordance with the Animal

Welfare Act and the NIH "Guide for the Care and Use of Laboratory Animals ". After

intravenous sedation and adequate induction of general anesthesia, animals were

intubated and maintained on a volume -cycled ventilator.

A LeVeenTM Needle Electrode was used (RadioTherapeutics Corporation,

Mountain View, CA) at various sizes 2.0 - 3.5 cm deployed as a multi -tine array. (Figure

1) . The individual electrode arms deploy from the distal end of an insulated delivery

cannula into the tissue. The Shaft working length is 12 - 15 cm with a cannula diameter

of 15 gauge. The electrode was connected to a radiofrequency generator (RF2000 TM

RadioTherapeutics Corporation, Mountain View, CA). The generator is designed to

provide radiofrequency output for localized coagulation of soft tissue. The generator can

supply up to 100 watts of power.

Radiofrequency energy was applied at increments from 5 - 90 watts by alternating current

applied to create thermal lesions. In vivo lesions were created in the left lung of 10
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animals (4 acute, 6 chronic). A two -phase application of the energy was used to create

these lesions. The initial phase was started at a low energy level and advanced at 5 minute

intervals until impedence increased to over 400 Ohms. A second phase was started at

approximately 50% total energy and advanced in a a similar manner

until impedence increased to over 400 Ohms.

Figure 1. The LeVeen TM Needle Electrode (RadioTherapeutics Corporation, Mountain

View, CA) prior to insertion into the lung.
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.Figure 2. The electrode is inserted into the lung tissue under manual guidance and

supported during the ablative phase of the procedure. Active ventilation continues to keep the lung

inflated and minimize the thermal trauma to surrounding lung parenchyma.
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Figure 3. A two -phase application of energy is shown. The initial phase was started at a low energy

level (20 watts) and continued as impedence increased to over 400 Ohms. The energy level was

not required to be increased. A second phase was started at 20 watts and 400 Ohms was rapidly

achieved.

Energy exposure for interstitial thermal coagulation ranged from 4 - 24

minutes per lesion. Size of lesions ranged from 1.0 to 3.0 cm. Tissue destruction was

monitored by measuring lesions within the tissues one hour after injury for the acute

model.

Lungs were fixed with buffered formalin via tracheal infusion. Tissue injury was

evaluated grossly and valuated grossly and histologically. For chronic models, lesions

were created as noted above using a 2.0 cm array
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Animals were sacrificed at three days, seven days, and 28 days. Lesions were

examined grossly and histologically. No animal developed any morbidity from this

technique; specifically, no evidence of bleeding, infection, pneumothorax, or other

intrathoracic or systemic complications were noted. Lesions range in size from 2.0 - 3.5

mittttputluttitut,utltutl
2 2 3

Figure 4. Fixed lung after induction of acute (a.) and chronic (b.) lesions. Multiple

lesions were created (acute) to evaluate controlled destruction of lung tissue. In the chronic model,

peripheral lung, distal to the treated area, occassionally became consolidated or ischemic as a result

of local changes to proximal bronchus or vessels

cm in maximal dimension in the acute model. All lesions were composed of coagulated

tissue without cavitation. Lesions were irregular to ovoid in shape with a peripheral zone
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of red thermal injury surrounding a cental coagulum. Bronchi adhering to treated tissue

remained intact.

Both lungs and the heart were removed en bloc from anesthetized pigs sacrificed

by exsanguination. The lungs were fixed by filling the lungs with 10% buffered formalin

via the trachea at 15 -20 cm H2O. The lungs and hearts were then suspended in a bucket

of formalin for 24 -72 hours to complete fixation. The lungs were separated from the

heart and sliced in orientations to best display the thermal lesions and their relationships

to their parenchymal, bronchial and vascular anatomy. The lesion sizes were determined

grossly by measuring the longest diameters of each fixed lesion in the x, y and z planes.

The recorded measurements were of the thermal lesions only. The gross lesions were

photographed, then, representative samples of every lesion were submitted for paraffin

sectioning. The 4 -5 µ thick sections were stained with hematoxylin and eosin stains and,

in selected cases, Weigert-van Gieson's elastin stains. The sections were examined with

a diffuse white light microscope and selected fields photographed.

