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Abstract. Anesthesia monitoring currently needs a reliable method to evaluate the effects of the anesthetics on
its primary target, the brain. This study focuses on investigating the clinical usability of a functional near-infrared
spectroscopy (fNIRS)-derived machine learning classifier to perform automated and real-time classification of
maintenance and emergence states during sevoflurane anesthesia. For 19 surgical procedures, we examine the
entire continuum of the maintenance–transition–emergence phases and evaluate the predictive capability of a
support vector machine (SVM) classifier during these phases. We demonstrate the robustness of the predictions
made by the SVM classifier and compare its performance with that of minimum alveolar concentration (MAC) and
bispectral (BIS) index-based predictions. The fNIRS-SVM investigated in this study provides evidence to the
usability of the fNIRS signal for anesthesia monitoring. The method presented enables classification of the signal
as maintenance or emergence automatically as well as in real-time with high accuracy, sensitivity, and speci-
ficity. The features local mean HbTotal, std HbO2, local min Hb and HbO2, and range Hb and HbO2 were found to
be robust biomarkers of this binary classification task. Furthermore, fNIRS-SVMwas capable of identifying emer-
gence before movement in a larger number of patients than BIS and MAC. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.NPh.4.4.041408]

Keywords: anesthesia monitoring; functional near-infrared spectroscopy; machine learning; cerebral hemodynamics; depth of
anesthesia.

Paper 17038SSR received Mar. 18, 2017; accepted for publication Jul. 24, 2017; published online Aug. 19, 2017.

1 Introduction
The core of the work of anesthesiologists consists of integrating
a variety of signals from the human body during anesthetic use.
In order to do this, physicians undergo rigorous training to
obtain in-depth understanding of how drugs affect the patient’s
awareness, responsiveness, and pain. Currently, the tool box that
anesthesiologists have for evaluation of the anesthetized state of
patients contains primarily peripheral measurements, such as
heart rate (HR), respiration rate, oxygen saturation, and end-
tidal anesthetic concentration. The clinician must then fuse
the values obtained from the peripheral monitors with the clini-
cal picture to deliver anesthetics that are best suited for each
case. One of the guiding parameters that can be used when deliv-
ering volatile anesthetics is the minimum alveolar concentration
(MAC). MAC is estimated from the patient’s age and the end-
tidal volatile anesthetic concentration. Even though MAC is a
widely used method, it is known that at MAC 1.00 only 50%
of the population will not respond to painful stimuli and during
nonsteady-state conditions the end-tidal estimates may lag.1

Furthermore, the MAC value does not account for nonvolatile
agents administered during surgery that could have an effect on
pain and consciousness.1 Since the anesthesiologist tool box
does not contain information on the effects of the anesthetics
on the brain, a method that directly measures brain activity
would provide important data to help clinicians deliver individu-
alized anesthetic care.

Early studies using positron emission tomography visualized
decrease in the cerebral metabolic rate of glucose and the

cerebral metabolic rate of oxygen during the use of general
anesthesia.2–6 This decrease was observed in the cortical areas
of the brain including the prefrontal cortex (PFC), which formed
the basis for the development of anesthesia monitoring
technology.5–10 Furthermore, in the PFC specifically, anesthetics
can alter the hemodynamics by affecting the regional cerebral
blood flow and neurovascular coupling.6–9 Today, the most
widely used anesthesia monitor is the bispectral index (BIS™
Medtronic-Covidien, Dublin, Ireland). However, with routine
use estimated at only 1.8%, it has not gained widespread accep-
tance due to variability of its performance with opioid use and its
inability to predict emergence with sufficient lead-time to take a
preventive action.11–14 The low-rate use of these devices may be
influenced by the results of studies that have shown that BIS has
a reduced performance in the presence of opioids, did not
improve the quality of postoperative recovery, did not improve
early- and intermediate-term survival, or decrease the incidence
of intraoperative awareness.12,15–22 In order to address these defi-
ciencies, as well as enhance the existing capabilities, recent
studies in anesthesia neuromonitoring have investigated the
use of alternative modalities, particularly functional near-infra-
red spectroscopy (fNIRS), to evaluate the effects of anesthetics
on the PFC.23 fNIRS is a safe, noninvasive, and portable optical
method that can be used to monitor activity within the cortical
areas of the human brain. By deploying specific wavelengths of
light, continuous wave fNIRS provides relative measurements
of oxygenated (HbO2) and deoxygenated (Hb) hemoglobin
that are associated with the human brain activity changes.24–26
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Recent studies following patients during the transition from
anesthesia maintenance to emergence have shown that fNIRS
can measure significant changes in the concentrations of Hb
and HbO2 from the PFC associated with the transition between
anesthetized states.23 To date, four independent studies examin-
ing the effects of the anesthetic agent sevoflurane on the PFC
have shown that during the transition from maintenance to emer-
gence, a decrease in global mean Hb can be observed.27–30

