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Abstract. Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has
benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by
exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale inter-
areal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of
neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the
basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale
datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a
fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in
python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large
datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials
and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visu-
alization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and
show applications, where previously published datasets were reanalyzed using MBE. © The Authors. Published by SPIE
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1 Introduction
Among the initial goals of the brain initiative was to map the
functional activity of potentially every neuron within the human
brain.1 While this challenge has led to many new approaches to
assess connectivity,2–6 it is probably unattainable in the near
term. An equally important level of resolution to assess func-
tional relationships is the mesoscale. The mesoscale is an inter-
mediate level of brain functional connectivity between the
microscale of cells and synapses and macroscale connections
best visualized using whole brain functional magnetic resonance
imaging (fMRI) methods.1 Through the pioneering work of
Grinvald et al., mesoscale connectivity analysis has been well
established.7–12 Results from feline and rodent cortex nicely
demonstrate the role of large ensembles of neurons that contrib-
ute to cortical maps that are shaped by experience and are asso-
ciated with particular behavioral states.7,8 Complementing the
classic strategies of Grinvald and Hildesheim13 and Ferezou
et al.14 are more recent structural connectivity analyses per-
formed by the Allen Institute15,16 and others,17,18 where the pro-
jection anatomy of most mouse brain areas can be mapped into a
common coordinate framework for C57BL/6 mice.

The level of resolution afforded by mesoscale imaging pro-
vides opportunities to compare data across imaging modalities,
species, and behaviors.7,8,19,20 Fox and Greicius21 exploited
connectivity relations embedded within spontaneous brain activ-
ity in a similar manner to resting-state fMRI. This analysis
performed largely within spontaneous events of the cat primary

visual cortex, provided a means of assessing functional connec-
tivity relations, which were also present when the animal was
given defined visual stimuli.8 Recently, our lab and others
have taken advantage of large field-of-view (FoV) imaging
within the mouse cortex to also assess functional connectivity
using spontaneous activity.12,22,23 This approach, when com-
bined with new structural connectivity information,15 indicates
that functional connectivity is constrained by major intracortical
axonal projections.12,24 This approach of examining relation-
ships within spontaneous events or those stimulated by optoge-
netics also provides a potential vehicle for broad comparisons
between human resting-state fMRI studies and the mouse mes-
oscale connectome. While these advances, facilitated by the
careful insight of Kenet et al.,8 have moved the field forward,
a significant hurdle exists in processing and interacting with
large datasets of mesoscale functional activity. Accordingly,
we have built a flexible open-source python tool, which permits
significant processing of mesoscale imaging raw data and pro-
vides a platform with which others can view and interact with
archival datasets (such as widefield mesoscale imaging data
from transgenic mice) and explore their own regions of interest,
frequencies, or other properties. The tool is further designed so
that user-specified plugin pipelines can be created to automate
processing steps using existing plugin functions or custom plu-
gins with user-defined additional functions.

One method for inferring functional connectivity from col-
lected spontaneous data would be through the creation of seed
pixel correlation (SPC) maps:25 a single pixel (or a small region
of interest) is selected as the seed. Pearson correlation (zero lag)
is used to generate a map showing the extent to which brain*Address all correspondence to: Tim H. Murphy, E-mail: thmurphy@mail.ubc.ca
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activity over time at each pixel correlates with that of the
seed.11,12

Correlation matrices are generated from the activity for par-
ticular brain regions of interest (RoIs) across relatively long
sequences of spontaneous activity. Each RoI–RoI pair consists
of two sets of brain activity with a single correlation value for
each pair. Pearson correlation coefficients can be computed for
each RoI–RoI pair or even all combinations of pixels to generate
a connectivity matrix that can be used to infer interareal connec-
tivity relationships.12,23,26,27 Using correlation to infer, monitor,
and quantify connectivity is common practice in experimental
research.11,12,23 Voxel-based (volume pixel) correlation has
been used extensively in human research employing fMRI.25

In the case of GCaMP6, this would show us how correlated cal-
cium activity is between selected regions over the time period in
which the spontaneous data were collected (typically 3 to 20 min
of activity is recorded).

Correlation matrices are forms of functional connectivity
analysis. Functional connectivity is defined as the statistical
association or dependency among two or more anatomically dis-
tinct time-series.28 Measures of functional connectivity do not
provide information regarding causality or directionality (this
is further discussed in Sec. 6). If an analysis of how one region
influences another is required, then experimental changes stud-
ied via effective connectivity methods are required, which are
outside the scope of this paper.28

2 Materials and Methods

2.1 Mesoscale Brain Explorer Executable

Mesoscale brain explorer (MBE) is a cross-platform standalone
application (at the time of writing prerelease version 0.7.10 is
the latest most stable version available under an MIT license
from Ref. 29) that can simply be downloaded and run as an
executable without having to set up python or any further
dependencies. Moreover, if a python 3.5 environment has been
set up and the user has installed all dependencies (see instruc-
tions for setting up dependencies in the README: Ref. 30),
then the program can be run from the main script via an inte-
grated development environment or the command line. This
allows the program to be run on platforms that cannot run
executable files. To date, it has been successfully tested on
Windows 7, 8.1, 10, and Linux Ubuntu 16.04 systems. Note that
a python 2.7 implementation is not provided as python 2.7 will
reach its end-of-life in 2020. Python 2.7 users are advised by the
Python Software Foundation31 to port their code to python 3.5
and we likewise wish to encourage labs to make the switch. A
video tutorial that steps through the entire process required to
replicate the figures in this paper is provided (see README:
Ref. 30). Example image stacks from mouse #0285 used in
this manuscript can be downloaded here (see README).