Quantitative comparisons of lesion sizes were made with probe antennae

diameter and the average largest dimensions of each lesion.

3. RESULTS

3.1 Acute studies Following ITT

The acute ITT lesions in the porcine lung were ovoid, targetoid lesions

composed of a probe hole in a central tan thermal coagulum surrounded by a band -like

zone of red tissue. (Figure 5 a) The walls of the lesion probe holes were hemorhagic and

lined by thermally coagulated and desiccated blood and lung tissue. The boundaries

between the central tan coagulum and red thermal damage zone and the red damage zone

and normal lung were distinct and measurable. Microscopically, (Figure 5 b) the tan

coagulum consisted of thermally coagulated lung epithelium, bronchial tissues and

extracellular matrix. The bronchial epithelial cells and smooth muscle cells were

spindled, shrunken and hyperchromatic (darkly staining) yet cytoplasmic and nuclear

structures could be distinguished. The membranes of intravascular red blood cells were

ruptured and the cells empty of hemoglobin. Frequently, the alveolar spaces were filled

with proteinaceous fluid. On the other hand, the peripheral red zone, formed by an

accumulation of blood, was composed .
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Figure 5 a. Acute lung injury ry The probe hole (arrow is the irregular defect surrounded by

coagulated blood in the center of the coagulum. The outer boundary of the red thermal damage

zone is distinct.

Figure 5 b. Microscopic changes following acute lung injury.
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of two thermal damage subzones. The inner zone was due to hemostasis secondary to

direct thermal coagulation of red blood cells in dilated, coagulated blood vessels. The

outer zone formed as a result of hemostasis, focal blood clotting and hyperhemia

(increased blood flow in dilated vessels) due to pathophysiologic vascular mechanisms in

response to the heat. The lung tissues in the inner red zone showed less severe thermal

coagulation changes than the central coagulum but the tissues of the outer red zone did

not seem to be damaged at the light microscopic level.

Not infrequently, small holes formed by the deployed tines of the probe

antennae were found in the microscopic sections of the coagulum and/or the peripheral

red damage zone. Like the probe holes, the tine holes were variably surrounded by

thermally coagulated blood and tissue and, in some cases, seemed to be associated with

tissue tearing.

The walls of some large and medium sized pulmonary arteries and veins present

adjacent to some probe holes were ruptured and associated with some hemorrhage into

the adjacent tissues. Similarly, tears and hemorhages in pleura and pericardium were

found where the probe and/or tines extended beyond the lung. In one case, placement of

the probe at the lobar hilum was associated with vessel and pleural rupture and resulting

pulmonary hemorrhage. Fluoroscopic images showed the probe and deployed tines to be

displaced and deflected by the thick hilar bronchial walls. This displacement was not

seen in fluoroscopic images of probe placement in association with segmental hilar

bronchi. Blood clots were found in some segmental and subsegmental bronchi in

association with ruptured large blood vessels and associated pulmonary hemorrhage.

In some thermal lesions, the large blood vessels were intact but their walls were

severely damaged by transmural thermal coagulation. Occasionally, these blood vessels

were occluded by fresh thrombi (intravascular blood clots). Thermal coagulation and red

thermal damage extended to the bronchial walls in continuum with the adjacent lung

parenchymal lesions. The large and small bronchial lumens were open and the walls

were not collapsed. The nuclei of the bronchial cartilage cells showed shrinkage but

otherwise the only other reliable sign of cartilaginous thermal damage was the

hyalinization of the perichondial collagen. The bronchial epithelium was detached and

frequently sloughed in the red thermal damage zones.
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3.2 Three days following ITT

The outer boundary of the red damage zone was more defined at three days than

in the acute specimens (See figure 6A gross photo, and 6B microscopic] This boundary

was within 1 mm of the outer boundary of necrotic lung and bronchial parenchyma. In

some places, the outer red rim boundary adjacent to bronchi was irregular with sparing of

lung parenchyma surrounding the peripheral bronchus. (Figure 6A) The walls of bronchi

and blood vessels in the red rim and central coagulum were distorted by transmural

necrosis but their lumens were open. The bronchial cartilage showed focal cellular

necrosis yet the matrix was not abnormal at the light microscopic level. Occlusive

thrombi were found in many blood vessels and, in some specimens, were associated with

segmental and subsegmental pulmonary hemorrhage. Occasional tears of vascular walls

and pleura were associated with residual tine holes.

