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ABSTRACT

Credit risk models like Moody’s KMV are now well established in the market and give bond managers reliable
default probabilities for individual firms. Until now it has been hard to relate those probabilities to the actual
credit spreads observed on the market for corporate bonds. Inspired by the existence of scaling laws in financial
markets by [1] and [2] deviating from the Gaussian behavior, we develop a model that quantitatively links those
default probabilities to credit spreads (market prices). The main input quantities to this study are merely
industry yield data of different times to maturity and expected default frequencies (EDFs) of Moody’s KMV.

The empirical results of this paper clearly indicate that the model can be used to calculate approximate
credit spreads (market prices) from EDFs, independent of the time to maturity and the industry sector under
consideration. Moreover, the model is effective in an out-of-sample setting, it produces consistent results on the
European bond market where data are scarce and can be adequately used to approximate credit spreads on the
corporate level.

Keywords: credit risk modeling; default risk; credit spread; expected default frequency; actual default proba-
bility and risk-neutral default probability; bond pricing
JEL classification: C15; C51; C52; C53; G12; G13

1. INTRODUCTION

Most securities are, in one way or the other, subject to credit risk: the uncertainty surrounding a firm’s ability to
meet its financial obligations. As a result, bonds issued by companies generally pay a spread over the default-free
rate of a government bond, which must be related to the probability of default. In this paper we develop a model
that relates credit spreads of different times to maturity to default probabilities or expected default frequencies
(EDF) as estimated by Moody’s KMV. Our model provides a closed-form solution and is suitable for empirical
testing.

Building on the access to monthly yield and EDF data at an industry level on the U.S. bond market, we
estimate market prices from EDFs for various industry sectors. Comparing the model outcomes with market-
consistent credit spread data during the time horizon starting in November 1995 and ending in December 2004,
we find highly consistent results independent of the time to maturity and the industry sector under consideration.
Moreover, the model is reliable on both U.S. and European bond markets and performs well independent of the
location.

A possible application of the model is to exploit the functional relation between EDFs and credit spreads
(market prices) to infer credit spreads from EDFs on an industry and on a corporate level where no yields are
yet available.
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Estimating credit spreads from actual default probabilities either empirically or purely mathematically has
been rarely attempted, to our knowledge. The study of [3] proposes a reduced-form or intensity-based approach
to estimate a relationship between actual and risk-neutral default probabilities. The author uses U.S. bond
yield data and long-horizon default frequencies by credit ratings rather than EDFs. A similar study recently
performed by [4] looks at the relationship between default probabilities and default risk premia estimated from
credit default swap (CDS) market rates.
The paper of [5] contains an empirical analysis of the relationship between actual and risk-neutral default
probabilities using structural models. A formal conversion or even establishing a model is left for future research
according to the authors. Reference [6] establishes such a link by relying on the standard Merton (1974) model
(c.f. [7]). Bohn’s study is fundamental to Moody’s KMV latest web-based tool CreditEdge PlusTM which combines
EDFs with a valuation framework returning fair values for bonds, loans and CDS by strongly relying on their
huge proprietary database (c.f. [8]). We studied the foundations of this model. However, we could only partly
test it empirically due to the lack of appropriate data required for estimating model parameters.

In our own model, we find that credit spreads exhibit a scaling law with respect to the time to maturity.
Aside from being reliable for industry sector indices on both the U.S. and European bond markets, the model
can also be used to calculate approximate credit spreads on the corporate level. We show in an out-of-sample
analysis that credit spreads are well predicted for short forecasting periods less than three months, given up-to-
date default probabilities. A Monte Carlo study of simulated credit ratings (distances to default) supports the
model. The temporal changes of a firm’s credit rating can be modeled as independent draws from a loggamma
distribution.

We summarize the quality of modeling results with respect to actual credit spreads by a quality measure G
based on squared errors, where −∞ < G ≤ 1.0. Small differences between model outcomes and credit spreads
are summarized by a value of G close to one, whereas large deviations are indicated by low and negative values.
We find highly consistent results independent of the time to maturity and the industry sector, with G values
larger than 0.85.

The organization of the paper is as follows. We start by explaining the EDF and bond yield data we use in
this study and the way we aggregate them into sector and rating indices. Then we describe the transformation
of credit spreads to risk-neutral default probabilities by relying on a simple cash flow valuation of credit-risky
bonds. In Section 3, we establish the model relating credit spreads to EDFs. In Section 4, we illustrate the
modeling results and propose different methodologies for empirically testing the model. Finally, we present our
simulation study based on loggamma-distributed rating changes, providing evidence for the power law of credit
spreads with respect to the time to maturity.