MBE takes a plugin approach to data processing. Each
processing step is independently contained. However, plugins
and therefore processing steps used in a particular analysis
can be selected, ordered, and saved via the Configure Pipeline
window [see Fig. 1(b)].

MBE imports data in the form of stacked .tiffs or .raws, both
common file output formats for many imaging systems. Image
stacks in our context refer to xy over time. Datatypes uint8,
float32 and float64 are supported for .raw file imports, while any
datatype is supported for .tiffs as long as its datatype is specified
in the file header and supported by numpy.32 Multichannel

B&Wor RGB .tiffs or .raws may be used, however, only a single
channel is imported at a time. A user who wishes to use both red
and green channels from a single file has to perform the import
routine twice. Thereafter, either imported channel data can be
operated on in subsequent plugins. All files are converted to
python numpy arrays (.npy) upon import and all plugins sub-
sequently assume a .npy format. Any image stack file format
is compatible with MBE as long as it can be converted to .
tiff, .raw, or .npy format. In a session, all the files imported
are contained in a single project.

The user is presented with a graphical user interface (GUI)
window, menu and dialog driven interface elements alongside
two panels [Fig. 1(a)]. The left panel (red) is used for managing
plugins and data common to the project. The right panel (blue)
contains user interface (UI) elements specific to a selected
plugin.

During analysis, each step is performed with intermediate
arrays saved to file. The user can process steps one at a time
in any order or set up an automated pipeline, where output of
a prior step is taken as an input to process the next step in the
pipeline. Pipeline configuration, file paths, the source stack of a
processing step, an origin selected for a particular stack, a list of
all manipulations a stack has gone through and its type are all
saved to a JavaScript Object Notation (JSON) file in the user-
defined project directory. Files can be filtered via a dropdown
menu [the topmost dropdown menu in the blue region in
Fig. 1(a)] based on what manipulations they have gone through
making bulk deletion to save disk space easy. Moreover, as long
as all data and JSON file are kept together in a single folder with
no subfolders, the project can be copied to any supported com-
puter and opened there by MBE with all data and selected
processing steps already organized.

MBE is a standalone application and does not assume that
the user is familiar with python or the command line. This
makes it usable by both programmers and nonprogrammers.
Moreover, the source code is structured in a readily extensible
framework that can be expanded upon with new plugins devel-
oped to suit the specific needs of a researcher (a tutorial on
developing your own plugin will be provided in the README).
For example, implementing support for different file formats,
bandpass filtering techniques, or including additional colormap
options for SPC maps (see Appendix A.1.12, A.1.18, and
A.1.14) are all possible avenues for further development.

3 Experiment
Spontaneous activity collected from an awake female Ai94
mouse33 that was previously published was used in this paper’s
analysis.34 The mouse was head-fixed automatically whenever
the mouse entered a chamber to reach its water spout. Brain
activity was subsequently imaged through a bilateral transcra-
nial window encompassing the cortex for 30 to 64 s epochs
using a [Wave Share Electronics RPi Camera (F)] Raspberry
Pi camera at a framerate of 30 Hz with automatic exposure and
auto white balance turned off and white balance gains set to
unity. A plastic adjustable lens (f ¼ 3.6 mm; provided with
the camera) was used after unscrewing the lens and placing a
10-mm-diameter green emission filter (ET525/36m, Chroma
Technology) between the lens and the imaging sensor. The
use of this camera and lens resulted in a bilateral 10.5 to 10.75 ×
10.5 to 10.75mmFoVand imaging occurred through intact bone.26

Sequences of green epifluorescence images using the
Raspberry Pi camera are then collected when the mouse is
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head-fixed. A simple epifluorescence system was used with an
LED light source (with excitation 475/30 m and emission filter
ET525/36 m Chroma). Collected data (256 × 256 pixel image
stacks) were saved to raw RGB 24-bit files.34 A total of 31
such image stacks were recorded.

All the procedures were conducted with approval from the
University of British Columbia Animal Care Committee and

in accordance with guidelines set forth by the Canadian
Council for Animal Care.

4 Theory/Calculation
The pipeline we set up specifically for our analysis of mouse
#0285 can be visualized in Fig. 2. Note that in the application,
the ordering of this pipeline can be freely rearranged. Moreover,

Fig. 1 (a) The UI includes the left panel (red) for managing plugins and data common to the project, such
as coordinate system origin and pixel width, which here has been set to 41 μm∕pixel. The right panel
(blue) contains UI elements specific to a selected plugin. Here, we have the “set coordinate system”
plugin in view. This plugin is used to set the origin and as the pixel width for the project. Here, we
can see that for this project, the five image stacks have been selected. For each one, the anatomical
location of bregma was clicked and the origin was taken as the average of all five clicks. (b) Plugins and
processing steps used in a particular analysis can be selected and ordered via the Configure Pipeline
window.
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many additional available plugins (see Appendix A.1) can also
be inserted anywhere in the pipeline. Many of these we do not
use in the analysis covered by this paper.

4.1 Initial Preprocessing

The second channel (green) from 31256 × 256 pixel raw
image stacks was imported into MBE with no resizing (see
Appendix A.1.12).

In our autohead fixing home cage,34 mechanical settling of
the head fixing mechanism results in movement at the beginning
of the recording and we therefore delete the first 20 frames in
some image stacks as a precaution.

A single image stack was selected as the template that other
stacks were aligned to. All frames in this image stack were
sharpened via the unsharp filter plugin (see Appendix A.1.20)
using a kernel size of 8. We have previously found34 through
trial and error that this kernel size sharpens each frame to
adequately emphasize the location of blood vessels.