Figure 6A. Gross appeararance three days following injury. Distal consolidation has occurred as a

result of more proximal lung injury. Some effect upon the bronchus can be seen. Three Days

Lesion. The thermal lesion is represented by the superior round targetoid lesion of the peripheral

blood accumulation (arrowheads) with a light tan central coagulum. A segmental artery present at

the end of a probe hole was ruptured (arrow) by the probe producing segmental pulmonary

hemorrhage distal to the thermal lesion.
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result of more proximal lung injury. Some effect upon the bronchus can be seen. Three Days 

Lesion. The thermal lesion is represented by the superior round targetoid lesion of the peripheral 

blood accumulation (arrowheads) with a light tan central coagulum. A segmental artery present at 

the end of a probe hole was ruptured (arrow) by the probe producing segmental pulmonary 

hemorrhage distal to the thermal lesion.
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Figure 6 B. Microscopic examination of lesion after three days.

3.3 Seven days following ITT

Wound organization (inflammatory cells that clean up necrotic tissue) 15 and

scar tissue formation originate from the adjacent lung and pleural tissues and encroaches

and partially replaces the red thermal damage zone. [Figure 7 A gross and B

microscopic] On the other hand, no blood flow or early stages of wound organization are

seen in the central thermal coagulum which is composed of intact lung tissues "fixed" in

situ by the thermal coagulation. Bronchial and alveolar epithelial regeneration extend

from peripheral intact lung tissue for form irregular small air spaces surrounded by scar

tissue. Chrondrocyte necrosis is more extensive and is associated with faded staining in

the matrix suggesting the loss of acid aminoglycans.. Regenerating respiratory

epithelium covers the necrotic bronchial mucosa in the larger airways with in the thermal

lesion. Occlusive thrombi found in the pulmonary blood vessels in the peripheral

portions of the lesion are undergoing organization and early recanalization.
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Figure 6 B. Microscopic examination of lesion after three days.

3.3 Seven days following ITT
Wound organization (inflammatory cells that clean up necrotic tissue) 15 and 

scar tissue formation originate from the adjacent lung and pleural tissues and encroaches 

and partially replaces the red thermal damage zone. [Figure 7 A gross and B 

microscopic] On the other hand, no blood flow or early stages of wound organization are 

seen in the central thermal coagulum which is composed of intact lung tissues “fixed” in 

situ by the thermal coagulation. Bronchial and alveolar epithelial regeneration extend 

from peripheral intact lung tissue for form irregular small air spaces surrounded by scar 

tissue. Chrondrocyte necrosis is more extensive and is associated with faded staining in 

the matrix suggesting the loss of acid aminoglycans.. Regenerating respiratory 

epithelium covers the necrotic bronchial mucosa in the larger airways with in the thermal 

lesion. Occlusive thrombi found in the pulmonary blood vessels in the peripheral 

portions of the lesion are undergoing organization and early recanalization.
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Figure 7 A. Gross appearance of lesion after 7 days. A thin rim of light tan fibrous scar tissue

surrounds the ITT lesion invading into the red thermal damage zone which separates the central

coagulum (C) from the normal (N) lung tissue. An invagination of the red thermal zone in the

gross specimen is associated with a bronchus (arrow).

Figure 7 B. Microscopic appearance of lesion after 7 days.
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Figure 7 A. Gross appearance of lesion after 7 days. A thin rim of light tan fibrous scar tissue 

surrounds the ITT lesion invading into the red thermal damage zone which separates the central 

coagulum (C) from the normal (N) lung tissue. An invagination of the red thermal zone in the 

gross specimen is associated with a bronchus (arrow).

Figure 7 B. Microscopic appearance of lesion after 7 days.
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3.4 28 days following ITT

The red rim of the thermal lesion has been completely replaced by light tan scar

tissue that surrounds the residual central thermal coagulum. The areas of segemental

pulmonary hemorrhage and infarction have resolved producing areas of pneumonitis and

chronic atelectasis. [Figure 8 A gross, and 8 B Microscopic] Blood flow still has not

entered into the coagulum and organization is present only at the interface of the fibrous

scar tissue with the coagulum. The bronchial cartilagenous plates protrude and collapse

into the lumens of some segmental and subsegmental bronchi. Fibrous scar tissue

surrounds these plates and, frequently, obliterates the bronchial lumens.