Furthermore, significant decreases in global mean HbO2 and
HbTotal, derived as Hbþ HbO2, have also been reported.29,30

The global mean changes in Hb, HbO2, and HbTotal found
in these studies were relative to a baseline obtained prior to
the induction of anesthesia. However, changes relative to a pre-
induction baseline period can be influenced by events that are
unrelated to the anesthetic regime such as changes in position
and others described in the literature.23 In order to avoid such
confounders, local features describing the changes in the local
Hb, HbO2, and HbTotal signals can be quantified, instead, as
features of the transition from maintenance to emergence during
sevoflurane washout.30 In this local analysis approach, each
minute of data is normalized relative to a 5-s baseline at the
beginning of the minute. The following features describing
the hemodynamic response were then found to be associated
with the transition from maintenance to emergence: the standard
deviations, minimum and range of local Hb and HbO2.

30 Using
these features, it was found that the emergence state is associ-
ated with higher signal variability. These hemodynamic changes
in the PFC measured by fNIRS features are associated with the
competing effects of vasoconstriction from decreasing sevoflur-
ane concentration and increased oxygen demand from increas-
ing brain activity during emergence.30 Furthermore, machine
learning algorithms were able to make use of these features
to develop a model for automated classification of the mainte-
nance and emergence phases with a high accuracy even with a
limited number of sample points.30 Quantification of the usabil-
ity and robustness of an fNIRS-based machine learning model
for anesthesia evaluation still needs further investigation in a
larger number of samples.

This study focuses on investigating the clinical usability of
an fNIRS-derived machine learning classifier to perform auto-
mated and real-time classification of maintenance and emergence
states. While previous studies represented the maintenance
and emergence phases of a surgical operation as single data
points,27–30 here we consider the entire continuum of the main-
tenance–transition–emergence phases and evaluate the predic-
tive capability of a support vector machine (SVM) classifier
during these phases. We demonstrate the robustness of the pre-
dictions made by the SVM classifier and compare its perfor-
mance with that of MAC and BIS index-based predictions.

2 Materials and Methods
Patients undergoing elective limb or abdominal surgery at the
Hahnemann University Hospital in Philadelphia, Pennsylvania,
were enrolled in this observational study. The study protocol and

statements of informed consent were approved by the Institu-
tional Review Board of Drexel University. The study was con-
ducted with the subjects’ understanding and written informed
consent. A total of 50 patients were enrolled in the study, out
of which a group of 19 patients receiving the anesthetic agent
sevoflurane exclusively from maintenance until emergence were
selected for this study, to be consistent with the anesthetic used
during the procedure. The criteria for exclusion included:
incomplete records of physiologic data, technical issues during
data recording, excessive number of artifacts in the fNIRS
recording, use of desflurane for anesthesia maintenance, use
of a combination of sevoflurane and desflurane during mainte-
nance, and use of nitrous oxide. In our 19 patient group all
patients were American Society of Anesthesiologist (ASA)
class I (normal health patient) and class II (patient with mild
systemic disease), 5 male (26%) and 14 female (74%), had
a mean age of 42.49ð�11.42Þ and a mean weight of
198.96ð�56.17Þ pounds. This study follows the experimental
design, data collection, and fNIRS description method pub-
lished by Hernandez-Meza et al. 2017.30

2.1 Experimental Design

For the purpose of identifying the times of interest in this study,
the perioperative time course was divided into preinduction,
induction, maintenance, and light anesthesia/emergence phases,
as shown in Fig. 1. During the preinduction phase, 13 patients
received midazolam to decrease anxiety. Oxygenation with
100% oxygen was then administered. All patients were induced
intravenously with a bolus of lidocaine (87.0� 21.5 mg), fen-
tanyl (2 to 3 mcg∕kg), propofol (1.5 mg∕kg) and, for those
requiring intubation, rocuronium (50 mg). Maintenance was
defined as the time following intubation until the end of wound
closure. During this time, anesthesia was maintained with sevo-
flurane. Drug dosing was left to the discretion of the anesthesi-
ologist. Light anesthesia/emergence followed the end of wound
closure with the start of sevoflurane washout until the first
movement of the patient (Fig. 1).

