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Abstract. Functional near-infrared spectroscopy (fNIRS) has been proposed as an affordable, fast, and robust
alternative to many neuroimaging modalities yet it still has long way to go to be adapted in the clinic. One request
from the clinicians has been the delivery of a simple and straightforward metric (a so-called biomarker) from the
vast amount of data a multichannel fNIRS system provides. We propose a simple-straightforward signal
processing algorithm derived from fNIRS-HbO2 data collected during a modified version of the color-word match-
ing Stroop task that consists of three different conditions. The algorithm starts with a wavelet-transform-based
preprocessing, then uses partial correlation analysis to compute the functional connectivity matrices at each
condition and then computes the global efficiency values. To this end, a continuous wave 16 channels fNIRS
device (ARGES Cerebro, Hemosoft Inc., Turkey) was used to measure the changes in HbO2 concentrations
from 12 healthy volunteers. We have considered 10% of strongest connections in each network. A strong Stroop
interference effect was found between the incongruent against neutral condition (p ¼ 0.01) while a similar sig-
nificance was observed for the global efficiency values decreased from neutral to congruent to incongruent con-
ditions [F ð2;33Þ ¼ 3.46, p ¼ 0.043]. The findings bring us closer to delivering a biomarker derived from fNIRS
data that can be reliably and easily adopted by the clinicians. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) has been pro-
posed as a noninvasive, rapid, and affordable alternative of func-
tional neuroimaging modality to fMRI and positron emission
tomography (PET). Although this technique was introduced
and developed in the last three decades, few scientists recently
have allocated their efforts on this issue. For establishing clinical
applications, the major parts of their attempts have focused on
the amendments of sensitivity and specificity of this method. In
Refs. 1–3, a relatively complete discussion can be found on
fNIRS advantages and limitations. Despite its many years of
introduction to the community, it has only one significant clini-
cal application: transcranial oximetry as a monitor for perfusion
of the brain.4 This approach has been readily commercialized
and several FDA-approved instruments are already placed in
the operation room. Acceptance of the fNIRS system to neuro-
psychology and neuropsychiatry has not been all that welcome.
Although fNIRS offers many advantages over traditional neuro-
imaging techniques, it still suffers from several physical and
technical issues that lead to hesitations by clinicians and
researchers in their adaptation of this technique.5,6 Despite a
lower resolution due to diffusive behavior of light propagation
in tissue, fNIRS is attractive because of its noninvasiveness,
comfort, and cost-effectiveness.6–11 Allowing the tolerance to
head motion fNIRS has been used in experiments in which

subjects make large movements,12 or in studies for monitoring
cortical activation in response to noxious stimuli in infants,13

adults,14 patients,15 and assessment of human response to pain.16

Currently, there are two trends followed by the “fNIRSan”
(members of the fNIRS community) in their efforts to gain
acceptance of their system by the clinicians: (1) increase spatial
and temporal resolution to provide a full brain scanner; hence be
a competitor and an attractive alternative to fMRI and (2) opti-
mize the number of channels and provide a metric (a biomarker)
that correlates well with the neurovascular coupling physiology
during cognitive activity. The first trend requires the develop-
ment of an expansive and bulky system that is neither versatile
nor mobile whereas the second trend aims to develop a system
that is mobile, flexible, inexpensive yet crude and may lack the
necessary accuracy of its competitor. However, the second trend
also bestows the highest hope of providing a clinically relevant
marker. The researchers try to align themselves with one of these
camps in their efforts to push this system into the clinic. We have
chosen to be allies with the second camp and propose a metric
that can be used effectively in evaluating the cognitive state of
the individual with respect to his/her physiological finding
derived from fNIRS measurements.

The best way to find a clinical marker is to extract meaning-
ful information from the recorded fNIRS data. To reach this
goal, many researchers have adapted innovative signal process-
ing algorithms to extract features that can be readily used as
these markers.7,17–23 In fact, after the success of functional
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connectivity studies using fMRI, similar studies using fNIRS
have emerged recently.7,24–31 Recent studies have shown obvi-
ously that human brain connectome networks can be constructed
using fMRI,32 diffusion tensor imaging,33 electroencephalogra-
phy (EEG),34 and magnetoencephalography (MEG) data,35,36 and
even further be investigated by graph theoretical approaches.37

In this study, we aimed to investigate the efficiency of the
graphs formed in the prefrontal cortex (PFC) during a modified
version of the color-word matching Stroop task.30,38 Connectiv-
ity patterns obtained from the partial correlations (PC) of the
hemodynamic responses acquired from 16 different regions of
the PFC to various stimuli are expected to be different from chan-
nel to channel and this is related with the cognitive load.19,39,40 A
continuous wave 16 channels near-infrared spectroscopy device
(ARGES Cerebro, Hemosoft Inc., Turkey) was used to measure
the changes in HbO2 concentrations from 12 healthy volunteers.