The 400th frame (�13.3 s following trim) to the 500th
(�16.6 s following trim) frame of this sharpened image stack
were averaged to emphasize the location of the blood vessels
further and deemphasize other features, this step is optional
and used to fine-tune alignment. Users may opt to simply select
a single frame without performing any averaging. This single
averaged frame is set as the reference frame. All frames across
all image stacks were aligned to this reference frame and aligned
to features that were filtered to produce the reference frame—in
this case, blood vessels. A fast-Fourier transform was used to
translate, rotate, and scale one user-selected frame from each
image stack to align it to the reference frame. The translation,
rotation, and scale required for this transformation were then
applied to all frames in that image stack. This plugin therefore
assumes that there was negligible movement within a single
image stack (see Appendix A.1.1).

The FoV for the recordings is 10.5 mmmeaning each pixel is
41 μm wide [Fig. 1(a)]. The skull anatomical landmark bregma
was identified on the first frame of five image stacks via the Set
Coordinate System plugin. These five locations were averaged
to set the origin globally across all plugins (136.28 pixels,
145.06 pixels; see Appendix A.1.15). This averaging is done
to reduce human error that might occur when clicking the loca-
tion of bregma.

Polygon RoIs were drawn for both left and right hemi-
spheres, masking the cortex border that was imaged as well
as most of the brain midline due to the obstructing midline
sinus. These are masked as they are sources of non-neuronal
noise. In our example, all 31 postalignment image stacks were
cropped to the same RoIs (see Appendix A.1.5).

4.2 Filtering

AChebyshev filter (type I digital and analog filter design, order ¼
4, maximum allowable ripple in passband ¼ 0.1) with bandpass
of 0.3 to 3.0 Hz was applied to all postcropped image stacks (see
Appendix A.1.18). This increases the signal-to-noise ratio by
removing noise, such as cardiac factors.9,11 Next, the average
across all frames was computed to establish a baseline. The change
in fluorescence from this averaged baseline for each frame was
computed (ΔF∕F0). This processing step results in data more
robust against slow drifting of the baseline signal and fast oscil-
latory noise due to tissue pulsation, thus ensuring the signal
detected more accurately represents brain activity35 (i.e., calcium,
glutamate, or voltage transients; see Appendix A.1.2). Although
available as an option, no image sharpening (i.e., via an unsharp
filter) was performed (see Appendix A.1.20) other than to create a
reference frame used in the alignment (see Sec. 4.1).

4.3 Global Signal Regression

Global signal regression (GSR) was applied to all post-ΔF∕F0

image stacks, except for Figs. 3 and 4, where GSR was skipped.
GSR is a preprocessing technique for removing spontaneous
fluctuations common to the whole brain.37 GSR involves com-
puting an image stack’s global signal, which is calculated by
averaging the signal across all pixels. The global signal is

Fig. 2 The pipeline we set up specifically for our analysis of mouse
#0285. In the application, the ordering of this pipeline can be freely
rearranged.
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assumed to reflect a combination of resting-state fluctuations,
physiological noise (e.g., respiratory and cardiac noise), and
other non-neural noise signals. GSR involves a pixel by pixel
removal of the global signal by applying a general linear
model. GSR has been shown to remove potential global sources
of noise, to heighten the contribution of local networks as
opposed to brain-wide transitions, thereby facilitating the detec-
tion of localized neuronal signals and improving the specificity
of functional connectivity analysis.11,34,37 GSR can also be
applied to raw data and this may be advantageous if the image
contains areas of variable brightness as low signal areas may be
disproportionally weighted.

4.4 Concatenation

The entire set of all post-GSR 31 image stacks was concatenated
and SPC maps computed for all seeds across the concatenated

time series. This is done to use as much spontaneous activity
data as possible to improve SPC map accuracy.

4.5 Seed Placement

We have previously mapped functional and anatomical coordi-
nates of transgenic mice, confirmed using sensory stimulation in
combination with in vivo large-scale cortical mapping using
channelrhodopsin-2 stimulation.24 A csv file was made with
coordinates in microns relative to bregma for anterior cingulate
(AC), visual cortex (V1), secondary motor cortex (M2), barrel
cortex (BC), retrosplenial cortex (RS), primary motor cortex
(M1), and the hindlimb cortex (HL) for each hemisphere (see
Table 1). Coordinates were added to the project via the
Import CSV RoI coordinates plugin displayed in Fig. 5(c)
and used as relative distances with respect to bregma (see
Appendix A.1.11). This plugin uses the imported coordinates

Fig. 3 SPCmapping for selected seeds without GSR. (a) MBEUI output of SPCmap from the M1 seed in
the left hemisphere. The map is of 31 concatenated ΔF∕F 0 image stacks without GSR applied (i.e., GSR
was skipped in the pipeline in Fig. 2). The position of seeds for BC and M1 was adjusted to maximize the
remote correlation between them. Their positions are still within the general region of motor and barrel
cortex.36 The correlation value at the cross-hair (BC) is displayed in the top-left of the window (r ¼ 0.8934
with the M1 seed). (b) Correlation maps without GSR applied for seed pixel located in right (upper maps)
and left (lower maps) V1, BC, HL, M1, and RS.
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to create square RoIs of user-specified width centered at those
coordinates. The size of the RoIs used for SPC mapping was set
to 1. SPC maps were thus computed using single-pixel seeds.

4.6 Seed Pixel Correlation Map and Correlation
Matrix

SPC maps were generated for all seeds using the concatenated
data. A correlation matrix was constructed from single pixel RoIs
using the same coordinates and the 31 post-GSR image stack data.