Table 1 compares actual lesions developed with electrode array diameter.

Figure 8 A. Gross appearance of lesion after 28 days. The outer band of fibrous scar tissue (arrow

heads) has replaced the red thermal damage zone and completely surrounds the residual central

coagulum (c). The long tail of light colored tissue in the gross specimen is obstructive pneumonitis

and chronic atelectasis (collapse of lung), the resolution products of pulmonary hemorrhage and

bronchial obstruction by wall collapse and luminal fibrosis in the thermal lesion.
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heads) has replaced the red thermal damage zone and completely surrounds the residual central 

coagulum (c). The long tail of light colored tissue in the gross specimen is obstructive pneumonitis 

and chronic atelectasis (collapse of lung), the resolution products of pulmonary hemorrhage and 

bronchial obstruction by wall collapse and luminal fibrosis in the thermal lesion.
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Figure 8 B. Microscopic examination of lesion after 28 days.

Table 1 The maximal diameters of fixed ovoid lesions compared to probe diameter

Probe

Array

Diameter

Acute

(cm)

3 Day

(cm)

7 Days

(cm)

28 Days

(cm)

2 cm 1.7x2.2x2.2 3.0x2.2x1.8 2.1x1.2x1.8 2.0x1.4x1.3

3.3x3.2x2.4 2.5x2.ox1.8 2.1x1.8x2.5 1.2x1.0x1.6

3.2x3.0x3.1

3.0x2.7x2.4

2.4x2. 1 x 1.1

1.9x2.0x 1.3

3.5 cm 3.3x2.9x2.6 2.8x2.5x4.0 3.3x3.0x3.5 2.0x2.5x2.2

2.5x2.5x1.8 5.0x3.0x3.0 4.2x2.5x3.2 2.3x2.3x2.6

3.5x4.2x2.7
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Figure 8 B. Microscopic examination of lesion after 28 days.

Table 1 The maximal diameters of fixed ovoid lesions compared to probe diameter

Probe

Array

Diameter

Acute

(cm)

3 Day

(cm)
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(cm)

28 Days

(cm)

2 cm 1.7x22x2.2

3.3x3.2x2.4

3.2x3.0x3.1

3.0x2.7x2.4

2.4x2.lxl.l
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3.0x2.2x1.8

2.5x2.oxl.8

2.lxl.2x1.8

2.lxl.8x2.5
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3.5 cm 3.3x2.9x2.6
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4. DISCUSSION

The configuration, shape and size of the acute and early healing ITT lesions are

influenced by 1) the probe size, 2) displacement of probe and deployed tine distortion by

the tough bronchial walls, 3) proximity to large bronchi through which the air flows and

4) rupture of blood vessel walls and pleura by the probe and/or deployed tines with

resultant pulmonary hemorrhage.

The interstitial thermal lesions can be considered to be formed by the 1)

generation of the heat energy from the radiofrequency current energy and the 2) heat

transfer due to diffusion and convection within the tissues. The geometry of the lesion at

the points of heat generation will be governed by the electrical tissue properties and the

probe size and configuration. In the lung, the heat transfer will include considerations

of the thermal properties of the spongy lung parenchyma with a myriad of small, air filled

spaces and the connvective loss due to blood and air flow.16 The invagination of the

outer boundary of the red thermal damage zone seen in this study suggests that the air

temperature and rate of air flow in the bronchi could influence the shape of the thermal

lesion. Thus, this needs to be considered in the treatment of lesions adjacent to medium

sized and large bronchi.

The lesions became slightly larger at three days probably secondary to the

increased blood flow and extreme edema at the periphery of the lesions. No strong

correlation of lesion size with probe size was seen in this survival study that included a

small number of lesions. The lesions tended to get smaller especially between 7 days and

28 days. The lesion shrinkage is probably related to the contraction of the fibrous scar

tissue, a normal phenomenon seen in wound healing.

