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Abstract. Impaired facial processing may contribute to social dysfunction in certain individuals with autism spec-
trum disorder (ASD). Prior studies show that electroencephalogram-based and functional magnetic resonance
imaging-based neurofeedback might help some individuals with ASD learn to modulate regional brain activity
and thus reduce symptoms. Here, we report for the first time the feasibility of employing functional near-infrared
spectroscopy (fNIRS)-based neurofeedback training in children with ASD. We developed a method to study
physiological self-regulation of oxy-hemoglobin using real-time feedback. The paradigm is illustrated with initial
data from four subjects who engaged in a facial-identity recognition training program during which an implicit
reinforcement was given based on the participant’s brain activity and behavioral performance. Two participants
had a confirmed diagnosis of ASD, and the other two were typically developing (TD). One participant with ASD
and one TD participant received real-feedback (real-FB) during the training, whereas the other two received
sham-feedback (sham-FB). After five training sessions, the subjects who received real-FB showed more
improvement in facial recognition performance compared with those receiving sham-FB, particularly in the par-
ticipant with ASD. These results suggest fNIRS-based neurofeedback could enhance therapeutic intervention in
children with ASD. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of

this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.4.1.011003]
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1 Introduction
Autism spectrum disorders (ASDs) are a heterogeneous group
of neurodevelopmental disorders including what was previously
known as autistic disorder, Rett disorder, childhood disintegra-
tive disorder, pervasive developmental disorder-not otherwise
specified, and Asperger disorder.1 Individuals with ASD are
characterized by deficits in social interaction, communication,
and restrictive behaviors (Diagnostic and Statistical Manual of
Mental Disorders DSM-5, American Psychiatric Association).
These impairments typically arise early in childhood, tend to
be chronic, and are typically associated with significant difficul-
ties throughout life for affected individuals. There are various
treatment options to address the core symptoms of ASD, includ-
ing psychopharmacological and behavioral therapies; however,
these approaches are sometimes associated with unwanted
risks and side effects. In recent years, neurofeedback has gained
increasing attention as a noninvasive intervention for children
with ASD.

Neurofeedback-based learning studies have been performed
using real-time analysis of brain signals with various neuroi-
maging techniques to enable self-regulation of brain function.
Studies show that with real-time feedback of neural signals,
subjects can learn to modulate regional brain activity and
potentially reduce medical symptoms such as pain,2 or improve
symptoms of autism.3–7 Since the 1960s,8,9 electroencephalogram

(EEG) has been used to provide instantaneous feedback to
allow human subjects to develop control of brain activity. In
recent decades, this has been extended to several other neuro-
imaging techniques, such as functional magnetic resonance
imaging (fMRI)10–12 and functional near-infrared spectroscopy
(fNIRS).13,14 Functional NIRS-based feedback has several
advantages over EEG- and fMRI-based neurofeedback. For in-
stance, it has much better spatial resolution than EEG, and it is
easier to locate the signal source from the brain. Functional
NIRS uses relatively compact instrumentation, is more tolerant
of movement than fMRI, and can be used in a more naturalistic
social environment.15 Furthermore, fNIRS-based neurofeedback
intervention is more cost-effective than using fMRI, especially
considering that this type of intervention generally involves
several training sessions.

Several studies in recent years have used fNIRS-based neuro-
feedback as a tool to enable self-regulation of brain function in
either healthy or affected populations.13,14,16–21 The oxy-hemo-
globin (oxy-Hb) signal was predominantly selected as the
feedback signal source because of its superior sensitivity in
task-related signal changes and its high correlation with blood
oxygen level-dependent signals in fMRI.22–24 Two basic neuro-
feedback models were used in these studies. In one model,
cortical oxy-Hb signals were processed using a general linear
model (GLM), and the calculated t-values were used to provide
feedback for the subjects.13,16,18 In the other model, oxy-Hb
signal changes were presented to the subjects directly. The
feedback was presented either as a vertical bar with changing*Address all correspondence to: Ning Liu, E-mail: ningl@stanford.edu
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height and color or as a moving object (fish, dot, or a line plot).
The feedback source signals were obtained in several different
ways. For instance, some studies detected the feedback source
signal at one predefined region of interest (ROI);13,16,18