5 Results

5.1 Seed Pixel Correlation Map Generation

Spontaneous activity was collected during the extended head-
fixation of a transgenic mouse expressing GCaMP6 (GCaMP6

mouse), mouse #0285. Correlation maps for seed pixels located
in right and left V1, BC, HL, M1, and RS were generated
[Fig. 5(e)]. Maps with seeds M1 and BC reveal intrahemispheric
synchronous activity between sensory barrel cortex and motor
cortices, as previously observed by others.11,12,14

MBE can output maps to an interactive window [Fig. 5(b)].
Pixel values hovered over by the mouse are displayed at the top
of the window. The seed label (X, Y position relative to bregma)
can be seen at the end of each window title. Each title addition-
ally contains all processing steps performed. This is useful
when outputting numerous plots at the same time from various
processing pipelines. All maps are additionally saved as .jpeg
files automatically. Here, we can see that the barrel cortex pixel
hovered over has r ≃ 0.7 with the M1 seed [Fig. 5(b), top-left].
The user can also click on a pixel to regenerate the map with the
selected pixel as the seed.

Fig. 4 Time plots for selected RoI spontaneous activity without GSR. (a) Zoomed in segment of ΔF∕F 0
activity without GSR applied between. The 2100th and 3000th frames from all 31 30-s recordings con-
catenated of spontaneous activity from mouse #0285 (frame rate ¼ 30 Hz). rM1−BC ¼ 0.905p ≈ 0,
rV1−BC ¼ 0.0739p ¼ 0.013, rM1−V1 ¼ 0.144p ¼ 6.333 × 10−6. (c) Further zoomed in segment of
ΔF∕F 0 activity between the 2300th and 2700th frames highlighting asynchronous activity between
V1 (orange) against BC (green) and M1 (blue). Correlation coefficients for the full 30604 frame time
course: rM1−BC ¼ 0.895, rV1−BC ¼ 0.350, rM1−V1 ¼ 0.345.
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From the main UI [Fig. 5(a)], the user can see the first frame
of the processed image stack with selected coordinates overlaid.
The plugin used for seed placement is shown in Fig. 5(a). The
user can use the right panel in this plugin to load a csv file that
contains micron coordinates. This is displayed in the table in the
right panel in Fig. 5(a). Seeds can be selected via the list in the
bottom right. Selected seeds are overlaid and displayed on the
brain image in the center scene, where RoIs can be reshaped or
moved around. Other plugins will likewise have an interactive
scene displaying the first frame of the processed image stack
between left and right panels [see Fig. 1(a)].

The image of the first frame between the left and right
panel in Fig. 5(a) can be clicked on in the SPC plugin (see
Appendix A.1.14) to generate an SPC map for the pixel
clicked. The user can additionally select any number of
image stacks from the first list in the right panel [identical
to the list in the right panel of Fig. 5(a)] and any number
of seeds from the list in the bottom of the right panel [identical
to the list at the bottom in the right panel of Fig. 5(a)] to
produce SPC maps in bulk for each seed across all selected
image stacks.

In Fig. 6, timeplots of ΔF∕F0 activity for selected seeds are
shown for mouse #0285 with all 31 image stacks concatenated.
Only frames (post cut-off) 2100 to 3000 and 2300 to 2700 are
shown. In the application, the output graph is interactive
allowing the user to zoom in on the graph to obtain a clear
view of the synchrony between M1 and BC (blue and green),
while V1 (orange) is poorly synchronized [this is made more
clear in Fig. 6(c)]. This is in line with the negative correlation
values seen in Fig. 5(e) between V1 and BC or M1.

Pearson correlation coefficients for the full-time course of
30,604 frames are rM1−BC¼0.685, rV1−BC¼−0.397, rM1−V1¼
−0.522, which agree with the correlation values among these
activities in the respective SPC maps [Fig. 5(e)] at these coor-
dinates. All coefficients also agree with r-values previously
reported by Silasi et al.:26 rM1−BC ¼ 0.69, rBC−V1 ¼ −0.3,
rM1−V1 ¼ −0.53. Given the large number of samples, all com-
parisons of BC and M1 activity (with or without GSR) indicated
high statistical significance with p-values <1.0 × 10−30. We
used the barycenter of different regions estimated from Allen
Institute anatomical coordinates.36 These coordinates do not
take into account the possible topography of connections
which is why the position of seeds for BC and M1 was adjusted
to maximize the remote correlation. Coordinates, however, are
still within the general region of motor and barrel cortex.36 An
advantage of MBE is that the user can open one window for
activity plots and another for SPC maps and compare the
two to quickly assess the cause of anomalous correlation and
adjust coordinates as need be. It is also noteworthy that GSR
has been applied to these images to remove global correlations,
which tends to make all correlations lower.25,37 To compare this
with data, without GSR, see Figs. 3 and 4.

5.2 Correlation Matrix

From the main UI [Fig. 7(a)], the user can see the first frame of
the processed image stack (post ΔF∕F0) with selected RoIs
overlaid. The user can select any number of image stacks
from the top right list and any number of RoIs (including custom
made RoIs that need not be square) to output a single averaged
correlation matrix. Correlation matrices are produced for each
selected image stack and selected RoIs, but the final output dis-
plays correlation coefficients for a single matrix averaged across
all matrices. In this example, we have selected all 31 post-GSR
image stacks from mouse #0285. Pearson correlation zero lag
(r-value) was computed for each image stack and for each
RoI. These values depict how the RoI correlates with other RoIs
in the matrix. Standard deviation of r-values for each RoI–RoI
pair is computed, showing the variance of the r-value across
image stacks [Fig. 7(b)].