An important aspect of our research is the exploration of the
potential of fNIRS to be used as a functional neuroimaging
modality19 in an expectation to deliver a clinical marker. The sec-
ond important contribution of our research is the introduction of a
simple and straightforward signal-processing algorithm: a wave-
let-based partial correlation (WPC) analysis that allowed us to
focus on the functional connectivity in a well-defined frequency
interval (0.0035 to 0.08 Hz) while eliminating the use of high
order digital filters and preprocessing techniques that end up
warping the data dramatically. Use of wavelet transform-based
elimination of nonneural sources of noise, such as cardio respi-
ratory effects, has been quite successful in fNIRS signal-process-
ing applications.30,41–43 Moreover, WPC analysis helps to remove
the effect of indirect paths; since by applying this method while
the WPC between two channels is correlated, an underlying cor-
relation common to all other 14 regions can be regressed out.

Hence the main aim of this study is to explore the feasibility of
fNIRS to monitor the neural correlates of the cognitive activity in
PFC during a Stroop test by using wavelet analysis and graph
theory. The choice of a wavelet-based filtering can in fact be
more justified for real-time analysis since wavelets are excellent
choices for real-time applications. Usually real-time neurofeed-
back systems require several seconds of data recording before
proving feedback. Hence a collection of initial 10 to 20 s of
data for real-time feedback would be ideal and then every new
second the previous 20 s would be analyzed to provide the feed-
back. Correlation and GE calculations are very fast algorithms
that can be computed in the millisecond range by any DSP chip.

2 Materials and Methods

2.1 Subjects and Protocol

Data were collected from 12 healthy volunteers (7 females and 5
males) from the university community (right-handed, mean age
26.17� 4.30, range 20 to 31) at the Neuro-Optical Imaging
Laboratory, Bogazici University Istanbul, Turkey. Control sub-
jects had no history of psychiatric or neurological disorders.
Subjects were asked to perform color-word matching Stroop
tasks whose trials are the Turkish versions of Zysset et al.38,44

Subjects were presented with two words, one written above the
other. The top one was written in ink color whereas the bottom
one was in white. Subjects were asked to judge whether the
word written below correctly denotes the color of the upper
word or not. If color and word match, then subjects were to
press on the left mouse button with their forefinger, and if not,
on the right mouse button with their middle finger.

Subjects were informed to perform the task as quickly and
correctly as possible. The words stayed on the screen until the
response was given with a maximum time of 3 s. The screen was
blank between the trials. The experiment consisted of neutral
(N), congruent (C), and incongruent (IC) trials. In the neutral
condition (N), the upper word consisted of four X’s (XXXX)
in ink color. In the congruent condition (C), ink colors of the
upper word and the word itself were the same, whereas in the
incongruent condition (IC), they were different. The trials were
presented in a semiblocked manner (see Fig. 1 for the details).
Each block consisted of six trials. The interstimulus interval
within the block was 4.5 s and the blocks were placed 20 s apart
in time. The trial type within a block was homogeneous (but the
arrangements of false and correct trials were altering). There
were five blocks of each type. The experiments were performed
in a silent, lightly dimmed room. Words were presented via an
LCD screen that was 0.5 m away from the subjects. The task
protocol was approved by the Ethics Review Board of Bogazici
University.7,19,45,46

2.2 Data Acquisition

The fNIRS device is capable of transmitting near-infrared light
at two wavelengths (730 and 850 nm), which are known to be
able to penetrate through the scalp and probe the cerebral cortex.
Employing 4 LEDs and 10 detectors, the device can sample 16
different channels in the brain simultaneously (see Fig. 2 for the
details of the probe47). LEDs and detectors were placed in a flex-
ible printed circuit board that was specially designed to fit the
curvature of the forehead. The source–detector separation is
fixed at 2.5 cm, which is optimized for penetration depth
(∼1.5 cm from the surface to allow sampling from the cortex48)
and a wider sampling area of the PFC.7,8,49–53 Sampling fre-
quency of the device was 1.7 Hz. Calculation of concentration
changes of oxy-Hb and deoxy-Hb in blood is based on a modi-
fied version of the Beer–-Lambert law.7,8,20,54

2.3 Signal Processing Algorithm

The signal processing algorithm proposed is summarized
in Fig. 3.