2.2 Data Collection

Standard physiological monitoring of HR, blood pressure (BP),
and peripheral oxygen saturation (SpO2) began during the pre-
induction phase. At this time, the fNIRS sensor pad was placed
on the right side of the forehead while the BIS sensor was placed
on the left side as shown in Fig. 2. The right-side preference for
the fNIRS sensor was studied and validated by previous findings
where greater differences in the deoxygenated hemoglobin
levels were found on the right side of the forehead.27,28 After
obtaining a preinduction baseline, the fNIRS signal was
recorded throughout the procedure with a sampling rate of
2 Hz. Simultaneous data acquisition from continuous wave
fNIRS and BIS monitor is not expected to affect either signal
as multiple studies have used both modalities [e.g., electroen-
cephalogram (EEG) and fNIRS, BIS and fNIRS] in combination

Preinduction

Data collection 
starts

Intravenous 
induction

Sevoflurane 
washout

Observation of 
purposeful 
movement

Surgical procedure Sevoflurane
anesthesia

starts 

 General anesthesia phases
Induction Maintenance Light anesthesia/ emergence

Fig. 1 Timeline of the study in relation to phases of general anesthesia.
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without interference.27,28,31–34 Furthermore, after starting the
fNIRS data acquisition during the preanesthesia phase, we con-
firmed that the signal quality index (SQI) output of the BIS mon-
itor indicated high EEG signal reliability. Events of interest
during the procedure were time-stamped in the fNIRS signal
for accuracy in analyses.

Vital signs and gas concentrations were recorded automati-
cally from the anesthesia machine at a rate of 0.1 Hz. The vital
signs recorded included the BP, HR, pulse rate, SpO2, BIS, end-
tidal carbon dioxide concentration (EtCO2), and temperature.
The gas analyzer data included inspired and end-tidal concen-
trations of oxygen (O2) and sevoflurane. The data from the anes-
thesia machine and fNIRS were recorded simultaneously with
synced clocks. The data from the anesthesia machine were
extracted using custom optical character recognition software
and downsampled to 2 Hz during offline data analysis. The
end-tidal concentration of sevoflurane (EtSev) was converted
to MAC and adjusted for the subject’s age.35,36 All data were
processed with MATLAB® (The Mathworks, Inc., Natick,
Massachusetts).

2.3 fNIRS Description

fNIRS is a noninvasive optical neuroimaging modality that mea-
sures the relative concentrations of Hb and HbO2 molecules in a
given tissue using the transparency of tissues to near-infrared

light and the optical sensitivity of the hemoglobin molecules.
The noncommercial continuous wave system used in this
study was developed by the Optical Brain Imaging Lab at
Drexel University based on the technique demonstrated by
Chance et al. 1993.24,37 The sensor pad contained one LED light
source and two photodetectors spaced 2.5 cm apart. The pad is
composed of a flexible circuit board encased in foam (Fig. 2).
Attachment to the forehead, at the Fp2 position of the
international 10–20 system,38 was achieved using medical
grade double-sided adhesive. The fNIRS system captures mea-
surements at the photodetectors at a rate of 2 Hz. During each
500-ms cycle, the LED emits light at wavelengths of 730 and
850 nm for 33 ms sequentially. The optical power of the LEDs is
dependent on the wavelength of light and the current. The power
emitted at either wavelength is ∼12 mW, at a current of 20 mA,
and has average irradiance of 41 mW∕cm2.

2.4 fNIRS Data Processing

fNIRS data were obtained continuously from preinduction until
emergence. Although the fNIRS sensor pad contained two pho-
todetectors, the data from channel-2 suffered from ambient light
interference due to failure of the adhesive related to the curva-
ture of the forehead and the need for space for the BIS sensor.
Therefore, only the data from channel-1 was used for the analy-
sis presented here. The first step in the processing of the signal
was to apply a low pass filter with 0.1 Hz cutoff frequency to
extract the hemodynamic signal changes without confounding
artifacts from the respiration.

Since our aim was to evaluate the robustness of classification
of the anesthetized state as maintenance versus emergence using
the fNIRS signal in a machine learning model, we divided the
anesthetic time course into three periods of interest: mainte-
nance (M), transition (T), and emergence (E), see Fig. 3. The
maintenance phase starts at the beginning of wound closure,
when the patient has been returned to supine position, no elec-
trocautery is being used, the abdomen has been deflated after
laparoscope removal, and EtSev alone was adequate for surgical
anesthesia. The selection of this time period allowed us to
reduce the number of possible confounders. The transition
period starts when the inspired concentration of sevoflurane
is reduced in preparation for emergence. Emergence was defined
as the 60-s period preceding the first purposeful movement.

Fig. 2 fNIRS and BIS sensor data were simultaneously collected in
this study.

Fig. 3 Description of the time periods studied: maintenance (M), transition (T), and light anesthesia/
emergence (E).
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One-minute long epochs were extracted from the three peri-
ods of interest M, T, and E. Awindow of 60 s with a step size of
60 s was used to extract the epochs. The number of epochs for
each patient varied based on the type of procedure and the sur-
geon’s timing.