The lesions still were not completely healed at 28 days. Wound healing

involves three general stages: 1) organization, 2) scar tissue formation and 3) wound

contraction.15 Organization requires the delivery of phagocytic and cytolytic

inflammatory cells to the dead tissue by flowing blood. The blood cells (and tissue cells)

in the central coagulum are killed directly by thermal coagulation. The extensive

occlusive vascular thrombosis prevented blood access to the still open lumens of the

central coagulum. Therefore, in the lung, the central coagulum persists until the vascular

fibrous scar tissue with its blood flow and inflammatory cells invades into the necrotic

tissue. The persistence of the coagulum can be considered to be the most important
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factor for the healing delay lesion as imaged using ultrasound, computerized tomography

and magnetic resonance imaging.

The distinct boundaries of thermal damage seen in the acute and survival

lesions are related to different mechanisms: 1) accumulation of blood in the peripheral

lesion in the acute and 3 day lesions, 2) organization and scar tissue formation and 3)

persistence of the coagulum. These damage zones have different prominent components

such as blood in the acute and 3 day lesion, the increase of fibrous scar tissue and the

desiccated central coagulum. These components could be targeted as image markers that

could be best used at different times of the treatment and healing process. 13;14

The wedge- shaped areas of pulmonary hemorrhage seen in some 3 and 7 day

specimens were related to blood vessel rupture and secondary occlusive thrombosis.

Only hemorrhage, not true infarction , were seen downstream from theses damaged

vessels. Since air flow was blocked by the necrosis of the bronchial walls and the

occlusion of bronchial lumens in these lesions, the distal lungs could not be re- expanded.

At 28 days, the histology showed obstructive pneumonia and chronic atelectasis.

Therefore, a considerable amount of non -functioning lung tissue can be created by ITT

particularly with the compromise of segmental blood vessels. This delayed reaction may

be significant in patients with limited functional lungs, such as cancer patients with

emphesema or pulmonary fibrosis due to previous radiation or chemotherapy treatments.

Early identification of the value of localized hyperthermia in treating primary

lung cancer was described by Lily and colleagues." They noted that significant heating

could be obtained with an internal electrode array and an external electrode to apply

radiofrequency current to a tumor mass. They used a dog model for preclinical studies

and demonstrated that temperature profiles were reproducibly obtained over time and

within the tissue. The treated a 5 cm bronchogenic carcinoma in this manner. The tumor

was easily heated without significant damage of the surrounding lung and without

apparent toxicity. The authors suggested that the technique may be applicable to a

variety of operable but unresectable neoplasms. The authors also noted that the technique

provides reproducible treatment and homogeneity of heating.18-22

LeVeen and colleagues22 noted that tumor blood flow was less than blood flow

to the surrounding tissue (2 percent to 15 percent). They suggested that radiofrequency

energy for heating tissue locally would be easily applied to tumor. They used this
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technique in 21 patients and produced tissue necrosis or substantial regression of cancer

in them.

Sugaar and LeVeen21 described the history topology of radiofrequency

thermotherapy only with tumors of the lungs. Necrosis and obliteration of the tumors

faster apply were found as well as generalized breakdown of the tumors.

Radiofrequency ablation or interstitial thermotherapy has been used in a number

of ways to treat tumors. Marasso and colleagues 23 examined a number of treatments for

local control of endobronchial tumors. They examined radiofrequency tissue ablation

followed or preceded by cryotherapy. In their series of 98 patients evenly distributed

between the two groups, radiofrequency tissue ablation was successful in 60 percent and

partially successful in 32 percent. As well cryotherapy treatment was successful in 66

percent and partially successful in 21 percent. Local control of these endobronchial

tumors was easily achieved.

Goldberg and colleagues24 examined the efficacy of radiofrequency tissue

ablation in rabbit lung. He used a 19 gauge aspiration needle and radiofrequency was

applied via a coaxial electrode for six minutes at 90 degrees. Probe -tip temperature,

tissue impedance, and wattage were recorded at various intervals. Marked changes in

tissue impedance were noted. Homogeneous lesions were created. Maximal

consolidation was recorded at three days corresponding to coagulation necrosis and the

peripheral acute inflammatory reaction. By day 28, near total recovery was noted. Of

note, pneumothorax occurred in 3 of the 8 subjects. In a preclinical model, the authors25

examined whether small pulmonary malignancies could be treated with percutaneous

placement of radiofrequency electrodes. They used an animal (rabbit) model of VX2

sarcoma in rabbit lung. Tumors were allowed to grow 14 -21 days and they were then

treated with radiofrequency ablation for six minutes at 90 degrees C. The authors

examined the histologic response at various time intervals and found at least 95 percent

of these nodules were necrotic at pathologic analysis.