6 Discussion
For our analysis, we relied on previously collected recordings of
spontaneous activity34 from awake mice using various fluores-
cent calcium indicator proteins including GCaMP6.33,38 We
present an application for visualizing connectivity relationships
in these large datasets that makes them more readily available to
the scientific community for analysis (our data is available upon
request). A limiting issue with studying spontaneous activity is
the sheer amount of data that needs to be collected, stored, and
assessed. Our lab has recently developed a system for high-
throughput automated head-fixing and mesoscopic functional
imaging for transgenic mice within their homecages.34 Similar
methods were previously developed for rats.39 Consequently,

Table 1 This is a table of the csv file with coordinates in microns the
same as those used in Fig. 5(a). This table is also identical to the csv
file used to specify the RoIs used in Fig. 7(a). The length column here
specifies that all RoIs are square single-pixel wide RoIs. The csv
includes RoIs for the anterior cingulate (AC), visual cortex (V1), sec-
ondary motor cortex (M2), barrel cortex (BC), retrosplenial cortex
(RS), primary motor cortex (M1), and the hindlimb cortex (HL) for
each hemisphere (left, L, and right, R). Coordinates were adapted
from the Allen Mouse Brain Connectivity Atlas.16,36 The position of
seeds for BC andM1 was adjusted to maximize the remote correlation
between them. Their positions are still within the general region of
motor and barrel cortex.36 We previously mapped functional and ana-
tomical coordinates of transgenic mice using sensory stimulation in
combination with in vivo large-scale cortical mapping using channelr-
hodopsin-2 stimulation to confirm the coordinates below.12,24

(1) RoI name (2) Length (3) X coordinate (4) Y coordinate

L-V1 1 −2516.8 −4267.8

L-BC 1 −4300 −760

L-HL 1 −1694.2 −1145.7

L-M1 1 −1500 2000

L-M2 1 −870.02 1420.5

L-RS 1 −620.43 −2885.8

L-AC 1 −260 270

R-V1 1 2516.8 −4267.8

R-BC 1 4300 −760

R-HL 1 1694.2 −1145.7

R-M1 1 1500 2000

R-M2 1 870.02 1420.5

R-RS 1 620.43 −2885.8

R-AC 1 260 270
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Fig. 5 SPCmapping for selected seeds with GSR. (a) UI of the “import CSV RoI coordinates” plugin with
M1 seed selected (green RoI) and cross-hair hovering over BC. X and Y coordinates for each seed are
loaded from a user-defined CSV that is displayed in the table of the right panel. (b) MBE UI output of SPC
Map from the M1 seed in the left hemisphere. The position of seeds for BC and M1 was adjusted to
maximize the remote correlation between them. Their positions are still within the general region of
motor and barrel cortex.36 The correlation value at the cross-hair (BC) is displayed in the top-left of
the window (r ¼ 0.7028 with the M1 seed). (c) Atlas of the dorsal region of the cortex (adapted from
the Allen Mouse Brain Connectivity Atlas.16,36 (d) Raw green fluorescence data from a single frame
from an image stack and the location selected for the skull anatomical landmark bregma that is the origin
for the coordinate system. (e) Correlation maps for seed pixel located in right (upper maps) and left (lower
maps) V1, BC, HL, M1, and RS.
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Fig. 6 Time plots for selected RoI spontaneous activity with GSR. (a) The main UI with all RoIs to be
plotted selected (V1, BC, and M1 in the left hemisphere). (b) Zoomed in segment of ΔF∕F 0 activity
between the 2100th and 3000th frames from all 31 30-s recordings concatenated of spontaneous activity
from mouse #0285 (frame rate ¼ 30 Hz). rM1−BC ¼ 0.751p ¼ 1.0253 × 10−164, rV1−BC ¼ −0.523p ¼
1.1418 × 10−64, rM1−V1 ¼ −0.651p ¼ 8.229 × 10−111. (c) Further zoomed in segment of ΔF∕F 0 activity
between the 2300th and 2700th frames highlighting asynchronous activity between V1 (orange) against
BC (green) and M1 (blue). Correlation coefficients for the full 30,604 frame time course: rM1−BC ¼ 0.685,
rV1−BC ¼ −0.397, and rM1−V1 ¼ −0.522.
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a limiting factor in future longitudinal studies will likely be
the ease with which collected data can be processed, analyzed,
and shared with the community. MBE was designed to ease
processing for the end-user by offering a simple interface and
application setup. From a design perspective, a plugin approach

was chosen for MBE to enhance usability, maintainability,
and extensibility: (1) Usability: Different processing steps are
clearly separated. The program keeps track of data files and
pipeline execution, thus users can focus on their analyses.
(2) Maintainability: As each processing step resides in its

Fig. 7 Correlation matrix for selected RoIs with GSR (a) UI of the correlation matrix plugin from where
RoIs are selected along with image stacks to generate connectivity matrices. A single image depicting
instantaneous ΔF∕F 0 is shown for RoI placement. (b) Mouse #0285 correlation matrix following collec-
tion of spontaneous activity via automated headfix protocols. The data are presented in units of Pearson
correlation (r -value) and the stdev reflects variability of r -values between repeated 31 trials.
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own plugin, functional units are clearly separated from each
other and from the base system. This facilitates the understand-
ing of the software architecture and quick localization of faulty
code. (3) Extensible: Processing steps are added as plugins.
Plugins are developed independently from this software. They
can be inserted without any change to MBE or other plugins and
without restarting the application, easing the development of
plugins. This framework makes it easier for developers to
exchange their own custom-made plugins without having to
worry that another developer’s setup may have compatibility
issues.