After each epoch was extracted, the changes in Hb and HbO2

were calculated relative to a 5-s local baseline (calculated at the
beginning of each epoch) using the modified Beer–Lambert
law.39,40 Our previous study showed significant changes in fea-
tures from the fNIRS signal [standard deviation (std) of Hb and
HbO2, the local minimum (min) of Hb and HbO2, and the range
of Hb and HbO2] during the transition from maintenance to
emergence.30 Furthermore, these features, along with the
local mean HbTotal, were previously found to be good predic-
tors for the classification of single maintenance and emergence
samples.30

Since the aim of this study is to evaluate the robustness of an
fNIRS-based classifier for the differentiation of maintenance
and emergence during the anesthetic time course, and to develop
evidence for the clinical usability of this signal, the following
features extracted from each epoch were used to form a feature
vector: std of HbO2, local mean HbTotal, local min Hb and
HbO2, and range of Hb and HbO2. The extracted features
were assessed in an SVM classifier in order to investigate
their ability to serve as robust and reliable biomarkers for
depth of anesthesia and were compared to BIS and MAC clas-
sification. All data were processed with MATLAB® (The
Mathworks, Inc. Natick, Massachusetts). Feature plots were pre-
pared with SPSS v.24 (IBM Corporation, Armonk, New York).

2.5 Classification Method

Classification using machine learning allows us to build a model
from a set of training examples with known categories, in order
to predict the unknown category of a new observation.41 In this
study, the two categories of interest are maintenance and emer-
gence, forming a binary classification problem. The machine
learning analysis was implemented using MATLAB 2015
Statistics and Machine Learning Toolbox (The Mathworks,
Inc., Natick, Massachusetts).

To develop our model, we use SVM classifiers trained with
features from the fNIRS signal (fNIRS-SVM) in a supervised
learning paradigm. To train the model, the training set is
P ¼ fðXi; yiÞ; i ¼ 1; : : : ; Ng, which contains the feature vectors
Xi ¼ xi;1; : : : ; xi;n and the target categories yi ∈ f−1;1g for
i ¼ 1; : : : ; N; where N is the number of samples and n is the
number of features. The training set used to develop the model
included n ¼ 6 features (local mean HbTotal, local min Hb and
HbO2, std HbO2, range Hb and HbO2) and N ¼ 38 samples
(two from each patient, representing 19 samples from the
first epoch of maintenance and 19 from emergence). By having
an equal number of samples from each category and each
patient, we prevent classifier bias toward a given class or patient.
Using the training set, the SVM algorithm maps the features into
a multidimensional space where a hyperplane that achieves cat-
egory division with the largest margin can be computed as the
target function fðXiÞ. This function represents the decision
boundary between the categories and can be used to predict
the class of a feature vector input of unknown category. Due
to the nonlinear nature of the data, a radial basis function kernel
was used to map the features to a higher dimensional
feature space in order to determine fðXiÞ. The parameters of
the model are selected to maximize crossvalidated prediction

accuracy of the test data. More information about the SVM clas-
sification method can be found in the literature.41–44

In order to test the generalization performance of the classi-
fier, a leave-one-patient-out crossvalidation method was
employed. The data set is divided so that the training set
excludes one patient’s data. The classifier is trained on the
data from the remaining 18 patients and the classification per-
formance is evaluated using the test set of the left-out patient.
This is repeated 19 times, leaving one of the patients out for
testing at each time. This allows us to obtain a measure of
the generalization capacity of the fNIRS-SVM to correctly
classify the data from a patient that was not used to train the
algorithm.

The test set included all samples from the maintenance class
that were extracted from the epochs in period M, the transition
period extracted from T, and the emergence class extracted from
period E. The true label of the transition period that occurs dur-
ing sevoflurane washout is unknown. Therefore, it was classi-
fied as either maintenance or emergence in order to obtain a
measure of classification performance during this dynamic
time period and to quantify the number of epochs before move-
ment that would fall under the emergence category for each
patient. Because our data set is composed of real surgical
cases, the number of epochs of maintenance and transition var-
ied between patients. Using leave-one-patient-out crossvalida-
tion, classification of maintenance and emergence was tested
on 229 maintenance samples, 246 transition samples, and 19
emergence samples from 19 patients.

Using the method outlined above, SVM models were trained
to evaluate the classification of maintenance and emergence
using the six features outlined in Sec. 2.4. We evaluated overall
accuracy, sensitivity, specificity, positive predictive value or pre-
cision (PPV), and negative predictive value (NPV) for periods M
and E, because these are the only time periods where there is
some certainty of the anesthetized state of the patient. The tran-
sition period T was classified during testing and the results are
also presented as the number of continuous minutes before
movement that were classified as emergence, in order to obtain
a measure of how far back in time emergence can be predicted
using the fNIRS features in our sample set. However, the true
category of this time period is difficult to assign due to the
dynamic nature of this phase.