Kober et al.14,17 utilized the difference values between two pre-
defined ROIs to reduce the influence of global physiological
artifacts; Marx et al.20 subtracted the signal from the predefined
ROI with the average of all the measured signals. In addition to
using a predefined ROI, one study utilized a calibration period
before the training task to automatically select an fNIRS channel
as the ROI.21 Mihara et al.13,16 reported that fNIRS-mediated
neurofeedback enhanced motor imagery-related premotor acti-
vation in both healthy subjects and poststroke participants. In
this study, subjects were randomly assigned to real-feedback
(real-FB) and sham-feedback (sham-FB) groups to receive six
sessions of mental practice with motor imagery. In the real-
FB group, cortical oxy-Hb signals detected by fNIRS were
used to provide feedback for the subjects, while in the sham-
FB group, irrelevant randomized signals were presented. The
results showed greater functional gain and significantly greater
cortical activation in the premotor area in the real-FB group than
in the sham-FB group. Another study conducted by Kober
et al.17 confirmed the efficacy of fNIRS-based neurofeedback
in healthy subjects with a similar motor imagery task. The
results showed focused brain activation over the motor areas in
the real-FB group and diffused brain activation in the sham-FB
group. Lee et al.18 investigated the effect of fNIRS neurofeed-
back on gait. In this study, four healthy participants performed
treadmill walking both with and without feedback. The results
demonstrated that neurofeedback induced significantly greater
activation in the premotor area and supplementary motor area
when compared with the nonfeedback condition. Sakatani
et al.19 evaluated the effectiveness of an fNIRS-based neurofeed-
back system that modulated activity in the prefrontal cortex
(PFC) of healthy subjects. The results suggested that the neuro-
feedback system could enhance self-control of PFC activity.
A recent study by Hasseini et al.21 investigated the feasibility
of fNIRS neurofeedback to enhance executive function of
healthy adults. Two groups trained with a verbal working
memory task with either real-FB or sham-FB in four sessions.
The results indicated that the real-FB group had significantly
improved executive function performance and significantly
reduced training-related brain activity in PFC compared with
the sham-FB group. Marx et al.20 investigated the feasibility of
fNIRS neurofeedback as a method for the treatment of attention
deficit/hyperactivity disorder (ADHD). Hemodynamic brain
activity in the dorsolateral PFC was measured and fed back in
12 training sessions. They compared the fNIRS neurofeedback
with EEG-neurofeedback and EMG-feedback, and the results
showed a significant reduction in ADHD symptoms in the
fNIRS group but not in EEG and EMG groups.

Although fNIRS-based neurofeedback has been investigated
in a few clinical populations such as stroke patients and children
with ADHD, it has not been applied to children with an
ASD. This study was designed to investigate the feasibility
of fNIRS-based neurofeedback intervention for improvement
in symptoms of ASD. In particular, we developed a paradigm
for enhancing treatment response to a computer-based social
cognition training intervention in individuals with ASD.

Previous studies show that impaired face processing may con-
tribute to social dysfunction in some individuals with ASD.25,26

Improving face recognition abilities could significantly contribute

to improvement in quality of life for these individuals. Further
studies have demonstrated that face recognition skills can be
enhanced through direct training.27 An existing computer pro-
gram called “Let’s Face It (LFI)”28 has been used for enhancing
face recognition skills in children with ASD. Accordingly,
studies have shown that this intervention program can produce
improvements in face recognition skills in children with
ASD.29,30 Specifically, the recognition of facial features pre-
sented in isolation or as a full face (parts/whole identity subtest)
produced reliable improvements after 20 h of training with
∼100 min of training per week. In this study, we developed an
fNIRS-based intervention paradigm to enhance the effectiveness
of the LFI intervention. To exemplify the feasibility of the feed-
back and physiological regulation of the fNIRS signal, four chil-
dren [two with previously diagnosed ASD and two typically
developing (TD)] were treated using the paradigm. Each subject
participated in five training sessions designed to self-regulate the
fNIRS signal in brain areas involved in the facial recognition
network. Specifically, brain activation in the prefrontal and tem-
poral cortices was measured. We predicted that children who
received the face training intervention combined with fNIRS
real-time feedback would show greater performance gains on a
facial recognition task compared to children undergoing face
training combined with sham-FB.