It should be noted that the methods MBE provides are not
without their limitations. Perhaps the most pressing limitation
is that neither SPC maps nor correlation matrices provide infor-
mation on connection directionality making causal inference
unclear. This may be solved with the addition of plugins that
perform Granger causality analysis,40 thereby providing dia-
grams that include nodes for brain regions and arrows denoting
the presumed directional flow of brain activity. Alternatively,
experimentalists may opt for collecting nonspontaneous activity
through techniques, such as channelrhodopsin-2 stimulation, as
has previously been undertaken by our lab.24,41,42 The applica-
tion supports the use of evoke-triggered data through plugins,
such as the evoked average plugin (see Appendix A.1.8).

6.1 Temporal Filtering

Temporal filtering spontaneous activity data has its own limita-
tions. Applying a bandpass filter limits our sampling frequency.
If the bandpass consists of a sampling frequency range that is
too high, fast artifacts such as the mouse’s heart rate are poten-
tially picked up, reducing sensitivity to brain activity. If the
bandpass is too slow, artifacts such as hemodynamic processes
are accentuated.27,43 Finally, GCaMP6 variants have different
decay times following activity, in some cases, limiting the
range of frequencies that can be reported.38 For studies with cor-
responding sensory-evoked data, the exact range of a bandpass
for spontaneous activity can be selected based on how well the
filtered data compares with averaged sensory-evoked data. But
for most spontaneous data associated sensory-evoked data is
unavailable and therefore, the frequency band is chosen a priori.
For transgenic Ai94 GCaMP6 slow mice, we recommend a
bandpass filter of 0.3 to 3 Hz with a frame rate of 30 Hz as
it shows specificity over green fluorescent protein (GFP).34

For Ai93 GCaMP6 fast, a 1 to 10 Hz bandpass was used in
a previous study with good specificity over GFP mice that
lack functional signals.26 Ultimately, this limitation is at least
mitigated by MBE in that the interface allows the user to easily
modify the filter range and users analyzing sensory-evoked data
will not suffer from this limitation (see Appendix A.1.8).

6.2 Comparison with Related Software Toolboxes

We here provide an overview of recently developed software
toolboxes FluoroSNNAPP, Scintillate, and Vobi One. Vobi
One, like MBE, is a software package dedicated to the process-
ing of functional optical imaging data.44 It is also written in
python and offers a roughly analogous architecture. The GUI
likewise has a side-panel from where a user can follow progress
or navigate to a particular “process” which, just like a plugin in
MBE, is a single script of code running that individual process.
The application is likewise extensible, allowing users to add
their own custom scripts and add them as “processes” to a

custom pipeline. The application makes use of a “condition
file” that summarizes info of all imported trials used by the proc-
esses and allows for interfacing with external software that
cannot directly access BrainVISA (see following paragraph).
This is analogous to MBE’s JSON file, which fulfills the
same purpose. While MBE provides importing routines for
two commonly used versatile file formats .tiff and .raw, Vobi
One provides importing routines for two file formats used by
two popular CCD camera vendors—.blk files for Optical
Imaging Ltd. and .rsd files for SciMedia USA Ltd. Both appli-
cations offer spatial binning, however, Vobi One additionally
offers temporal binning. As with MBE, upon import files are
converted to a single file format that is used across all proc-
esses/plugins. Vobi One makes use of NifTI-1, a file format spe-
cifically made to foster interoperability at the file-exchange level
between fMRI data analysis software packages. MBE, in con-
trast, simply uses the standard binary file format (npy) offered
by the python NumPy package.32 Nothing prevents either appli-
cation from supporting file formats of the other with both offer-
ing documentation for supporting additional importing routines.

The main point of departure between the two applications is
that Vobi One is integrated with BrainVISA, whereas MBE is
not. BrainVISA is an open source software platform that pro-
vides a complete modular infrastructure for different neuroimag-
ing software. It organizes heterogeneous software and data, and
provides a common general graphical interface across pipelines
for different applications. This can essentially provide a view,
where each software toolbox comprised of plugins is itself a plu-
gin in BrainVISA. With this integration, Vobi One offers cross-
app automation. BrainVISA offers an iterate function allowing
the same analysis with steps across toolboxes to be performed
on different datasets—i.e., this sets up a loop from the GUI
without having to write a program. This automation is much
more comprehensive than MBE owing to its integration with
BrainVISA. However, MBE does allow the user to string plu-
gins in any order to produce a custom automated pipeline, where
all input files are processed through all steps in the pipeline.
Instructions for this procedure are provided in the left side
panel [Fig. 1(a)]. Vobi One also offers three linear models
for denoising optical recordings. The selected model is used
to breakdown a recording into its noise and signal components,
thereby extracting the fluorescence response.44,45 While Vobi
One benefits from BrainVISA integration, MBE is much easier
to set up because of its standalone architecture.

Vobi One is, to our knowledge, the only software toolbox
with significant architectural and functional similarity to MBE.
Two further recently published toolboxes, FluoroSNNAPP and
Scintillate,46,47 are related but are aimed at different end-users.
FluoroSNNAPP is a MATLAB package for the automated quan-
tification of single-cell dynamics and network activity.46

Nothing prevents MBE from being used to generate correlation
matrices for cellular recordings, thereby quantifying single-cell
dynamics and network activity. Both toolboxes offer ΔF∕F0

and RoI drawing functionality. However, FluoroSNNAPP fur-
ther integrates an automated cell identification method based
on spatiotemporal independent component analysis and offers
three methodologies for event detection: percentile-based
thresholding, wavelet transform decomposing a time-varying
signal into frequency and time components, and template-
matching using a database of known transient waveforms.46

FluoroSNNAPP is thus intended solely for comprehensive
microscale analysis.
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Scintillate is a MATLAB package that offers real-time
ΔF∕F0 while image acquisition is on-going, providing the
user with signal change information and the means to further
refine subsequent acquisitions.47 Once signal change has been
pinpointed, the user may change objectives, center the image
over that specific area, or alter camera settings.47 Scintillate
is thus intended for use during data collection, while MBE is
designed for data analysis after collection and is very appropri-
ate for on the go analysis during an experiment by inexperi-
enced users.