2. INPUT DATA AND RISK-NEUTRAL VALUATION

2.1. Bond Yield Data

The bond markets provide yield curves for zero-coupon bonds issued by companies belonging to different in-
dustries and rating classes. Aggregated yield-curves at an industry and rating class level are provided by the
Financial Market Curve Indices (FMCI) database of Bloomberg. We focus on yields of industry sectors com-
posed of corporate bonds denominated in U.S. Dollar, which are issued by U.S. based companies, and which
are rated by Standard & Poor’s (S&P). The time samples start in November 1995 and end in December 2004.
Throughout the paper, we denote the monthly discretization of this time sample by ti where i = 1, . . . , n.
Monthly yield data, determined at month end for industries and default-free U.S. government bonds, are available
for different times to maturity Tj where j = 1, . . . , m. For our analysis we retrieve yield data of the following
industries and S&P rating classes to which we refer to as sector indices throughout the remainder of this paper:
Utility A, Utility BBB, Media BBB, Bank A, Bank BBB, Broker & Dealer A, Finance AA, Finance A and
Telephone A. We denote the time series of default-risky or defaultable yields for an arbitrary sector index by Yj,i

and the series of default-free yields by Y j,i. As everywhere in the paper, j indicates the time to maturity, and i
is the time series index (from 1 to n).
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2.2. EDF Data

The expected default frequency (EDF) constitutes a key input quantity to this study and describes the annual
probability of default for firms with publicly traded equity during the forthcoming year. It is a well established
quantity and widely accepted in the financial services industry and has become a standard measure of corporate
credit risk. EDFs are the outcome of Moody’s KMV model which establishes a functional relationship between
an index called distance to default and the probability of default. For a description of the mapping between
the distance to default and the EDF measure we refer to [9] and [10]. The EDF of a company varies over time,
reflecting the changing economic prosperity of the firm or its industry sector. It has been shown by [11] that
EDFs are a leading indicator of default and allow to predict a downgrading of a firm ahead of rating agencies
decisions.
The series of sector index EDFs cannot be directly retrieved from Moody’s KMV CreditMonitorTM software and
has to be constructed from individual company EDFs within the appropriate industry sector and rating class. In
a first step we select all U.S. based companies contained in a particular industry sector under consideration (i.e.
Utility). We assume that the chosen industry sector consists of N individual companies C1(ti), . . . , CN (ti) each
with a credit rating grade R′

1(ti), . . . , R
′
N (ti) at ti. On the one hand, the number of firms changes over time due

to startups, mergers and closings. On the other hand, credit rating grades may vary as time evolves. We denote
the one-year EDF value of company k at ti by p′k(ti) where k = 1, . . . , N and N being random. At every point
in time ti CreditMonitor returns for each company Ck(ti) a rating R′

k(ti) and a one-year EDF value p′k(ti).
We construct the time series of EDFs pi for an arbitrary sector index by calculating the median∗ value at each ti
from company EDFs of the chosen industry sector S and of a particular rating class R̃, where R̃ = {AA, A, BBB}
and its index set is denoted by h.

pi = median (ti; p̌(ti)) , i = 1, . . . , n (1)
p̌(ti) = (p̌1(ti), . . . , p̌N (ti))

p̌k(ti) =
(

p′k(ti)|Ck(ti) ∈ S, R′
k(ti) = R̃h

)
, k = 1, . . . , N, h = 1, . . . , 3

In addition to sector indices we form rating indices by summarizing appropriate industry sector data of identical
rating classes and construct a global index comprising all sector indices under consideration. The purpose of
this construction is to provide estimates of model parameters which are used to make inference for the case
of industry sectors and firms where data are scarce. At each ti we compute the yield of the global index by
aggregating the yields of individual sector indices (1, . . . , d) by

Y G
j,i = median (ti;Y(ti, Tj)) , i = 1, . . . , n

Y(ti, Tj) = (Y1(ti, Tj), . . . , Yd(ti, Tj))

The series of EDFs for the global index is constructed in a similar way:

pG
i = median (ti;p(ti)) , i = 1, . . . , n

p(ti) = (p1(ti), . . . , pd(ti))

2.3. From Cash Flows to Risk-Neutral Default Probabilities

Yield curves of bonds subject to default risk are usually provided for zero-coupon bonds. This fact simplifies the
cash flow analysis since there are no intermediate payments and all the interests and the principal are realized
at maturity. Suppose that we have invested in a default-free and a default-risky zero-coupon bond of maturity
Tj and with a face value F . At any point in time ti we determine the present value of these bonds as the
discounted cash flow. In the case of the default-risky bond we have to regard the final cash flow F at maturity
Tj as uncertain and determine its value by the expected value