2 Methods

2.1 Participants

The study protocol was approved by the Stanford University
Institutional Review Board. All participants under 18 years
old gave written informed assent, as did their parents or care-
givers, and all participants over 18 years old provided written
informed consent prior to participation. All subjects received
payment at the end of the study for their participation.

To demonstrate the feasibility of the method, four adoles-
cents were recruited to participate in the preliminary study that
consisted of five weeks of training intervention. Two subjects
had a confirmed diagnosis of ASD and two subjects were TD
healthy adolescents. The diagnoses of ASD were confirmed
using the Autism Diagnostic Observation Schedule (ADOS-
II) Module 3 or 4.31 Both children with ASD were “high
functioning” with full-scale IQs comparable to children with
TD, based on the Wechsler Abbreviated Scale of Intelligence-
Second Edition (WASI-II; Wechsler, 2011), and with a parent-
reported comprehensive reading level of fourth grade or above.
The mental age (chronological age × full scale IQ/100), cogni-
tive skills, and severity of autistic symptoms of the four partic-
ipants are listed in Table 1.

2.2 Experimental Procedure

In each participant’s first visit, several standard neuropsycho-
logical and behavioral measures were conducted. The presence
of ASD was determined using the ADOS-II, the social respon-
siveness scale (SRS), and the Social Communication Question-
naire (SCQ). The ADOS-II was administered directly to the par-
ticipants with ASD by a trained experimenter to ascertain ASD
diagnostic status. The SCQ32 and SRS33 were completed by the
parents or designated caregivers of all participants, and these
scores were also used to confirm the diagnosis and severity of
autistic behavior in participants with ASD. In addition to the
parent report and behavioral measures, the complete LFI skills
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battery evaluation30 was administered to all participants at their
first visits. The LFI skills battery is composed of five tests of
facial identity, three tests of facial emotion, and two tests of
object processing. In this study, we focused on the parts/whole
identity test as one of the criteria for individuals with ASD to
participate in the study. Children with an ASD diagnosis were
eligible for the study if they scored below 85% on this test, indi-
cating deficits in facial-identity recognition. Enrolled partici-
pants received training for five sessions, with an average of
one training session per week. Participants were semirandomly
assigned to receive the training with either real-FB or sham-FB
(Table 1). After all training sessions, the LFI skills battery evalu-
ation was administered again to all participants to assess their
change in behavioral performance.

Instructions were given to the participants at the beginning of
each training session by the experimenter. The instruction was

based on a PowerPoint file that explained the task with pictures
and simple words. Instructions were consistent for all partici-
pants whether they received the real-FB or the sham-FB. In par-
ticular, the participants were told that bonus points would be
determined by the machine automatically based on their brain
activity. To increase their engagement in the task, participants
were told that the final score of each training session would be
converted to real cash as part of their payment.

2.3 Task Development

A computer-based task was developed to test and teach the rec-
ognition of facial identity utilizing real-time fNIRS neurofeed-
back. The experiment consisted of a functional localizer task
and a facial-identity training task, which ran in sequence. The
functional localizer task was used to identify the ROI for each
scan. The signal from the determined ROIs was then utilized in
the training task to generate the feedback signal in real time. The
development of the training task was based on the Face Maker
identity subtest of the LFI intervention computer program.29

A 5-s instruction screen was shown right after the functional
localizer task to indicate the beginning of the training task.
The total duration of the task was about 20 min (task design
is shown in Fig. 1).