As can be seen, this is a consolidation of techniques proposed
in the literature by many others. The wavelet transform has
been proposed to remove artifacts and irrelevant physiological
signals.30,36,41,42,55–57 The choice of the details and approxima-
tion coefficients was based on the spectral analysis of fNIRS
signals.7,19,20,28,58–60

Fig. 1 Stroop task protocol: the subjects responded to each stimulus
in a 4-s interval.
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2.3.1 Wavelet transform-based preprocessing

The discrete wavelet transform (DWT) uses filter banks to per-
form the wavelet analysis. The DWT decomposes the signal
into wavelet coefficients that can represent the signal in various
frequency bands. The choice of wavelet function plays an
important role in the quality of the analysis of fNIRS signals.
Similarity of the mother wavelet to the hemodynamic response
function improves the detectability of the estimation accuracy
of the signal.42 Hence, the decomposition was done by the
Daubechies 5 (Db5) as the mother wavelet because of its high
similarity to hemodynamic response.42,61 The wavelet domain
is advantageous to focus in a defined frequency interval to
emphasize the functional association between brain regions sub-
tended by cognitive activity. Neuronal activity-related hemo-
dynamic response observed in fNIRS-HBO2 data are shown
to occupy the frequency range of (0.003 to 0.08 Hz).22,28,45,46

According to the wavelet decomposition tree, the frequency

band of the hemodynamic response falls in the approximation
at level 3 (CA3: 0.0035 to 0.110 Hz) with respect to the sam-
pling frequency of the fNIRS instrument. The coefficients at
very low and higher frequency values were nulled and then a
new fNIRS-HBO2 signal was reconstructed for each detector.

2.3.2 Partial correlation

PC is a useful statistical tool for determining the relationship
between two variables after removing the effects of other varia-
bles.62,63 The goal of PC analysis is to figure out the hidden rela-
tion between two channels, while the interactions of other
channels on them have been eliminated. In our study, 16 channels
were used to investigate the functional connectivity (D ¼ 16).
Suppose that x ¼ ðxiÞi¼1;: : : ;D are the time signals related to each
of the 16 channels of the fNIRS signal. The PC coefficient
between the two channels i and j is defined by Πi;j, which is
a calculation of the conditional correlation between channels
i and j irrespective of the effect of D-2 remaining channels
(R∕fði; jÞg).

EQ-TARGET;temp:intralink-;e001;326;535Πi;j ¼ corr½xi; xjjxR\fi;jg�. (1)

It has been shown that the PC matrix can be obtained by calcu-
lating the covariance matrix (Σ) from D channels.38,39 Thus,
for D ¼ 16, the number of PC coefficients will be equal
to DðD − 1Þ∕2 ¼ 120, which is obtained from the PC matrix.
Matrix Π can be easily calculated through the reverse of covari-
ance matrix (ϒ ¼ ½ϒi;j� ¼ Σ−1). The reverse covariance matrix of
X is called precision matrix or concentration matrix.47,62–83 Thus,

EQ-TARGET;temp:intralink-;e002;326;426Πi;j ¼ −
ϒijffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒiiϒjj

p ; (2)

where i and j are the two separate channels and Πii ¼ 1. The
value range of PC is between þ1 and −1. PC values were com-
puted for each frequency band in three types of stimuli. Since PC
analysis helps to remove the effect of indirect paths, by applying
this method, the PC between two channels is correlated with the
activity at all other 14 regions regressed out.62,63 By applying this
method, we investigated connectivity graphs based on PCs
between the inverse wavelet transformed (reconstructed) data that
correspond to the specific frequency band of interest.