6.3 Conclusion

MBE provides a flexible software that is geared first to visual-
izing connectivity relationships within spontaneous activity data
collected using widefield imaging. As a method-agnostic appli-
cation, MBE is well suited to being used to analyze data from
brain activity indicators other than GCaMP, such as voltage-sen-
sitive dye,12,27 glutamate-sensing fluorescent reporter,48 or volt-
age-sensitive fluorescent protein.9 The software is also
applicable to intrinsic signal imaging49 formats and laser speckle
imaging, or the flexible architecture can be extended to support
any large image dataset. While we have focused on mesoscale
functional relationships within a single mouse, the approach
could also be used for cellular GCaMP imaging50 and the cor-
relation-based tools used to draw functional mapping between
individual neurons and their neighbors. MBE also offers a “shift
across projects” (see Appendix A.1.16) plugin to align image
stacks from different mice onto the same coordinate system,
allowing for the generation of connectivity matrices averaged
across trials from different mice. A simple division plugin is
also included that applies division to selected image stacks.
Importantly, dividing fluorescence ΔF∕F0 by intrinsic reflec-
tance ΔF∕F0 can be used for hemodynamic correction (see
Appendix A.1.6).49,51,52

In conclusion, despite aforementioned limitations in the
processing pipeline as well as with interpreting the end result,
correlation matrices, SPC maps, and standard deviation maps
(see Appendix A.1.17) provide simple and effective methods
for identifying patterns of regional mesoscale functional con-
nectivity changes. As an application that standardizes these
approaches, that saves each processing step to file and keeps
data organized, MBE should be a useful exploratory tool for
any person performing functional connectivity analysis.

Appendix

A.1 Available Plugins

A.1.1 Alignment

This plugin makes use of the python image registration utility
imreg_dft to implement a means of optimizing translation, rota-
tion, and scale variation between two images.53,54 The user can
decide whether rotation and scale is also accounted for. The user
can compute a reference frame that is the x’th to y’th frame
(where x; y are user-defined) of a single image stack averaged.
A fast-Fourier transform technique is subsequently used to
translate, rotate, and scale the z’th frame in each selected
image (where z is user-defined) to align this frame to the refer-
ence frame. The translation, rotation, and scale required for this

transformation is then applied to all frames in that image stack.
This plugin therefore assumes that there is negligible movement
within a single image stack.

A.1.2 Calculate df over f0

This plugin computes the average across all frames to establish a
baseline. The change in fluorescence from this averaged base-
line for each frame can be computed (ΔF∕F0). This processing
step results in data more robust against slow drifting of the base-
line signal and fast oscillatory noise due to tissue pulsation, thus
ensuring the signal detected more accurately represents brain
activity35 (i.e., calcium, glutamate, or voltage transients).

A.1.3 Concatenation

This plugin concatenates selected image stacks into one single
stack in the order stacks are selected.

A.1.4 Correlation matrix

To generate a correlation matrix, the pixel values in an RoI are
averaged for each stack and the resultant one-dimensional array
is compared with the arrays from other RoIs. Pearson correlation
coefficients are computed for each selected RoI–RoI pair. The
averaged correlation value for each RoI–RoI pair across image
stacks is outputted in the final matrix. The standard deviation of
the correlation values for each RoI–RoI pair is likewise com-
puted and included in the final output. Ultimately, the resultant
matrix shows how correlated activity between brain regions is.27

Values from the matrix can be saved to a csv file in the project
directory.

A.1.5 Create regions of interest

MBE was originally inspired by a BMDanalyse, a program
designed for the regional analysis of bone mass density through
interactive visualizations.55 The application makes use of
PyQtGraph, a pure python library that leverages numpy for com-
putation and Qts GraphicsView framework for fast display.32,56

It provides well-written classes for RoI-based data slicing on
top of the pyqtgraph framework as well as a GUI written in
PyQt4, a popular industry-standard framework that supports
multiprocessing. All of these tools were adapted from Micheal
Hogg’s original program and adapted for use in this plugin for
the generation of polygon RoIs and cropping to selected poly-
gon RoIs across a stack of images.

A.1.6 Division

Arithmetic division can be performed frame-by-frame between
two selected files. An important use case covered by this plugin
is potential hemodynamic artifact correction. If diffuse-reflec-
tance isosbestic point signals are used that can reflect blood
volume changes, then contamination removal can be performed
by dividing the fluorescence ΔF∕F0 (typically green epifluor-
escence) by the reflectance ΔF∕F0. Reflectance ΔF∕F0 is
typically sourced from green light or, in some cases, a blue
reflection image also near an isobestic point, given intrinsic
hemodynamic blood volume signals can be measured with
either.49,51,57
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A.1.7 Empty plugin

This is a template plugin that developers can use. It provides a
list of image stacks that can be selected to provide an interact-
able pyqtgraph view of the first frame of the selected image
stack along with an x-y coordinate frame, a drop-down list for
filtering image stacks according to the last processing step it
went through as well as a video player to view all frames in
an image stack with a slider once a list item is double-clicked.
Finally, a button provided is connected with an empty function
that a developer could expand.