2.3.1 Functional localizer task

The functional localization task started with a 20-s rest period.
During the rest period, the word “Rest” (in white letters) was
displayed at the center of a blue screen. The task was a block
design, which consisted of five epochs of emotional dynamic
morph faces (MFs) and five epochs of static house pictures
(HPs), presented in alternation as follows: MF–HP–MF–HP–
MF–HP–MF–HP–MF–HP. Each MF epoch contained four
dynamic face videos that were randomly selected from a set
of eight videos for each run. The videos were generated in
FantaMorph (v4.1, Abrosoft34) in advance using two male and
two female faces. A “happy” and “sad”morph video was created
for each face, for a total of eight videos. All images used in these
videos were imported from the NimStim set of facial expression
stimuli.35 Each video lasted for 5 s and consisted of 3 s dynamic
morph from neutral to full emotional expression (either “happy”
or “sad”), followed by 2 s of the final full emotional expression.
The duration of an MF epoch was 20 s. Each HP epoch con-
tained 10 static HPs. These pictures were presented for 2 s each
and contained one house image presented in grayscale on a
white background. The HPs were randomized for each training
session. The duration of each HP epoch was 20 s. After the last
HP epoch, there was a 20-s rest period. The total duration of the
functional localizer task was 240 s. In order to direct the focus of
the participants to the screen, a series of red dots with 1-s dura-
tion was superposed at the center of the screen. The time interval
of the red dots varied between 5 to 25 s, and the participants
were instructed to pay close attention to the screen and click the
mouse once whenever the red dot appeared.

2.3.2 Facial-identity training task

The training task consisted of house-matching (HM), face-
matching (FM), and bonus display (BD) epochs, presented
repeatedly with the following fixed order: HM–FM–BD. Each
house epoch lasted about 20 s, each face epoch lasted about 28 s,
and each BD epoch lasted about 2 s. There were 30 s of rest

Table 1 Participants’ characteristics.

Subject 1 Subject 2 Subject 3 Subject 4

Diagnosis ASD ASD TD TD

Chronological
age in years

12 11 14 16

Mental age in
years

12 11 15 17

Gender Male Male Female Female

Handedness All right-handed

Intelligence test (WASI-II)

Full scale IQ 99 103 108 107

Verbal IQ 97 110 111 108

Performance IQ 101 94 102 105

Pretraining evaluation

SRS-2 T-score 79 76 54 40

SCQ-L score 12 13 6 1

ADOS N/A N/A

Module 3 3

Social affect 12 10

RRB 1 2

Total 13 12

fNIRS feedback real sham sham real

# Training
sessions

5 5 5 5

Average days
between sessions

6 6 7 7

Note: WASI-II, Wechsler abbreviated scale of intelligence-second
edition; SRS-2, social responsiveness scale, second edition; SCQ-L,
social communication questionnaire, lifetime version; ADOS, autism
diagnostic observation schedule; RRB, restricted and repetitive
behavior.
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before and after the task epochs. The total duration of the train-
ing task was about 810 s. The design of the HM trial was to
mimic the FM trials adopted from the LFI intervention computer
program.

The HPs used in the training task were generated in a gray
color scale. Each house had one door at the center and two iden-
tical windows on each side. A trial during an HM epoch started
with two houses shown on a blue screen with a complete HP on
the left and an incomplete HP on the right. The incomplete
house was missing two windows, the door, or all three. A score
was presented at the top of the screen, which started from zero
and accumulated during the game according to performance. For
each missing attribute, the participant was presented with two
options to choose from to match the complete house shown on
the left. Window options were shown above the houses, and
door options were shown underneath; all options were centered
between the two houses presented. The participant was
instructed to pick the window or the door that matched the com-
plete HP. When the participant clicked on an option, the corre-
sponding missing part would appear on the incomplete house,
and they were allowed to switch between options until they were
satisfied that the features matched those of the complete house.
The participants were instructed to fill in all the missing parts
before clicking on the “Done” icon at the very right of the
screen, which would lead them to the next trial with either a pair
of houses or the same house with different missing parts. If they
made a correct choice, the score would increase by 10 points;
otherwise, the score would decrease by 2. An updated score
was continuously shown at each trial based on their previous
performance.

The face pictures used in the training task were imported
from the “LFI” intervention program and were also presented
in a gray color scale. In this training program, we were targeting
a specific facial recognition impairment associated with autism.
These impairments include recognition of identity across
changes in facial features, analytic and holistic face processing
strategies, and attention to information in the mouth and eye
regions. Similar to the HM epochs, a trial in an FM epoch started
with two faces shown on a blue screen with a complete face
picture on the left and an incomplete face picture on the right,
missing both eyes, the mouth, or all three features. The faces