2.3.3 Weighted connectivity graph

Graph-based network analysis represents the state-of-the-art
methodology in brain connectivity. We considered the channels
as a set of vertices V and the PC coefficients assigned weights on
the set of edges E, leading to an undirected complete weighted
graph G ¼ ðV;EÞ.21,56,64 We investigated the connectivity
graphs of the PCs computed between wavelet coefficients at the
third level (corresponding to 0.0035 to 0.110 Hz frequency
range) of each channel. The graphs were computed for each
stimulus type.

2.3.4 Global efficiency and cost of a graph

Efficiency can be evaluated for a wide range of networks,
including weighted graphs. The formal definition is as follows:

EQ-TARGET;temp:intralink-;e003;326;100GE ¼ 1

NðN − 1Þ
X

i≠j∈G

1

Lij
; (3)

Fig. 2 Details of the fNIRS probe and its approximate placement on
the forehead.47

Fig. 3 Signal processing steps used in generation of the global effi-
ciency metric. DC, direct current (baseline signal value); IWT, inverse
wavelet transform; BPF, band pass filter; FC, functional connectivity.
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where N is the number of nodes in the network, Lij is the short-
est path length between nodes i and j.56 Maximal possible
global efficiency (GE) occurs when all edges are present in the
network. We used Latora and Marchiori’s65 efficiency measure,
since it allows us to work with weighted connectivity graphs. In
this case, the GE is computed as

EQ-TARGET;temp:intralink-;e004;63;686GE ¼ 1

NðN − 1Þ
X

i≠j∈G

1

dij
; (4)

where dij is “defined as the smallest sum of the physical distan-
ces throughout all the possible paths in the graph from i to j.”65

This has an interpretation, as stronger connection weights intui-
tively correspond to shorter lengths. Equation (4) generates val-
ues of GE in the range of [0;∞]. This value can be normalized to
[0; 1] by dividing it into randomly generated networks with the
same number of nodes. This analysis provides an insight to the
robustness of the network and its closeness to small network
properties.32,55,66 We generated 100 degree matched random net-
works to compute the ratios of global efficiency (GE∕GErandom)
between the real brain functional networks and 100 degree
matched random networks to assess small-worldliness of brain
functional networks. Typically, GE of a small world network
(GESW) approximates to the GE of a random network
(GESW∕GErandom ∼ 1).

We, then, investigated the topological properties of the brain
functional network as a function of GE andKcost. The total num-
ber of edges in a graph divided by the maximum possible num-
ber edges N ðN − 1Þ∕2

EQ-TARGET;temp:intralink-;e005;63;430Kcost ¼
1

NðN − 1Þ
X

i∈G
Ki (5)

is called the cost of the network, which measures how expensive
it is to build the network.65 The degree of each node, Ki,
i ¼ 1;2; : : : ; 16, is defined as the number of nodes in the sub-
graph Gi. A subgraph Gi is defined as the graph including the
nodes that are the direct neighbors of the i’th node. Kcost is the
average of the degrees of all the nodes in the graph, which is a
measure for the sparsity of a network.

2.3.5 Behavioral results

To achieve the behavioral results, we analyzed the reaction times
(RTs) from data of 12 subjects. In order to compare each pair of
stimuli, we apply a two-tailed paired t-test for RTs. The inter-
ference effect for the RTs between IC and N conditions
(p ¼ 0.01) and facilitation effect for the RTs of N against C con-
ditions are significantly different (p ¼ 0.03). However, there is
no significant difference between RT of IC and C (p ¼ 0.8).

3 Results

3.1 Global Efficiency Results

We averaged across all 100 generated random networks to
obtain a mean ḠErandom for each degree K and threshold T.67

Over a wide range of cost (0.005 < K < 0.04), results are con-
sistent with previous functional brain network studies.55,68

Figure 4(a) shows GE values for N, C, and IC in a real network
(average of 12 subjects) and random networks for each K cost.