E[F ] = qj,iRF + (1 − qj,i)F
∗Unlike the mean, the median is a robust measure which is not affected by the noisy behavior of some outlier companies.
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where qj,i denotes the risk-neutral default probability at time ti for maturity Tj and R corresponds to the recovery
rate (i.e. the percentage of the principal to be paid in case of a default).
The essence of risk-neutral pricing is that risky investments should offer the same expected return as a risk-free
investment (c.f. [12]). Under the assumption of risk-neutrality the current market value of a default-risky bond
at ti (its face value discounted at its risk-adjusted discount rate) is equal to its expected value at maturity Tj

discounted at the risk-free rate

F

(1 + Yj,i)
Tj

=
E[F ](

1 + Y j,i

)Tj

(1 + Yj,i)
−Tj = [R + (1 − R) (1 − qj,i)]

(
1 + Y j,i

)−Tj . (2)

We infer a theoretical relationship between the default-free yield, Y j,i, the default-risky yield, Yj,i, and the
risk-neutral default probability from Eq. (2) as follows:

qj,i =
1

1 − R

[
1 −

(
1 + Yj,i

1 + Y j,i

)−Tj
]

(3)

The risk-neutral default probability is uniquely determined only if we know the recovery rate R. Based on
empirical results found in [13], [14], [15], [16] and [17], we assume a generic value of R = 40%. We make the
simplistic assumption that R stays constant over the considered time horizon and is independent of the choice
of time to maturity. Further we assume the same recovery rate for all sector and rating indices.
We emphasize that the time series qj,i corresponds to the probabilities of default for the entire remaining time
to maturity Tj and exceeds the annual quantity with increasing maturities larger than one year. We base later
comparisons on an annual level and annualize the series qj,i as follows: Assume that for a time to maturity of
one year a default-risky bond in survival pays the amount (1 − q̃1,i)F . In case of a maturity of two years the
survival probability is (1 − q̃2,i)T2 and the survival cash flow amounts to (1 − q̃2,i)T2F and so on. The series of
annualized risk-neutral default probabilities follows from:

q̃j,i = 1 − (1 − qj,i)
1

Tj (4)

where ·̃ simply indicates annualized quantities.
From Eq. (2) we can further deduce the essential relationship between credit spreads, the probability of default,
the recovery rate, and the default-free yield

sj,i = Yj,i − Y j,i ≥ 0

=
1 + Y j,i

[R + (1 − R) (1 − qj,i)]
1

Tj

− 1 − Y j,i . (5)

3. MODELING APPROACHES

Default-risky industry or corporate yields are often only partially available, or not at all. Thus a credit spread
cannot always be easily inferred. It is the main goal of this paper to estimate credit spreads (market prices)
from default probabilities proxied by EDFs. The following sections establish modeling approaches to estimate
the series of risk-neutral default probabilities qj,i in Eq. (5) for different times to maturity from one-year EDFs.

3.1. The Brownian Motion Model

Credit risk models found in the finance literature are either based on a structural framework or on a reduced-
form setting. Structural models rely on a contingent-claims approach to valuing corporate debt using the option
pricing theory as proposed by Black, Scholes and Merton. The latter group of models is based on credit rating
migrations and historical credit rating transition probabilities and assumes that the event of default is generated
by some exogenous hazard rate process. Often firm-specific data relevant for structural models and for estimating
underlying model parameters are not easily or not at all accessible to regular financial services companies. A
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major problem of reduced-form models is the availability of realistic and regularly updated rating transition
probability matrices. In the following we propose a continuous-time model of rating fluctuations that incorporates
elements of both approaches.
We model a firm’s credit rating by the distance to default and assume the following:

(i) The creditworthiness of a firm is modeled by its distance to default X = (Xt)0≤t≤T which is assumed to
fluctuate over time as a Brownian motion.

(ii) There exists a minimum boundary which corresponds to a default level d. It serves as an absorbing barrier
and prevents the process X from recovering once it hits that level. For convenience this default level is
defined to be at zero (d = 0), implying that solvent companies have a strictly positive distance to default,
Xt > 0 ∀t.

(iii) The rating process X is assumed to neglect a drift term. - This is a simplistic assumption. The drift is
rather difficult to estimate accurately and adding this term to the model provides almost no additional
information.

(iv) The process X is assumed to start above the default level at X0 = x0 where x0 > 0.