Wang26 noted that impedance during the radiofrequency catheter ablation was

dependent upon a variety of parameters such as catheter characteristics, cabling,

reference patch size, body size, and temperature.

Various Japanese authors27 -30 have used radiofrequency hyperthermia in

association with radiotherapy. Patients receiving this localized themoradiotherapy tended
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to have better survival than patients treated with radiotherapy alone. Hyperthermia

appeared to potentiate the effects of therapy with radiation.

Kodama and colleagues31 have examined the role of intrathoracic chemotherapy

with radiofrequency thermotherapy. Patients with pleural carcinomatosis were treated

with an intrathoracic injection of cisplatin followed by radiofrequency thermotherapy for

60 minutes. The temperature was successfully maintained about 40 to degrees for 40

minutes in each of two or three treatment courses and 13 patients seven patients and

incomplete treatment because of side effects pleural effusion was negative in 16 of 20

patients examined following this treatment. The authors suggest that the use of localized

treatments together with chemotherapy and radiofrequency thermotherapy would be

helpful in improving local control in patients with pleural carcinomatosis.

Hayes and colleagues32 created a model of the effects of a radiofrequency

electrode placed adjacent to a bronchial wall tumor. They used a finite element technique

and assigned variable physical properties and blood perfusion to the tumor and

surrounding normal lung tissue. Using this finite element model, an effective protocol

for heating a tumor of a specific geometry could be performed to evaluate thermally

induced damage to the tumor and surrounding normal lung parenchyma.

Radiofrequency ablation may be used for other thoracic disorders also.

Wilkinson33 reported over 148 unilateral or bilateral side effect his for various

sympathetic -related medical conditions (such as reflex sympathetic dystrophy and

hyperhidrosis, etc.). He used to 18 gauge radiofrequency TIC needles to create a series of

three lesions in dangling sites. Lesions were targeted by C -arm fluoroscopy and

electrical stimulation. Sympathetic activity was interrupted and 96 percent of operative

levels after two years and 91 percent of operative levels after three years.

SUMMARY

Radiofrequency thermal ablation of lung tissues may be accomplished in a

satisfactory and safe matter. The use of radiofrequency ablation clinically requires

appropriate patient selection, evaluation of the acute effects of radiofrequency thermal

ablation all in primary and secondary pulmonary neoplasms prior to clerical use. In

patients who are otherwise unresectable because of poor pulmonary function or location

of tumor, or numbers of tumors, radiofrequency thermal ablation may provide an
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appropriate local control treatment to complement systemic management with

chemotherapy and other local control modalities such as radiation.

Appropriate patients for use of radiofrequency thermal ablation may include

patients with lung cancer who have poor pulmonary function, patients with stage IA, or

Stage IB lung cancer with a negative pet scans. Even with good pulmonary function,

patients with a solitary metastasis to the lung may also undergo treatment with

radiofrequency ablation to provide good local control and obviate the need for

thoracotomy. As patients with pulmonary metastasis will frequently develop recurrent

metastases, minimizing the number of open thoracic procedures may provide the patient

with more local control options that have previously been available. Other pulmonary

diseases may be treatable with thermal ablation based upon the value of this local control

modality upon the lung parenchyma, or upon the disease process itself.

The application of radiofrequency ablation of lung neoplasms will be initially

performed by open techniques of thoracotomy to ensure accuracy of placement, and

optimize patient safety while under the physiologic control of general antsthesia. In the

future this technique may not be performed solely in the operating room, and may be

used by interventional radiologists as a member of the multidisciplinary team caring for

the lung cancer patient.

Radiofrequency thermal ablation will provide our patients with another

technique of local control for primary and secondary lung neoplasms, and potentially

other pulmonary diseases. The use of radiofrequency thermal ablation must be examined

within the total care of the cancer patient: including appropriate clinical and pathologic

staging, and the multidisciplinary evaluation and review prior to initiation of treatment.

Radiofrequency thermal ablation holds great promise for our patients with pulmonary

neoplasms in the next millennium.
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