We investigated the small-world that corresponded to the
degree of connectivity threshold 0.01 < T < 0.99 (with steps of

0.01). Analysis of variance (ANOVA) was used to test the stat-
istical significance among GE values from different stimulus
types (i.e., GEN; GEC; and GEIC). Figure 4(b) shows signifi-
cance at six different threshold values. The purple triangles indi-
cate that there are significant differences between the GE of
three types of stimuli (p < 0.05). We investigated the topologi-
cal properties of the brain functional network as a function of
GE andK, following the studies by Stam et al.69 and Liao et al.70

The choice of a threshold value will have a major effect
on the topological properties of the resulting networks. This
allowed us to compare the topological properties among the
three types of stimuli in a manner that is relatively independent
of the network size. The threshold is selected to ensure that brain
networks have a lower GE compared to random networks with
relatively the same degree of connectivity distribution. Ten per-
cent of the strongest connections in each network (highest val-
ues of wavelet PC) is considered, which corresponded to the
degree of connectivity threshold [see Fig. 4(b)]. GE values were
computed for each stimulus condition. Path length is inversely
related to the GE of a network for the transfer of information
among nodes by multiple parallel paths, and that GE is easier
to estimate than path length when studying sparse networks.
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G
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Fig. 4 (a) The dependence among global efficiency values for three
types of stimuli [neutral (N), congruent (C), and incongruent (IC)] and
percentage of strongest connections in the network (K cost). The solid
lines correspond to real network, and the dashed lines correspond to
random networks. (b) The ratios of global efficiency (GE∕GErandom)
between the real brain functional networks and 100 degree matched
random networks to assess small-worldliness of brain functional net-
works. The purple triangles indicate that there are significant
differences among the GE of three types of stimuli (p < 0.05).

Neurophotonics 041407-4 Oct–Dec 2017 • Vol. 4(4)

Einalou et al.: Graph theoretical approach to functional connectivity in prefrontal cortex via fNIRS



GE decreased as the stimulus type became more difficult
[Fð2;33Þ ¼ 3.46, p ¼ 0.043] as seen in Fig. 5 (GEN >
GEC > GEIC). Although the two-way ANOVA provided a sig-
nificance, this significance is clearly between the GEIC and GEN

but not between GEIC and GEC as expected. Normally, the
Stroop findings focus on the interference effect (null hypothesis
is that the mean value of GEIC is the same as the mean value
of GEN).

3.2 GE versus Behavioral Results

We investigated the relationship between the RTs and GE values
in the N, C, and IC matrices. We computed the change in RTs for
different stimulus types and also the change in the GE of the N,
C, and IC. Behavioral results and GE analysis according to the
stimulus type are shown simultaneously in Fig. 5. The most
sought after finding in a color-word matching Stroop task is the
contrast of the incongruent condition against the neutral con-
dition.38 We show that both in RTs and GE values there is a
strong interference effect between the incongruent and neutral
conditions.

All in all, we believe that the decreasing GE throughout a
task might possess clinical significance.

4 Discussion
This study proposes a simple and straightforward algorithmic
method to quantify the functional connectivity of the brain using
graph theoretical techniques applied to fNIRS-HBO2 signals.
We also propose to integrate the well-studied wavelet-based fil-
tering and PC analyses as preprocessing tools before graph effi-
ciency is computed. Graph theory gives us a language for
networks. It allows us to define networks exactly and to quantify
network properties at many different levels. This quantification
is likely to improve further since new graph measures are
described regularly.

Mesquita et al. performed an fNIRS study during resting
state and then applied correlation analysis to determine the func-
tional connectivity among brain regions.26 They used the corre-
lation analysis between two optodes. This approach is prone to
incorrect correlations since both data might contain similar
trends due to interference from systemic fluctuations. Tachtsidis
et al.71 have shown how these fluctuations can alter the accuracy