were otherwise identical. For each missing attribute, the partici-
pant was presented with two options to choose from to match the
complete face shown on the left. Eye options were shown above
the faces, and mouth options were shown underneath; all options
were centered between the two faces presented. The participant
was instructed to pick the set of eyes or the mouth that matched
the complete face picture. When the participant clicked on an
option, the corresponding missing part would appear on the
incomplete face. Participants were allowed to switch between
options until they were satisfied that the features matched
those of the complete face. Just as in the house epochs, the par-
ticipants were instructed to fill in all the missing parts before
clicking on the “Done” icon at the very right of the screen,
which would lead them to the next trial with either a pair of
faces, or the same face with different missing parts. If they made
the correct choice, the score would increase by 10 points;
otherwise, the score would decrease by 2. An updated score
was continuously shown at each trial based on their previous
performance.

A bonus score was rewarded immediately after each FM
epoch and was displayed at the center of a blue screen and
flashed between red and yellow for 2 s to draw the participant’s
attention to it. The bonus score was then added to the training
score, and the total score was displayed in the next task trial. We
used the bonus score as the tangible reinforcer to enhance the
effectiveness of the participant’s neural as well as behavioral
performance during the intervention. We designed this incentive
feedback instead of continuous real-time feedback to avoid cir-
cumstances in which the participant would have to divide his or
her attention. This approach, utilizing an embedded (implicit)
reinforcer, has the advantage of allowing the participant to con-
tinue to attend to the cognitive training task without increasing
(explicit) cognitive load.

2.4 Functional Near-Infrared Spectroscopy Data
Acquisition

Functional near-infrared spectroscopy (fNIRS) signal was
acquired using an ETG-4000 Optical Topography system (Hitachi
Medico Co., Tokyo, Japan) with a sampling rate of 10 Hz. The
measurement patches consisted of an evenly distributed array of

Fig. 1 Task design.
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alternating emitter and detector fiber bundles (optodes). Optodes
were spaced 30 mm apart, resulting in a spatial resolution of
30 mm for the system. A channel represented the area measured
by one emitter–detector pair, and the channel location was
defined as the center position of the emitter–detector optode
pairs. A single 3 × 5 measurement patch containing 15 optodes
was positioned over the PFC of each subject’s head, resulting in
22 measurement channels. Another 3 × 5 measurement patch
was positioned over the right temporal cortex (Fig. 2).

We chose these two regions based on their previously iden-
tified roles in cognitive processes involving facial recognition.
For individuals with ASD, the face recognition networks usually
include aberrant activation in the fusiform face area and signifi-
cantly increased activation in the PFC, temporal cortex, or
primary visual cortex as compared with TD individuals.36,37

Among these key brain regions, fNIRS can detect only cortical
regions underlying the scalp and skull because of the limited
penetration depth of the technique. Therefore, we utilized the
brain signal measured from the prefrontal and temporal cortices
in our study. The individual locations of the optodes on each
participant’s head were obtained by a three-dimensional mag-
netic digitizer system (PATRIOT, Polhemus, Vermont) directly
after the task was completed. The technique measured the place-
ment of each optode in relation to five anatomical reference
points on the subject’s head (nasion, left and right preauricular
points, vertex, and inion).

2.5 Online Functional Near-Infrared Spectroscopy
Data Analysis for Region of Interest and
Neurofeedback

The real-time fNIRS signal processing using in-house
MATLAB® software primarily included two functions. The first
was to determine the ROI from the functional localizer task and
the second was to generate the feedback signal during the train-
ing task.

Recorded changes in optical density during the localizer
(morph) task were first converted into concentration changes
of oxy-Hb ([HbO]) and deoxy-hemoglobin using the modified

Beer–Lambert law.38 The channels that contained extremely
noisy signals were determined during calibration before the scan
began and were excluded from the later analysis. All [HbO] sig-
nals were filtered by a bandpass of 0.01–0.5 Hz after the morph
task to remove high-frequency instrument noise, physiological
heartbeat noise, and low-frequency drift before they were input
to a GLM. The GLM analysis was performed online for all
[HbO] signals. The standard hemodynamic response function
(HRF) and two regressors corresponding to the MF condition
and the HP condition, respectively, were used in the analysis.
The resulting t values of beta weights for the MF condition
were used to determine two primary locations for the fNIRS
neurofeedback process: (1) the signal corresponding to the high-
est t value was selected and the channel location of that signal
was considered part of the face-processing network at the tem-
poral cortex, denoted by ROIF; (2) the signal corresponding to
the lowest t value was also selected and the channel location of
that signal was considered irrelevant to the face-processing net-
work and was used as a reference region, denoted by ROIR.