The classification of maintenance and emergence using BIS
was performed in accordance to the manufacturer’s indications
(Table 1).27 For each epoch of BIS data, the mean was calculated
and maintenance was assigned when the mean BIS < 60 and
emergence was assigned when the mean BIS ≥ 60. For MAC,
classification was performed by calculating the mean MAC over
each epoch. AnMAC ≤ 0.34was classified as emergence, since
this number has been stated as the MAC awake for sevoflurane
in the literature.35

To evaluate the classification performance of fNIRS, BIS,
and MAC, we computed the overall accuracy of classification,
sensitivity, specificity, PPV, and NPV during maintenance and
emergence. Furthermore, sensitivity versus 1-specificity (false-
positive rate) was plotted to obtain the receiver operating char-
acteristic (ROC) curve and the area under the ROC curve
(AUC). AUC was used to evaluate the discriminative power
of the classifier, as this number approaches one the classifier
performs without error. When AUC ≤ 0.5, the performance
of the classifier is worse than random classification. The ROC
curves of fNIRS-SVM, BIS, and MAC were compared by
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Friedman test for repeated measures. For post-hoc analysis, we
employed the Wilcoxon signed-ranks test for repeated measures
in order to establish significant differences. The significance
level was set at p < 0.05. The statistical evaluation was carried
out with SPSS v.24 (IBM Corporation, Armonk, New York).

3 Results
A total of 19 patients receiving sevoflurane for anesthesia main-
tenance were evaluated in this study. Demographic and pro-
cedural statistics are presented in Table 2 as the mean and
standard deviation or as the number of cases and percent of
all cases. No procedures required aggressive interventions
and all the patients recovered consciousness upon emergence.

The training set was composed of the first epoch of mainte-
nance and the emergence epoch of each patient. The local mean
HbTotal, std HbO2, local min Hb and HbO2, and range of Hb
and HbO2 were calculated for these two epochs forming a 6 ×
38 training set, as explained in Sec. 2.5. Over the same time
points, a mean BIS and MAC data set were also derived.
The training set values per feature and MAC are presented as
mean and 95% confidence interval of 19 patients in Fig. 4.
These specific features were identified from a set of 11 statistical
features using a backward selection strategy for the classifica-
tion of maintenance and emergence during sevoflurane
anesthesia.30 Figure 5 shows the mean HR, SpO2, EtCO2,
and mean arterial BP (MAP) for the same epochs that compose
the training set. The measurements of MAP were recorded by
BP cuff noninvasively every 5 min and, therefore, represent only
estimates for actual values during the presented epochs. For the
test set, the same six features were calculated for each epoch of
the maintenance, transition, and emergence phases, forming a
6 × 494 matrix. The number of epochs per patient depended
on the type of procedure.

Using a leave-one-patient-out crossvalidation method,
fNIRS-SVM was trained and tested using six fNIRS features.
Performance was assessed as explained in Sec. 2.5. The confu-
sion matrix of the SVM classifier presented in Fig. 6 shows that
it achieves an overall accuracy of 94.8% in the classification of
the 248 M and E epochs. This fNIRS-SVM classifier was found
to have a sensitivity of 94.8%, specificity of 94.7%, PPV of
99.5%, and NPV of 60% (Table 3).

By examining the classification results of the transition
phase, we can gain some information on the predictive capacity
of fNIRS to detect changes associated with light anesthesia/
emergence before the patient’s first movement. Table 4 presents
the number of continuous minutes before the first movement
that were classified as emergence. When we look further into

Table 2 Demographic and procedural information (N ¼ 19).

Description Mean (�std: or percent of cases)

Age (yrs.) 42.49 (�11.47)

Weight (lbs.) 198.96 (�56.17)

Height (in.) 65.63 (�4.33)

Hemoglobin (g/dL) 12.86 (�1.54)

Hematocrit (%) 38.36 (�4.25)

Anesthetic risk (cases) 7 ASA I and 12 ASA II

Sex female 14 (73.7%)

Race Caucasian 11 (57.9%)

Duration (min) 115.6 (�56.8)

Propofol dose (mg) 182.5 (�25.8)

Midazolam 13 cases (68.4%)

Fentanyl 18 cases (94.7%)

Sevoflurane (MAC) 1.15 (�0.09)

Rocuronium 9 cases (47.4%)

Ephedrine 1 case (5.3%)

Morphine 2 cases (10.5%)

MAP < 90 mmHg 4 cases (21.1%)

HR < 50 bpm 2 cases (10.5%)

ΔEtCO2 > 50% 1 case (5.3%)

Procedures 8 minimally invasive (42%)

11 open (58%)

Table 1 BIS range guidelines.