of detection and diagnosis if not taken care of. Lindauer et al.
have proven that the underlying cerebrovascular dynamics are
greatly affected by the metabolism, pharmacological interven-
tions, and even diseases and hence hinder the accurate estima-
tion of the neuronal response.25 In recent years, several
investigators decided to tackle this problem either by proposing
optical probe geometries18,20,72–74 or advanced signal processing
techniques.19,22,29,42,62,63 While a remedy to this interference
problem might be adding optodes with short separation, it
comes at a cost of increased device complexity and expense.
Signal processing tools have shown to reliably improve this
desensitization to superficial fluctuations with a common
physiological background. Tak and Ye have provided an excel-
lent review on the capabilities of such alternatives.17 The nature
of this interference is the basic underlying physiology and it can
be assumed to be present with a varying degree of contamination
in each and every time series of fNIRS data. One alternative to
eliminate this contamination and achieve nuisance-free fNIRS
data representing the neural activity is the use of PC analy-
sis.24,62 The method we used in this study based on PC elimi-
nates this deceiving correlation by considering the similar trends
underlying other optode data and eliminating them. This
approach also provides a means to bypass any unnecessary pre-
processing of the data. Among many denoising algorithms, we
decided to use the wavelet transform-based approach since the
effectiveness of this technique has been shown in many cases
where there might be spike-like or stepwise motion artifacts
in the signal. Such artifacts will not be removed by any bandpass
infinitive impulse response filtering technique and in fact lead to
a more fatal distortion in the signal as the smearing of that spike
onto the adjacent time points. Yet another advantage of wavelet-
based denoising is its use of very short duration filters causing
minimal phase distortion possibly minimizing an error in calcu-
lation of the correlation coefficient. ICA can be considered as an
alternative yet the assumption in ICA-based approaches is that
the sources are already independent of each other. The noise
might be independent but the systemic physiological back-
ground signal is not. Hence, it is nearly impossible to find
ICA sources that are band limited yet uncorrelated with the
noise. So the natural choice was a wavelet-based approach.

Graph theoretical metrics have been applied to many neuro-
imaging data especially from fMRI.21,36,37,67 Studies by Supekar
et al. have shown that functional connectivity computed by
the correlation approach provides clinically significant value
specifically in Alzheimer’s patients.57 Studies by Skidmore
et al. have shown functional connectivity computed by wavelet
correlation analysis in individuals with idiopathic Parkinson’s
disease.56 A graph theoretical metric, GE, was used in discrimi-
nating the functional connectivity patterns observed in these
patients. We used the same metric to investigate further in
healthy people how this metric is influenced among various cog-
nitive loads. In contrast to these fMRI studies, we performed an
analysis to prove that fNIRS can reliably be applied to obtain
these metrics. Recently, Niu et al. used the graph theoretical net-
work analysis approach to examine the topological organization
of the human whole-brain functional network constructed using
resting-state fNIRS data.27,31,54 Studies by Liu et al. have shown
that functional connectivity computed again by the PC approach
provides clinically significant values specifically in schizophre-
nia patients.80 Previous fNIRS studies have shown that patients
with schizophrenia have impaired activity in the PFC. Taniguchi
et al. measured reduced brain activity in PFC of schizophrenia

Fig. 5 Mean of GE and RT for three types of conditions. Data are
shown as mean standard� error (SE). N, neutral task; C, congruent
task; IC, incongruent task. Black asterisk indicates p < 0.05.
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patients compared to healthy controls during the Stroop task.81

GE has an intuitive interpretation, as higher connection weights
intuitively correspond to shorter lengths.

In contrast to studies emphasizing whole-brain network, we
found that data from a specific region (i.e., PFC) can be used to
generate a global connectivity metric during cognitive tasks.
As Eq. (4) dictates, GE is “the average inverse shortest path
length” that may significantly contribute to an integration in
larger and sparser networks. GE values are inversely related
to link weights, as large weights typically represent strong asso-
ciations, so might GE decrease as the cognitive activity becomes
more demanding. GE results are consistent with the hypothesis
that information transfer among the regions of PFC will increase
with the increasing cognitive load. Path length provides a mea-
sure of the network’s capacity for serial information transfer
among nodes, whereas global efficiency is a measure of the net-
work’s capacity for parallel information transfer among nodes
via multiple series of edges. Since the evidence is strong that the
brain is already massively parallel processing, it seems prefer-
able to adopt comprehensive measures of the efficiency of the
brain’s functional network topology.55 Among various graph
theory metrics, we focused on the GE as a marker of the engage-
ment of the PFC with respect to cognitive load since on a global
scale, GE quantifies the exchange of information across the
whole network where information is concurrently exchanged
while local efficiency quantifies a network’s resistance to failure
on a small scale. That is, the local efficiency of a node character-
izes how well information is exchanged by its neighbors when it
is removed. Since PFC is usually considered to have been one
large network, it would seem only reasonable to treat it as one
network and so we focused on a metric that would provide the
connectivity of the whole network.82,83 Intrinsic functional net-
works of the human brain have been generated by EEG, fMRI,
or MEG modalities and they all demonstrate a converging and
highly conserved topological organization over different scales,
such as small-world and modular structures.21,33,55,57,65,66,70 More
importantly, some of these features exhibit specific changes
associated with normal development, aging, and various patho-
logical attacks, which indicates the potential value of these
approaches in capturing and monitoring the brain organization
under different mental states.1,3,4,25–31,60,75 Our findings on the
decrease of GE as the cognitive demand increases might
sound counterintuitive since a major hypothesis of network
theory is that an adaptive network should reorganize itself to
minimize its cost and increase efficiency under increasing load.
Considering the increase in RT to represent an increase in cog-
nitive load, we see a consecutive decrease in the GE values.
There might be several explanations for this finding: (1) a flaw
with the signal processing methodology and (2) a lack in observ-
ing only a piece of a larger network. The PC algorithm we
employed uses the remaining 14 channels data as regressors for
computing the correlation between the two channels. It is quite
possible that this approach might be leading to an over regres-
sion (removing too much of the dependence) from the channels
leading to a smaller correlation value. Hence the functional con-
nectivity matrix calculated after this operation might leave only
the very close channels as strongly correlated. This will even-
tually lead to a lower GE value. Second, PFC is a part of a larger
brain network, albeit its fundamental role in decision-making.
fNIRS has access only to this region and it might be quite pos-
sible that as the cognitive demand increases many other parts
of the brain might be employed that are not visible to fNIRS