These assumptions are strong enough to arrive at a complete model of default probabilities. We consider a time
interval [0, T ] where T corresponds to the time to maturity. We fix a probability space (Ω,F , P) on which there
is a standard Brownian motion W = (Wt)0≤t≤T to represent uncertainty. The actual or physical probability
measure is denoted by P. The information set generated by this Brownian motion up to and including time t is
represented by the filtration F = {Ft ⊂ F| t ∈ [0, T ]}.
Let the process X follow a standard Brownian motion W starting at X0 = x0. That is,

Xt := x0 + σXWt

where x0 > 0 and σX > 0 corresponds to the volatility of the rating process X. So far, we have not provided a
scale of the process X, we only postulate its existence.
No default requires not only that the value of the rating process X exceeds the default level at maturity T but
also demands that its running-minimum over time never hits the default barrier d. We define the probability of
default p(T ) at maturity T by

p(T ) = P

(
XT ≤ d, min

0≤t≤T
Xt ≤ d

)
∀t ∈ [0, T ] (6)

The evaluation of the joint probability in Eq. (6) is based on general computations and results of a stochastic
process minimum hitting a lower boundary by relying on the strong Markov property and on the reflection
principle. For a formal derivation and results we refer to [18], [19] and [20]. The probability of hitting the default
barrier within the time interval [0, T ] starting now is

p(T ) = 2
[
1 − Φ

(
x0

σX

√
T

)]
(7)

where Φ(·) denotes the cumulative of the standard normal distribution. The quantity x0 can be regarded as the
definition of the credit rating variable or more precisely its current value and is obtained by inverting Eq. (7).

x0 = σX

√
TΦ−1

(
1 − p(T )

2

)
(8)

where Φ−1(·) corresponds to the inverse of the cumulative standard normal distribution. From Eqs. (7) and (8)
we establish a scaling law that directly relates default probabilities of different times to maturity. We reformulate
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Eq. (7) for an arbitrary time to maturity Tj and substitute the result of Eq. (8) using a maturity of one year T1

leading to

p(Tj) = 2

[
1 − Φ

[√
T1

Tj
Φ−1

(
1 − p(T1)

2

)]]

= 2Φ

[√
T1

Tj
Φ−1

(
p(T1)

2

)]
j = 1, . . . , m (9)

We observe that Eq. (9) is independent of the standard deviation of the rating process σX and the initial credit
rating x0. The probability p(Tj) is not an annual default probability but describes the probability of default for
the entire remaining time to maturity Tj . It can be annualized in the same way as shown in Eq. (4).
We estimate the series of risk-neutral default probabilities qj,i of Subsection 2.3 by

qj,i = 2Φ

[√
T1

Tj
Φ−1

(pi

2

)]
(10)

where pi corresponds to the series of one-year EDF values as determined in Subsection 2.2. We simply rely on
empirical results and do not perform a proper mathematical change of measure (i.e. from a physical to a risk-
neutral probability measure). Noticing this fact we do not expect Eq. (10) to accurately describe risk-neutral
default probabilities from EDFs. Nevertheless, we attempt to approximate the credit spread by an EDF implied
spread (EIS) by substituting these estimates of risk-neutral default probabilities in Eq. (5).

3.2. The Power Law Brownian Motion Model

A deficiency of the Brownian motion approach seems to be the lacking possibility of sudden credit rating losses.
Empirical results (c.f. Fig. 1) show that the Brownian motion model does not describe reality well. It often
appears that a firm’s credit rating may suddenly deteriorate rapidly - in the worst case even leading to an
immediate default. Contrariwise, multi-step upgrades are not likely to be observed in reality. We also assume
that with increasing times to maturity there is a tendency of being downgraded rather than of being upgraded.
The Brownian motion model has a survivorship bias meaning that a firm’s credit rating stays too close to its
present rating grade. Thus, we can no longer describe severe movements of the credit rating by a diffusion model
of Gaussian type. To account for the possibility of sudden downgrades and the asymmetry in the credit rating
we consider a power law. In Section 5, the link between the power law introduced here and the behavior of credit
rating changes will be established.
We base our extended version of the Brownian motion model on empirical results rather than on a proper
mathematical framework. In other empirical studies of financial asset price dynamics, it has been shown that
scaling laws deviate from those expected from a Gaussian distribution (c.f. [21] and [2]). Inspired by this, we
simply introduce additional parameters in Eq. (10) leading to

q̃j,i = 2Φ
[
ci

(
T1

Tj

)αi

Φ−1
(pi

2

)]
(11)

where 0 < αi < 1.0 and ci ∈ R are parameters estimated at every ti. We emphasize that Eq. (11) is a relationship
for directly approximating annualized risk-neutral default probabilities.†

The exponent αi describes the empirical behavior of firms in the market. It mainly captures the overall movement
and accounts for the scaling law of default probabilities with respect to the time to maturity. A small αi

characterizes a behavior where sudden credit rating losses are more important than gradual drifts. The other
†We used the same structure of the model to estimate non-annualized risk-neutral default probabilities but annualized

them in the sequel by using Eq. (4). There is no parameter set for this alternative model that describes risk-neutral
default probabilities well across all times to maturity. In the model we calibrated, risk-neutral default probabilities were
underestimated for short and overestimated for medium and long times to maturity.
Notice that this non-annualized model version embeds the Brownian motion model if the we set αi = 1