A.1.8 Evoked average

The response to sensory stimulation (light flashes) can be
recorded and averaged to map visual cortical areas.11 These sen-
sory evoked averages are referred to as motifs.12 The propensity
for spatial–temporal activity motifs to repeat in a set of sponta-
neous activity can then be assessed.12

This plugin averages selected image stacks across image
stacks to create an averaged image stack. This operation is typ-
ically used to generate the aforementioned sensory or behavior
evoked average motifs.

A.1.9 Export files

Image stacks can be exported to .tif, .raw, or .mp4 formats.
Further file format support could be implemented within this
plugin.

A.1.10 Global signal regression

GSR can optionally be applied to remove spontaneous fluctua-
tions common to the whole brain using a general linear model.
GSR has been shown to facilitate the detection of localized neu-
ronal signals and improve the specificity of functional connec-
tivity analysis.37

A.1.11 Import csv regions of interest coordinates

Please refer to the README for instructions regarding how to
structure coordinates to be used by this plugin (Ref. 30).

Square RoIs are drawn at brain locations using coordinates
specified by the user via a .csv or .txt file, which is loaded. Each
RoI additionally has its own custom size. All RoIs loaded are
saved to the project directory as a .RoI file to be used across
plugins.

A.1.12 Import image stacks

.tif and .raw are fully supported with .tiff reading handled by
tifffile.58 All files are converted to python numpy arrays (.npy)
upon import. .npy formats can also be imported directly. Support
for other formats can be implemented within this plugin.

A.1.13 Plot regions of interest activity

RoI activity across stacks can be plotted for all selected RoIs.
This plugin opens an interactive pyqtgraph GraphicsWindow,
where the graph of activity can be manipulated (e.g., zoomed
in on) before being exported to an image file, scalable vector
graphic, matplotlib window, csv, or HDF556 [Fig. 6(b)]
shows data that has been exported from the plugin to a csv.

The graph was subsequently made using Plotly,59 an online
data visualization and analytics tool.56

A.1.14 Seed pixel correlation map

The user can click a single pixel called the seed. Pearson cor-
relation zero lag is used to generate a color map showing how
brain activity over time at each pixel correlates with brain activ-
ity at the seed.11 SPC maps thus reveal brain regions displaying
synchronous activity.

The user can also use a list of defined seeds with defined
locations from the .csv or .txt file loaded via the import CSV
RoI coordinates plugin. This will either generate SPC maps
in a separate window for each selected seed or simply save SPC
maps for all seeds across all selected image stacks to the project
directory as .jpeg files and as .npy files that store all pixel values.

A.1.15 Set coordinate system

The origin, used as a reference point for user-specified coordi-
nates, can be specified at this plugin. The user can select an ori-
gin per image stack. This value is stored for each individual files
JSON parameter. An averaged origin across selected file origins
can then be generated to set the origin for the entire project. In
the typical use-case, X and Y are centered on the anatomical
landmark bregma.

A.1.16 Shift across projects

MBE works with a single project, wherein a JSON file defines
all plugins and data in the project directory used by MBE for
that project. A single project has a single origin across all
files. In our example, the origin was set to be the location of
bregma. As such, using image stacks across different mice is
not feasible as the algorithm used by the alignment plugin is
strongly influenced by blood vessels. It is much more feasible
to shift all stacks from other animals to match the origin of the
current project. This is what this plugin achieves, allowing the
user to shift and then immediately import specific selected
image stacks from multiple projects. This is needed, for exam-
ple, in the generation of averaged correlation matrices across
many image stacks from different mice.

A.1.17 Standard deviation map

The user selects a maximum value for standard deviation and the
plugin computes a standard deviation map showing how much
brain activity varies over time at each pixel. The max value is
taken as the upper limit of the map scale. The user can also
specify a maximum standard deviation, limiting the upper
bound of the scale.

A.1.18 Temporal filter

A temporal filter can be applied to all selected image stacks,
with the user specifying the passband of allowed brain activity
signal. This increases the signal-to-noise ratio by removing
noise, such as cardiac factors.9,11 Currently, the only filtering
algorithms MBE provides is Chebyshev (type I digital and ana-
log filter design, order ¼ 4, maximum allowable ripple in
passband ¼ 0.1) with high and low passbands and frame rate
user-specified. This linear MATLAB-style infinite impulse
response filter is subsequently applied once forward and once
backward across stacks for each selected stack.60 Other filtering
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algorithms, such as butterworth—also available from the same
python package as the Chebyshev filter—could easily be imple-
mented into this plugin.

A.1.19 Trimming

The user can define how many frames can be discarded from the
start and end of all selected image stacks. This plugin is pri-
marily for cleaning the initial data (e.g., removing movement
artifacts at the start and end of a recording).

A.1.20 Unsharp filter

An unsharp filter subtracts an “unsharp,” or smoothed, version
of an image from the original image. This outputs an image with
enhanced edges.61

Each frame in the image stack is first smoothed. The size of
the mean filter kernel is selected and each frame in the selected
image stacks is convolved with the given kernel. This smooths
each frame by reducing the variation between one pixel and the
next with kernel size controlling the magnitude of smoothing.
This filtered image stack is subtracted from the original
image stack frame by frame, thereby prominently highlighting
(i.e., sharpening) features in the stack that are a particular size,
relative to the kernel size.

Unsharp filtering is often used to highlight blood vessels. A
frame from the sharpened stack is then used as the reference
frame for alignment (see Appendix A.1.1) such that frames
across other image stacks are aligned based on the location
of blood vessels in the reference frame.
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