During the training, the bonus score was calculated in real
time directly after the completion of each FM epoch for the
real-FB participants. To increase the specificity of the feedback
and add an internal control, we fed back the differential fNIRS
signals from the two regions of interest (ROIF and ROIR) to the
participants. This has the advantage of canceling out any global
unspecific effects due to factors such as generally increased
blood flow.39–41 Specifically, we first calculated the percent sig-
nal change (PSC) at both ROIs. For instance, the value of the
PSC at ROIF was defined as the difference between the mean
value of [HbO] of an FM epoch and the mean value of [HbO] of
the paired HM epoch shown right before the FM epoch, divided
by the mean value of [HbO] of the HM epoch, i.e., PSCF

i ¼
ð½HbOFM�i − ½HbOHM�iÞ∕½HbOHM�i, where i ¼ 1;2; 3; : : : ; n is
the index of the FM epochs (which is the same as the index of
the HM epochs). Considering the time lag of the hemodynamic
response, we removed the first 5 s of the signal while calculating
the mean value for each epoch. Similarly, we calculated the value
of PSC (PSCR

i ) at ROI
R. Second, we calculated the difference

Fig. 2 Functional NIRS cap placement and the optodes arrangement. (a) The fNIRS cap placement on a
representative participant. (b) The optodes and channel arrangement. (c) A representative projection of
channel location on a brain template.
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between the two PSCs, denoted as diffPSCFR
i . When both PSCF

i
and diffPSCFR

i were larger than zero, 40 bonus points were
awarded to the participant; when both PSCF

i and diffPSCFR
i

were less than zero, zero bonus points were given; for all
other conditions, the participant received 20 bonus points. For
the sham group, the bonus points were generated for each train-
ing session before the task began: a set of numerical data with
six zeros, five twenties, and five forties was randomly permu-
tated before each training session to generate a data sequence to
be used for the bonus points. At the end of the training task, the
participant’s final score was shown on the screen.

2.6 Outcome Measure

The effect of fNIRS neurofeedback training on facial-identity
recognition was measured using the LFI skills battery evaluation
tests. The evaluation was administered pre- and post-training
sessions. The number of correct responses per minute (CPM)
was used as the primary outcome measure to test participants’
improvement in facial recognition performance. The CPMmeasure
was defined as the test score divided by the total reaction time:
CPM¼ score∕ðsum of reaction time in millisecondsÞ× 1000×
60. For comparison, we defined the change in CPM as the
difference in CPM pre- and post-training sessions, i.e., ΔCPM ¼
CPMpost − CPMpre.

2.7 Offline Data Processing and Analysis

The behavioral learning effect was studied by using the percent-
age error rate, which was defined as the number of incorrect
responses divided by the total number of responses for each
training session.

Previous studies show that the posterior superior temporal
sulcus (pSTS) is important for face processing.42–44 For offline
analysis of the fNIRS signal, we focused on changes in [HbO] at
the pSTS region during the functional localizer task over five
training sessions. Specifically, we first generated a mask image
of the pSTS in xjview. To determine the accurate location of the
pSTS, we utilized the atlas of the posterior portions of the
middle and superior temporal cortices and selected a cluster of
voxels that were located at the contacting edges of the two
regions. All the voxels that had their y-axis below −50 or
above −20 in MNI space were removed from the cluster. The
remaining voxels were defined as the ROI in the offline analysis
and are shown in Fig. 6(c). Considering that the spatial resolu-
tion of our fNIRS system was 3 cm, we included all fNIRS chan-
nels located within 15 mm of the defined ROI in the following
analysis. Specifically, the [HbO] signals from those channels
were first filtered by a bandpass of 0.01 to 0.5 Hz. The filtered
signals that still had a standard deviation of 0.25 or above were
considered extremely noisy based on empirical evidence and
were removed from analysis. The remaining signals were
averaged and input to the GLM. The contrast values were then
calculated between MF and HP conditions for all training
sessions and compared among participants.