BIS index
range Anesthetized state

100 to 80 Awake

80 to 60 Responds to loud commends or mild prodding/
shaking

60 to 45 General anesthesia

60 to 46 Deep hypnotic state

20 to 0 Burst suppression

Fig. 4 Mean and 95% confidence interval of six features used in the
training set (mean HbTotal, std HbO2, min Hb, min HbO2, range Hb,
and range HbO2) and MAC for 19 patients represented in the training
set with categories maintenance and emergence.
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the classification of the transition period, however, we find
that several cases contained intermittent epochs classified as
emergence. Figures 7(a)–7(c) show examples of such cases.
Figure 7(d) shows continuous classification of emergence over
the 3 min that precedes emergence. The true-positive rate versus
False-positive rate is presented as the ROC curves in Fig. 8.

Classification of maintenance and emergence using the data
from the BIS sensor was performed following the manufac-
turer’s guidelines.12 Each epoch of BIS data was averaged and
assigned a maintenance label when mean BIS < 60; the results
are presented as a confusion matrix in Fig. 9. Using this method,

BIS obtained an overall classification accuracy of 95.6%, sen-
sitivity of 97.8%, specificity of 68.3%, PPVof 97.4%, and NPV
of 72.2% (Table 3). MAC was classified as emergence when
mean MAC ≤ 0.34. The overall accuracy of MAC was
96.4%, sensitivity 100%, specificity 52.6%, PPV 96.2%, and
NPV 100% (Table 3). Table 4 presents the number of continuous
minutes before the first movement that were classified as emer-
gence for MAC and BIS. The ROC curves for the classification
of BIS and MAC are shown in Fig. 8. Figure 10 shows the con-
fusion matrix for the classification of MAC. The fNIRS-SVM
AUC was found to be 0.965, superior to that of BIS and MAC.
The Friedman Omnibus test comfirmed significant differences
among the performances of fNIRS-SVM, MAC, and BIS
[X2ð2Þ ¼ 122.435, p < 0.001]. Post-hoc analysis by Wilcoxon
signed-ranks test showed differences in performance between
fNIRS-SVM and MAC (Z ¼ −7.074, p < 0.001), fNIRS-SVM,
and BIS (Z ¼ −6.060, p < 0.001), and but not for MAC and
BIS (Z ¼ −2.047, p ¼ 0.41).

4 Discussion
Delivery of anesthetics remains without a gold standard method
for quantifying its effects directly on the brain. Previous fNIRS
studies during general anesthesia with sevoflurane concluded
that the global mean Hb and HbO2 decreased as the subjects
transitioned from anesthesia maintenance to light anesthesia
and finally to emergence.27–30 The global means of the signal,
however, can be easily confounded by changes in the position of
the body during surgery.23 The search for fNIRS-derived fea-
tures that describe the hemodynamic effects of the transition
from maintenance to emergence led to the realization that emer-
gence after sevoflurane washout was associated with variability
in the local fNIRS signal, which could be modeled using the
local mean HbTotal, std of HbO2, local min Hb and HbO2,
and the range of Hb and HbO2 calculated over 1-min long
epochs.30 Physiologically, the increased variability in these
hemodynamic parameters during emergence reflects the com-
peting effects of increased vasoconstriction and increased cer-
ebral metabolic rate that occur during sevoflurane washout.30

On the other hand, the physiological signals routinely measured
in the operating room, such as HR, SpO2, and EtCO2, have been
found to be unreliable as a measure of depth of anesthesia;45,46

hence, they have not been included in this analysis.
In this study, we expand on previous efforts to perform

gross classification of maintenance and emergence states dur-
ing general anesthesia with sevoflurane in relatively healthy
and young individuals by examining the performance of

Fig. 5 Mean and 95% confidence interval of MAC, BIS index, mean
HR (bpm), mean SpO2 (%), mean EtCO2 (%), and mean MAP
(mmHg) for 19 patients represented in the training set with categories
of maintenance and emergence.

Fig. 6 fNIRS-SVM confusion matrix.

Table 3 Classification results for fNIRS-SVM, BIS, and MAC.

Parameter

Classifier type

fNIRS-SVM BIS MAC

Specificity (%) 94.7 68.4 52.6

Sensitivity (%) 94.8 97.4 100.0

Accuracy (%) 94.8 95.6 96.4

PPV (%) 99.5 97.4 96.2

NPV (%) 60.0 72.2 100.0

AUC 0.965 0.842 0.761

Table 4 Number of continuous epochs/minutes before the observa-
tion of movement that were classified as emergence with fNIRS-SVM,
BIS, and MAC.