2
and ci = 1 ∀i.
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parameter ci describes the overall level of expected default probabilities and could be regarded as a risk premium
or a market price of credit risk. We estimate αi and ci at each point in time ti by simple linear regressions across
all times to maturity Tj as follows:

ln

Φ−1
(

q̃j,i

2

)
Φ−1

(
pi

2

)
 = ln ci + αi ln

(
T1

Tj

)
+ εj,i ∀i = 1, . . . , n (12)

where ln
(

T1
Tj

)
is used as the regressor variable and the dependent variable is composed of annualized risk-neutral

default probability values q̃j,i and EDFs pi. To estimate αi and ci for a specific sector index we assume that risk-
neutral default probabilities can be computed from available yields of a related sector index or from aggregated
global index yield data. Here the εj,i are independent random variables with E (εj,i) = 0 and Var (εj,i) = σ2

εi
.

We insert the estimates of αi and ci in Eq. (11) and directly infer the EDF implied spread from

sj,i =
1 + Y j,i[

R + (1 − R) (1 − q̃j,i)
Tj

] 1
Tj

− 1 − Y j,i (13)

4. RESULTS AND MODEL TESTING

We look at the descriptive power of the individual models and compare EDF implied spreads to market credit
spreads for sector indices where yield data is available. We summarize our findings by presenting the results for
the global index. In addition to graphical visualizations we propose a statistic to assess the ”fit” and to make
inference about the quality of a model with respect to actual credit spreads. We partly adopt the idea of the
r-squared statistic used to quantify a fit in the analysis of variance and regression.

Definition 4.0.1. Quality of a model. Let n ∈ N, Z = (Z1, . . . , Zn) be a random vector with realizations
z = (z1, . . . , zn) ∈ R

n. Denote the estimator of z by ẑ = (ẑ1, . . . , ẑn) ∈ R
n. Define the statistic G for the

goodness of a model by

G := 1 −

n∑
i=1

(zi − ẑi)
2

n∑
i=1

(zi − z̄)2
−∞ < G ≤ 1 where

z̄ =
1
n

n∑
i=1

zi

This statistic results in values close to one if differences between credit spreads and their model approximations
are small. Larger deviations are summarized in smaller and negative values for G.
As a representative example we plot modeling results for the time horizon from November 1995 until December
2004 for the global index.

We observe in Fig. 1 that market consistent credit spreads are overestimated by the Brownian Motion model
for the whole time horizon under consideration. Including additional parameters, possibly accounting for a risk
premium, a market price of credit risk or the market mood, leads to superior ”fits” as indicated by the results of
the Power Law Brownian Motion model and a value of G = 0.97. We recognize that this model seems to capture
strong increases of credit spreads better than sudden downfalls. We observe that the PLBM model produces
adequate results independent of the state of the economy. For instance the economic downturn emanating from
the collapse of the ”dot com bubble” which led to a large number of bankruptcies is remarkably well explained
by the PLBM model.
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Figure 1. Comparison of model results for the global index for a time to maturity of five years. The solid curve represents
market credit spreads. Results of the BM and the PLBM model are displayed by the dashed and the dashed-dotted curves,
respectively.

We show in Fig. 2 the behavior of annualized risk-neutral default probabilities in dependence of the time to
maturity for an average month within the time sample November 1995-December 2004.
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Figure 2. Annualized default probabilities for the global index in dependence of the time to maturity for an average
month during November 1995 and December 2004. The solid curve represents annualized risk-neutral default probabilities.
Results of the BM model are displayed by the dashed curve and the ones of the PLBM model are shown by the dashed-
dotted line.

Figure 2 indicates that the BM model underestimates annualized risk-neutral default probabilities for short
and overestimates them for medium and long times to maturity. Reasonable approximations of that model
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are merely found for a time to maturity of two years. Contrariwise, we are able to quite accurately explain
annualized risk-neutral default probabilities with our model for all times to maturity under consideration. Due
to the annualization we can directly compare default probabilities of different times to maturity and find, as
expected, that annualized default probabilities increase with longer times to maturity.

4.1. Out-of-Sample Test
Our model explains most of current credit spreads. The aim of this subsection is to examine the performance
and to show the limits of the model in an out-of-sample setting. We divide our time sample (November 1995-
December 2004) into an in-sample and an out-of-sample period. In the in-sample period starting in November
1995 and ending in November 1998 we assume that yield data and EDF values are available. The out-of-sample
period is defined as the time interval from November 1998 until December 2004. At each point in time in the
out-of-sample period we perform model forecasts for one month to twelve months in the future conditioned on
the information available as indicated in Fig. 3.