3 Results

3.1 Behavioral Performance

The changes in the number of correct responses per minute
(ΔCPM) for all four participants are presented in Fig. 3. After
five training sessions, all participants were able to improve their
performance on the evaluation task. Furthermore, participants

with real-FB showed increased improvement in CPM as com-
pared to the participants who received sham-FB.

3.2 Online Data Analysis

Figure 4 shows the ROIF and ROIR for the participants with
ASD who received real-FB. The red dots (with black circles)
represent the corresponding fNIRS ROIF channel locations
and the green dots represent the corresponding fNIRS ROIR

channel locations. The locations of the red dots were scattered,
in particular, the red dot of session 3 was located at the PFC.

3.3 Offline Data Analysis

Figure 5 shows the percentage error rate for all four participants.
The error rate of FM epochs for the participant with ASD who
received real-FB [shown as the magenta line in Fig. 5(a)] was
decreased by 25% across the five training sessions, while the
error rate was decreased by 5% for the participant with ASD
who received sham-FB [shown as the magenta line in Fig. 5(b)].
At the fifth training, both TD participants were able to reach an
error rate of 2% or below, while both participants with ASD had
an error rate of 5% or above. The error rates of HM epochs were
comparable for all participants (shown as the black lines in
Fig. 5).

Figure 6 shows a contrast map of a representative participant
and its corresponding fNIRS channel location on the brain tem-
plate. The map in Fig. 6(b) represents the contrast between the
dynamic MF and the static HP conditions during a localizer
scan. The blue line in Fig. 6(b) roughly marks the location of
the pSTS region that corresponds to the location of the blue line
in Fig. 6(a). Notably, the locations of the fNIRS channels were
different for each training session, because it was difficult to
place the fNIRS optodes in the exact same location for each
scan. Thus, the selected channels from ROI region were not
the same for each scan session.

The results from the ROI analysis are shown in Fig. 7. The
trend lines of the contrasts across the five training sessions for
the four participants are also shown. Figure 7(a) shows the
change of contrast at the ROI for the two participants with
ASD, and Fig. 7(b) shows the change of contrast at the ROI
for the two TD participants. The slopes of the trend lines for the
two TD participants are both negative and are relatively small
compared to the slopes of participants with ASD. The slope of

Fig. 3 Changes in the number of correct responses per minute
(ΔCPM) for the four participants.
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Fig. 4 The fNIRS channel locations of ROIF and ROIR for the participant with ASD who received real-FB
at five training sessions are illustrated. The red dots (with black circles) represent the ROIF channel and
the green dots represent the ROIR channel. As shown in the figure, the positions of the ROIF are not
necessarily consistent across sessions.

Fig. 5 Percentage error rate over the course of five training sessions for (a) the participant with ASD who
received real-FB, (b) the participant with ASDwho received sham-FB, (c) the TD participant who received
real-FB, and (d) the TD participant who received sham-FB.

Fig. 6 ROI analysis procedure. (a) An fNIRS channel location of a representative participant for a scan
session and (b) its corresponding contrast map. (c) The voxel location of the ROI selected for offline
analysis.
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the trend line for the participant with ASD receiving real-FB is
also negative, which is similar to the slopes of the TD partici-
pants, and the absolute value of the slope was larger than both
TDs’, which indicates a trend of normalization of the brain
activity. The slope of the trend line for the participant with ASD
receiving sham-FB, however, is positive, and the contrast values
of the five training sessions are scattered.

4 Discussion
In this study, we report, for the first time, the feasibility of using
fNIRS-based neurofeedback training for children with ASD.
Specifically, we developed a method to study the physiological
self-regulation of [HbO] using real-time feedback of the fNIRS
signal. Participants were engaged in a facial-identity recognition
training program in which implicit reinforcement was given
based on the participant’s brain activity and behavioral perfor-
mance. The paradigm is illustrated with initial data from four
participants, two of whom had a confirmed diagnosis of ASD
and two of whom were TD adolescents. One participant with
ASD and one TD participant received real-FB during the train-
ing, and the other two received sham-FB. All four participants
showed improved facial recognition performance (Fig. 3). In
addition, the participants with real-FB showed more improve-
ment compared with the participants who received sham-FB,
particularly in participants with ASD. These preliminary results
suggest that fNIRS-based real-FB could be used to enhance
therapeutic intervention in children with ASD.