Timing of emergence detection

Number of patients per
classifier type

fNIRS-SVM BIS MAC

Not detected 1 (5%) 6 (32%) 9 (47%)

1 min before emergence 10 (53%) 1 (5%) 2 (11%)

2 min before emergence 4 (21%) 1 (5%) 1 (5%)

3þ min before emergence 4 (21%) 11 (57%) 7 (37%)
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fNIRS-SVM classification over the entire continuum of the
maintenance–transition–emergence phases in a 19 patient
cohort. Furthermore, we compare the classification using
fNIRS features to BIS and MAC. In this study, we did not
expect to find interference between fNIRS and EEG.
Simultaneous, data acquisition of fNIRS and EEG has been
performed successfully in previous applications including
in the operating room using the BIS monitor.27,28,31–34

Furthermore, we used the SQI indicator to confirm the reliabil-
ity of the EEG signal acquired by the BIS monitor and did not
observe indications of a low quality signal. However, we did
encounter space constraints when placing the fNIRS alongside
the BIS sensor in patients with smaller forehead space and
adhesion issues due to the curvature of the forehead, which

limited our data acquisition to one channel at the Fp2 position.
Future studies would benefit from a more compact and flexible
fNIRS sensor pad.

For the classification task, we trained an SVM classifier with
a supervised learning paradigm using the local mean HbTotal,
std HbO2, local min Hb and HbO2, and range Hb and HbO2 as
features and using a leave-one-patient-out crossvalidation
method. The training set was composed of one sample of
maintenance and one sample of emergence for each patient.
Classification was then tested on a total of 229 maintenance
and 19 emergence samples. The fNIRS-based SVM model was
found to perform well, with AUC ¼ 0.965, and to have high
accuracy (94.8%), sensitivity (94.8%), specificity (94.7%), and
PPV (99.5%). In 18 out of 19 patients, emergence was detected

Fig. 7 (a–d) Four examples of classification results with fNIRS-SVM along with mean BIS and mean
MAC versus time to emergence. The transition phase is shown in light gray. Examples “a,” “b,” and
“c” show intermittent classification of emergence during maintenance. Example “d” shows continuous
classification of emergence using fNIRS-SVM during the 3-min preceding movement/emergence.
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successfully at least 1 min before purposeful movement. How-
ever, the NPV was low (60%). These results on 248 samples
validate the performance observed by Hernandez-Meza et al.
2017 on 38 samples.21

Classification of the transition period allowed us to examine
the number of continuous minutes that were classified as emer-
gence in the 19 patient samples. For most patients (10∕19),
classification of emergence with fNIRS-SVM occurred 1 min
before movement. In eight patients, classification of emergence
occurred at least 2 min before movement. We hypothesize that
the number of continuous minutes classified as emergence
before the first purposeful movement is dependent on the rate
of sevoflurane washout, the anesthetic concentration during
maintenance and the rate at which the patient metabolizes sevo-
flurane. During analysis, however, it was observed that, in some
cases, emergence was assigned intermittently to some epochs
during the transition phase [Figs. 7(a)–7(c)]. Example Fig. 7(a)
shows a possible false positive in the second to last minute
before emergence, which could indicate that additional biomarkers
for this classification task may be needed to increase the reliability
of the results or that the binary labels offer insufficient resolution

for some patients. In example Fig. 7(b), we observe intermittent
classification of emergence during transition, then with an
increase in MAC we observe maintenance classification that
continues until the 2-min preceding emergence. Figure 7(c)
shows intermittent classification of emergence at the beginning
of the transition phase, when MAC is decreasing. Then MAC
increases again and we obtain maintenance classification
until the 3 min before emergence where we again see intermit-
tent emergence classification accompanied by decreasing MAC.
Example Fig. 7(d) shows, in contrast, continuous classification
of emergence during the 3 min that preceded movement. In these
examples, it can be seen that fNIRS-SVM is sensitive to changes
in the end-tidal anesthetic concentration, but other features or
classification methods may be needed for higher reliability dur-
ing the transition phase. The ideal number of minutes for
emergence detection is not an agreed upon metric in the anes-
thesiology community, although we estimate that a warning at
least 1 min before emergence will enable the clinician to take
preventive action. However, the goal of our study was to deter-
mine if fNIRS was capable of better performance than the cur-
rently available methods. Given that the specificities of BIS and
MAC (68.4% and 52.6%, respectively) are lower than fNIRS-
SVM (94.7%), we conclude that fNIRS monitoring could offer
a significant improvement in the detection of emergence over
the currently available methods.

Classification with BIS and MAC was performed using cut-
off values established by the manufacturing company and the
literature, respectively.27,35 The results of classification with BIS
and MAC can be found in Tables 3 and 4. From these results, it
was observed that fNIRS was more prone to false negatives dur-
ing maintenance 12 of 229 time points evaluated, whereas BIS
had five and MAC had none. On the other hand, emergence was
not detected in 1 out of 19 cases 1 min before movement with
fNIRS-SVM, in contrast to 6 out of 19 cases for BIS and 9 out of
19 cases for MAC. BIS was found to have high sensitivity but
low specificity compared to the fNIRS-SVM. Similarly, MAC
was found to have lower specificity than fNIRS.