Nov.98

w=n-r

Nov.95 Dec.04

Nov.95

Nov.98

Nov.98

i=1 i=n

v=1 v=r

w=0w=1

in-sample

out-of-sample

f=1 f=5 f=7 f=12f=3 f=9

f=1 f=5 f=7 f=12f=3 f=9
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F
�

Fr

Fr Fr+1 Fn
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conditionedon�=0(forecastsat Fr)

conditionedon(forecastsat )Fr+1�=1

w

Figure 3. Time samples considered for the out-of-sample testing of the PLBM model.

We denote the index set of the in-sample time points tv by v = 1, . . . , r and refer to the appropriate information
set up to and including time r by the filtration {Fr : r ≥ 1}, where F1 ⊆ F2 ⊆ . . . ⊆ Fr. The accumulating
information set of the out-of-sample observations tw, where w = 0, . . . , n − r, is represented by the filtration
{Fr+w : w ≥ 0}, where Fr ⊆ Fr+1 ⊆ . . . ⊆ Fn. For model forecasts within the out-of-sample period we
assume that we have complete information on EDF values, however, only partial information of yield data which
gradually becomes known as time evolves. For this out-of-sample valuation we estimate the parameter series
αi and ci from appropriate time series models. Applying standard techniques of time series analysis reveal a
mean-reverting behavior for both parameter series. Based on model selection criteria such as Akaike (AIC) and
Schwarz-Bayesian (BIC) we describe this behavior by an autoregressive type of model. For better readability
and to avoid cumbersome notation we denote the index set of the time for this out-of-sample testing by the
subscript u = r + w + f .

αu = αu−1 + νw (ᾱw − αu−1) + φw (αu−1 − αu−2) + εα
u (14)

cu = cu−1 + ηw (c̄w − cu−1) + ψw (cu−1 − cu−2) + εc
u (15)
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where

ᾱw =
1

r + w

r+w∑
i=1

αi

c̄w =
1

r + w

r+w∑
i=1

ci

As f -step predictions (f referring to the length of the forecasting period) we use the expectations E[αu|Fr+w]
and E[cu|Fr+w], conditioned on the information available up to the appropriate point in time in the out-of-
sample. Since it is rather difficult to arrive at a direct formula for an f -step prediction we use the idea that for
f ≥ 1 the predictions E[αu|Fr+w] and E[cu|Fr+w] are evaluated recursively by E[αu−1|Fr+w] and E[cu−1|Fr+w],
respectively. We further assume that the innovations εα

u and εc
u have the martingale difference property with

respect to Fr+w, meaning that E[εα
u |Fr+w] = 0 and E[εc

u|Fr+w] = 0. We estimate the underlying parameters
of the time series models, νw, φw, ηw and ψw by multiple linear regressions and obtain the f -step forecasted
annualized risk-neutral default probability at tw by

q̃j,u = 2Φ
[
cu

(
T1

Tj

)αu

Φ−1
(pw

2

)]
We plot the results of this out-of-sample test for the global index and a fixed time to maturity of twenty years.
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Figure 4. Model forecasts of credit spreads for the global index for different lengths of forecasting periods. The series of
market credit spreads is shown by the solid curve. PLBM forecasts for one month, three and six months are represented
by the long-dashed, dashed-dotted and short-dashed lines, respectively.

We find that credit spreads are quite well forecasted and summarized with relatively high values for the G
statistic for short forecasting periods. Independent of the time to maturity under consideration we observe a
similar quality of forecasting results but clearly detect larger deviations from market credit spreads for longer
forecasting periods. This methodology allows to determine current credit spreads for an arbitrary sector index
based on previous yield data, current EDFs and parameter values estimated from the information available.

4.2. Testing on the European Bond Market
This section serves the purpose of analyzing whether the model is independent of the location and can be used
to explain credit spreads on other bond markets as well. We entirely rely on the theoretical framework proposed
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in Sections 2 and 3 and present the results for the European Utility A sector index.
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Figure 5. Market credit spreads (solid curve) and its approximations by EDF implied spreads (EIS) for the A-rated
European Utility sector index and a time to maturity of ten years. The results of the BM and the PLBM model are
represented by the dashed and dashed-dotted lines, respectively.

We find that on average less yield data on other bond markets is available from the FMCI database in the
time sample under consideration. As in previous figures we observe again that the EIS determined from the BM
model strongly overestimates the credit spread resulting in a low value of G (i.e. G = −49.95). Remarkable and
consistent modeling results are achieved with the PLBM model leading to a value close to one for the G statistic
(i.e. G = 0.941). This practical example provides some evidence that the PLBM model is also reliable on other
bond markets as well.