The fNIRS channel locations corresponding to the ROIF and
ROIR for the participants with ASD were scattered, as shown in
Fig. 4. Studies indicate that individuals with ASD “see” faces
utilizing different neural systems as compared with TD individ-
uals. In fact, several different patterns of individual-specific,
scattered activations have been reported in individuals with ASD
across studies.36,45 The results reported here are consistent with
those findings.

A learning effect was observed in all four participants over
the course of five training sessions, especially for the FM epochs,
as shown in Fig. 5(a). The participant with ASD who received
real-FB had the largest decrease in error rate among the four
participants. This indicates that the real-FB may be helpful in
improving behavioral performance. Interestingly, the error rates
of the HM epochs were low for all participants and did not
show any obvious difference between the ASD and the TD

participants. The results also did not show any obvious decrease
of error rate over the five training sessions, except for the TD
participant who received real-FB. The participant’s error rate
reached zero at the third training session and was maintained for
the remainder of the sessions. These results suggest that the
object/house recognition abilities of the two participants with
ASD were not impaired.

Compared with the participant with ASD who received
sham-FB, the participant with ASD who received real-FB
showed reduced activity in the right pSTS region across the
five training sessions. The same trend of reduction was observed
in both TD participants. As previous studies have shown, higher
signal in the prefrontal and temporal cortices is considered a
likely state or trait biomarker for impaired facial processing abil-
ities in individuals with ASD.36,37 Thus, as the measured signal
decreases during training, it would indicate normalization of
brain activity. These results suggest that the fNIRS-based neuro-
feedback might help with the normalization of brain activity in
children with ASD.

There are two primary strategies for self-regulation associ-
ated with neurofeedback. Explicit strategies inform the subject
of a specific means for self-regulation, whereas implicit strate-
gies provide no such instruction and allow the subject to explore
different strategies or develop them without conscious percep-
tion. Although many neurofeedback studies applied explicit
strategies during training, this approach has several shortcom-
ings, especially for persons with brain disorders. For instance,
it could be difficult for children or individuals with brain dys-
function to understand the provided strategy. It could also be
difficult to quantitatively confirm participant performance of
the suggested cognitive strategy. On the other hand, neurofeed-
back utilizing an implicit strategy has been reported to shape
cortical network spontaneous connectivity46 and might be
more effective in some circumstances.47

During methods development, particular emphasis was
placed on the issue of implicit versus explicit reinforcement. The
implicit strategy has several advantages for cognitive studies
involving children with ASD. First, unlike emotional or motor
tasks, for which it is comparatively easy to develop strategies for
self-regulation, it is relatively difficult to give specific self-
regulation strategies to participants during a cognitive task, such
as the face identity recognition task used here. Second, some
individuals with ASD may have difficulty in understanding

Fig. 7 Contrast values between MF and the static HP conditions at the ROI across five training sessions
for (a) ASD participants and (b) TD participants.
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suggested or required cognitive strategies. Third, the training
task used in the study was an interactive computer game adopted
from the LFI intervention program, which itself is challenging
for children with ASD who have facial recognition deficits.
Implicit reinforcement can avoid overwhelming the participant’s
cognitive load relative to explicit reinforcement requiring di-
vided attention because of these challenges. We thus applied
implicit reinforcement in this study—we did not introduce any
specific strategies to guide the participants to gain the bonus
score.

The sample size described here is inadequate for performing
statistical analyses and thus for assessing the ability of fNIRS
neurofeedback to address ASD symptoms. Although the results
from our four participants were encouraging, more data are
clearly needed to demonstrate the efficacy of the method. We
have since recruited over 20 participants with ASD for a follow-
up study to explore the efficiency of this method. The data
collection is completed and the analysis is ongoing.

In summary, the method presented here is a potential tool
for enhancing therapeutic intervention in children with ASD.
The results suggest that providing fNIRS-based neurofeedback
might enhance facial recognition performance after a short
period of cognitive training. While our current study focused
on improving facial recognition for children with ASD, a similar
design could potentially be used to improve other cognitive
functions or be used for other affected populations.
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