The BIS index is a proprietary algorithm that utilizes the
power spectrum of the EEG signal, and perhaps also values
from an electromyogram, to output an index that estimates
the awareness of the patient.47 While the BIS index has high
accuracy and sensitivity, its inability to detect emergence in
6/19 patients in the minute before movement indicates that
this may be an unreliable metric to deliver individualized anes-
thetic care. However, since the electrical activity measured by
EEG could be an indicator of the activity of the brain, future
work could assess features derived from the EEG signal in com-
bination with fNIRS. Similarly, the low specificity of MAC
(52.6%) indicates that on its own it may be insufficient to predict
emergence with enough lead-time for the anesthesiologist to
take action. During the anesthetic procedures in our sample set,
MAC was calculated from the end-tidal sevoflurane concentra-
tion and the patient’s age. MAC can be a good indicator of the
effect of anesthetic drugs during steady-state conditions, but
during dynamic times the values may have significant lag.1

Furthermore, the effect of other drugs such as opioids is not
accounted in this number and each combination of drugs will
have specific effects on analgesia.1 In recent years, however,
predictive modeling of drug concentrations in anesthesia mon-
itors have been implemented to account for the effect of multiple
drugs and these algorithms could be used to improve anesthesia
monitoring in combination with fNIRS and EEG.1 BIS and

Fig. 8 ROC curves for fNIRS-SVM, BIS, and MAC.

Fig. 9 Confusion matrix for classification of BIS.

Fig. 10 Confusion matrix for classification of MAC.
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MAC also have the advantage of providing a continuous index
instead of binary classification provided by fNIRS-SVM. In this
study, we provide the first evidence of the ability of fNIRS to
provide gross classification of maintenance and emergence
robustly in terms of a binary output. We recognize this as a limi-
tation of this study and suggest that future work with additional
data could make use of multiple SVM classifiers, in sequence, to
provide finer classification by increasing the number of classes.
This task, however, will require additional data in order to have
sufficient examples to train the algorithm to recognize each indi-
vidual class. Higher resolution for the classification task could
also be achieved with other learning algorithms, such as SVM
regression, given sufficient data.

In this study, we focused on evaluating the anesthetic time
course after the patient had been returned to supine position
and the pneuperitoneum deflated, as those events have been
identified as confounders of the fNIRS signal.23 These con-
founding factors along with others described in the literature23

may reduce the performance of the fNIRS-derived features.
Given these limitations, we suggest that improvements in sen-
sitivity and specificity could be achieved by a hybrid models that
combine fNIRS, EEG, and predictive modeling of drug concen-
trations. Such a model might more accurately follow the effects
of anesthesia and prevent the detection of false positives and
negatives in a given patient leading to personalized, controlled,
and safe delivery of anesthetics. This level of personalization
might especially benefit the pediatric and elderly populations
that are particularly sensitive to the effects of anesthetics.

For this study, we limited the feature space to a previously
studied and validated feature set that showed high accuracy of
classification in a small number of samples.30 During this study,
we observed that maintenance can be classified accurately
throughout the continuum of the maintenance–emergence
phases in patients undergoing different types of procedures
(abdominal and limb surgery, open and laparoscopic proce-
dures). Furthermore, classification of emergence was reliable
at least 1 min before movement was observed. However, during
the transition-phase additional features, classification with
multiple classifiers or regression methods may offer the resolu-
tion needed to obtain reliable results. Analysis in a larger set of
patients is needed in order to increase the number of emergence
samples.

5 Conclusion
The goal of this study was to evaluate the robustness of an
fNIRS-SVM-based model in the classification of the continuum
of the maintenance–transition–emergence phases and to com-
pare the results to classification with BIS and MAC. The
fNIRS-SVM investigated in this study provides further evidence
to the usability of the fNIRS signal for anesthesia monitoring.
The method presented in this study enables classification of the
signal as maintenance or emergence automatically as well as in
real-time with high accuracy, sensitivity, and specificity. The
features local mean HbTotal, std HbO2, local min Hb and HbO2,
and range Hb and HbO2 are found to be robust biomarkers of
this binary classification task. Furthermore, fNIRS-SVM was
capable of identifying emergence before movement in a larger
number of patients than BIS and MAC. The predictive capacity
of the algorithm during transition periods, however, still needs
further investigation. In addition, this study was conducted in a
relatively small cohort of patients and these results need to be
confirmed in a much larger scale. Fusion of fNIRS with other

sources of data related to anesthetic depth, such as EEG, periph-
eral physiologic measurements, and predictive modeling of drug
concentrations may improve anesthesia monitoring and lead to a
clinically viable real-time anesthesia monitoring tool.
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