sampling. Hence, we might be observing a piece of a network
and the cognitive demand could be distributed over other parts
of the brain. That could also explain a decrease in GE as the
cognitive load increases.

4.1 Limitation of the Study

We reiterate the rationale behind our choice of this source–
detector separation. This has been a long debate and many
authors have favored the use of source–detector separations as
close as 2.5 cm. In fact one of the pioneers of fNIRS, the late Dr.
Britton Chance himself has used rectangular probe geometry
with an SD separation of 2.5 cm in most of his studies. We
would like to bring to your attention to a paragraph from his one
of the most cited articles.11 The major intracerebral contribution
probably comes from the gray matter.65 This has been confirmed
in two studies performing PET and NIRS simultaneously that
have shown the best correlation between NIRS and PET param-
eters in the outer 1 cm of the brain tissue.11,79 Interestingly, it
seems that even at interoptode distances as short as 2 to 2.5 cm
gray matter is part of the sample volume.76 This is consistent
with work assessing changes in local brain activity successfully
with interoptode distances of 2.5 cm.77 Other authors have
reported measurements at even smaller interoptode distances.78

Our group has also shown through Monte Carlo simulations
run on a realistic head model that we can actually probe the gray
matter.48 We agree that the probed gray matter area will increase
when the source–detector separation is enlarged to 3 cm, albeit
at the cost of reduction in SNR. Even at an SD separation of 2.5
we are losing ∼1∕106 of the photons. Hence, this choice
becomes an optimization issue. Even though only about 2%
to 3% of the signal we collect comes from the gray matter,
the dynamical changes observed and extracted with proper sig-
nal processing techniques correlate significantly with the task.
Hence as engineers we are faced with the dilemma ensuring a
deeper penetration depth via a larger SD separation at the
expense of complexity and cost of equipment and bulkiness of
the probe, or choosing an optimized distance at the expense of
lesser probing of the gray matter but a higher SNR and far less
inexpensive and complex instrumentation.

5 Conclusion
In this study, a modified version of the color-word matching
Stroop task was employed during fNIRS data collection. The
aim was to elucidate the adaptation of brain connectivity pat-
terns in the PFC during the task. The data were preprocessed by
WPC and local efficiency values were assessed among the 16
different regions. The findings show promise when interference
between incongruent and neutral conditions is considered. The
simple yet straightforward signal processing approach proposed
may lead to new findings in the assessment of connectivity
changes for diagnostic and prognostic purposes. The choice
of this specific signal processing algorithm was motivated
from the literature findings where a convergence was observed
to a wavelet-based elimination of irrelevant physiological back-
ground activity and some instrumentation noise. The choice
of PC to compute the functional connectivity matrix was moti-
vated by the need to eliminate a common background systemic
physiological activity that can be observed in each recording.
The study is limited in its choice of the graph theoretical metrics
to only global efficiency. Although many metrics could have
been employed, we believe that global efficiency actually is the
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major metric since it is derived from other metrics of graph
theory.
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