4.3. Testing on the Corporate Level

While EDF values can be obtained for almost all companies with publicly traded equity, it often appears that
yield data for individual firms is hardly accessible and a corporate credit spread cannot be inferred. We test
the PLBM model for some companies of different industry sectors providing enough yield data within the initial
time sample under consideration. Once a corporate bond is publicly issued its time to maturity shortens as time
evolves. Instead of assuming a fixed time to maturity Tj we have to reformulate the key Eqs. (3), (5), (11) and
(13) in dependence of a decreasing time to maturity δi

δ = (δ1, . . . , δn)
δi := T − ti i = 1, . . . , n

where T denotes the maturity date for an arbitrary corporate bond.
We illustrate the modeling results for a bond maturing in May 2003 of the American aircraft and aerospace
manufacturer Boeing.
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Figure 6. Market credit spreads (solid curve) and its approximations by EDF implied spreads (EIS) for the Boeing
company’s corporate bond maturing in May 2003. The results of the BM and the PLBM model using company specific
estimates for αi and ci are represented by the dashed and dashed-dotted lines, respectively. The short-dashed curve
displays PLBM model results using company specific EDFs but parameter estimates determined from global index yield
and EDF data.

The decreasing behavior of BM modeling results towards the bond’s maturity is caused by the diminishing
time to maturity. The PLBM model using parameters αi and ci estimated from company specific data seems to
describe credit spreads reasonably well at the beginning of the time sample but reveals larger deviations with
the start of the year 1999. For the hypothetical case where only company EDFs but no appropriate yield data
were available, αi and ci have to be estimated from global index data. We see that the PLBM model may be
used to describe the overall movement and to provide a first guess of corporate credit spreads but clearly reaches
its limits reflected by a relatively low value for the G statistic (i.e. G = 0.41).

5. SIMULATION STUDY

The power law behavior of the credit rating and the PLBM model itself are based on heuristic arguments and
have not yet been supported by a proper mathematical framework. Instead of entering stochastic analysis we
want to verify and provide evidence for the modeling results by relying on an independent Monte Carlo simulation
study. The aim is to provide a qualitative description of the process of credit rating dynamics at the origin of
the scaling law of time to maturity for annualized default probabilities.

5.1. Simulation Model

We consider the ratings of d firms in a population, count the number of surviving companies and infer an
annualized default rate.
We model the creditworthiness of firm l, where l = 1, . . . , d, by its distance to default and assume the default
barrier to be set at 0. For each time to maturity Tj , where j = 1, . . . , m, we consider a d-dimensional random
vector of distances to default D(Tj) = (D1(Tj), . . . , Dd(Tj)). We further assume that all companies have the same
initial credit rating explained by an identical initial distance to default, D(T0) = d(T0) = (d1(T0), . . . , dd(T0)),
dl(T0) = d(T0) and d(T0) ∈ R

+ ∀l, and that a solvent company has a positive distance to default, Dl(Tj) > 0.
Note that we look at the same d companies across all times to maturity Tj and observe a ”dying off” of firms
with Tj increasing. Startups of new companies as the time to maturity evolves are not taken into account in this
simulation model, because these new companies do not yet have corporate bonds at simulation start.
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The change of the credit rating in one time step is modeled by a loggamma distribution with a heavy tail on
the downside. This function is asymmetric with a shift parameter which can model an overall downward (or
upward) trend. For a definition of the loggamma density function we refer to [22]. We determine the distance
to default for an arbitrary company l as follows:

X(Tj) = (X1(Tj), . . . , Xd(Tj)) j = 1, . . . , m

Z(Tj) = (Z1(Tj), . . . , Zd(Tj)) j = 1, . . . , m

Dl(Tj) =
{

max (Dl(Tj−1) − Xl(Tj), 0) : if Dl(Tj−1) > 0
0 : if Dl(Tj−1) = 0

(16)

and
Xl(Tj) = aeZl(Tj) − b Zl(Tj) > 0, a > 0, b ≥ 0 (17)

where Dl(Tj) ∈ R
+
0 , Zl(Tj) ∼ Γ(α, β), α > 0 and β > 0 and Dl(Tj) is evaluated recursively from Dl(Tj−1). We

explain the uncertainty of a firm’s creditworthiness by the random variable Xl(Tj) which is loggamma distributed,
Xl(Tj) ∼ LG(α, β), with tail parameter α and scale parameter β. The parameter a in Eq. (17) is simply a scaling
factor which enables to measure the distance to default in arbitrary units and b represents a shift along the x-axis
allowing for individual upgrades. Such upgrades are reflected by a moderate increase of the distance to default
and credit rating grade, an event that often occurs in reality.
We map the distance to default to probabilities of default by counting the number of surviving companies and
by inferring an annualized default rate. Among the population d, k(Tj) companies survive one year later, where
k(Tj) ≤ d. For each time to maturity Tj we count the number of non-defaulting companies with a strictly
positive distance to default

k = (k(T1), . . . , k(Tm))

k(Tj) =
d∑

l=1

�{Dl(Tj)>0} j = 1, . . . , m

where

�{Dl(Tj)>0} =
{

1 : if Dl(Tj) > 0 (survival)
0 : if Dl(Tj) = 0 (default)

l = 1, . . . , d

We immediately infer the annualized default probability for each time to maturity Tj by

q̃ = (q̃(T1), . . . , q̃(Tm))

q̃(Tj) = 1 −
(

k(Tj)
d

) 1
Tj

j = 1, . . . , m

5.2. Simulation Results

We provide evidence for the scaling law of time to maturity of the PLBM modeling results by the subsequent
simulation outcomes. Since we look at a reasonably large number of firms (i.e. d = 7000 firms) and ensure
convergence of simulation results by performing 30000 simulations we keep random errors at a minimum. We
have chosen approximately optimal‡ parameters of the loggamma distribution as listed in Table 1.

‡We only conducted an approximate nonlinear calibration of the parameters. This is a difficult procedure as the target
function to be optimized is not analytic and relies on discrete events (simulated defaults). The simulations also require
large amounts of computation time.
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d0 (-) a (-) b (-) α (-) β (-)

discretization=1 yr 49.875 0.665 2.551 1.792 0.721

discretization=0.25 yrs 49.875 0.557 2.491 2.197 0.533

Table 1. Simulation parameters.

The parameter b in Table 1 exceeds a. Considering Eq. 17, this means that Xl(Tj) can have a positive or
negative sign. Thus upgrades of firms are possible as well as downgrades. A closer look shows that the resulting
loggamma distribution of Xl(Tj) is very asymmetric. The median is slightly negative (which means an upgrade),
but the mean is positive due to the heavy upper tail (which means a downward move of the distance to default).
In the long-term average, there is a slight tendency for a firm of being downgraded rather than upgraded.
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Figure 7. Model and simulation results of annualized default probabilities for the global index in dependence of the time
to maturity. Annualized risk-neutral default probabilities are represented by the solid curve. Results of the PLBM model
are represented by the dashed-dotted curve. Simulation results using loggamma distributed credit rating changes and
discretizations of the time to maturity of one year and 0.25 years are shown by triangles and stars, respectively.

As indicated in Fig. 7 we observe that using loggamma distributed credit rating changes and a discretization
of one year reveal deviations from modeling results for almost all times to maturity. These differences are likely
to result from a discretization error since we compare discrete simulation outcomes with PLBM modeling results
obtained from a continuous-time model. We can better describe the curvature and reduce deviations for most
times to maturity by using a finer discretization. Moreover, we find from these simulation results that changes
of the credit rating appear to follow a loggamma distribution as proposed in Eq. (17). On the whole, these
simulation results provide an independent verification of the scaling law of time to maturity for annualized default
probabilities. The heavy lower tail of the loggamma distribution is responsible for sudden defaults and seems to
be an essential ingredient for a successful model.

6. CONCLUSION

Building on the access to industry yield data of different times to maturity and EDF values we develop a model
that adjusts default probabilities to market consistent credit spreads based on a functional relationship and a
scaling law of time to maturity. We model a firm’s credit rating by using a continuous-time approach with a
power-law scaling behavior with respect to the time to maturity. The empirical results of our study clearly

14     Proc. of SPIE Vol. 5848



demonstrate that the proposed model enables to infer most of the credit spreads (market prices) from EDFs,
verifying the statement made in the title of this paper. Independent of the time to maturity and of the sector
index under consideration we find consistent results which are supported by values close to one for the model
quality statistic G (i.e. G ≥ 0.85).
We support the reliability and the efficiency of the model in an out-of-sample analysis and find that credit spreads
(market prices) can be quite accurately predicted for short forecasting periods conditioned on the information
available. We find that the model is independent of location and produces consistent results on the European
bond market where data are scarce. We further observe that the model can be adequately used to approximate
credit spreads on the corporate level but realize that in this application it reaches its limits which is reflected
by relatively low values for the G statistic. Finally, we support and verify our heuristic model with the help
of a Monte Carlo simulation study. We observe that credit rating changes are loggamma distributed and find
promising evidence that annualized default probabilities indeed follow a scaling law with respect to the time to
maturity.
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