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Abstract. Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique used to mea-
sure changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in the brain. In this
study, we present a decomposition approach based on single-channel independent component analysis (scICA)
to investigate the contribution of physiological noise to fNIRS signals during rest. Single-channel ICA is an under-
determined decomposition method, which separates a single time series into components containing nonredun-
dant spectral information. Using scICA, fNIRS signals from a total of 17 subjects were decomposed into the
constituent physiological components. The percentage contribution of the classes of physiology to the
fNIRS signals including low-frequency (LF) fluctuations, respiration, and cardiac oscillations was estimated
using spectral domain classification methods. Our results show that LF oscillations accounted for 40% to
55% of total power of both the oxy-Hb and deoxy-Hb signals. Respiration and its harmonics accounted for
10% to 30% of the power, and cardiac pulsations and cardio-respiratory components accounted for 10% to
30%. We describe this scICA method for decomposing fNIRS signals, which unlike other approaches to spatial
covariance reduction is applicable to both single- or multiple-channel fNIRS signals and discuss how this
approach allows functionally distinct sources of noise with disjoint spectral support to be separated from obscur-
ing systemic physiology. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.3.2.025004]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a noninvasive
optical imaging technique that provides a measure of changes in
regional oxygenated hemoglobin (oxy-Hb) and deoxygenated
hemoglobin (deoxy-Hb) concentrations in the cortex of the
brain with a high sample rate.1,2 Similar to functional magnetic
resonance imaging methods, this technique is sensitive to the
hemodynamic changes in the brain due to blood flow and oxy-
gen saturation changes. While these vascular signals are tempo-
rally slow compared to electrophysiological changes, fNIRS
instruments often oversample at acquisition rates of tens to hun-
dreds of samples per second, which is fast enough to avoid ali-
asing of most physiological sources of noise in the vascular
signal. More specifically, fNIRS records changes in the absorp-
tion of light in the red to near-infrared range (650 to 900 nm) in
which oxy-Hb and deoxy-Hb have distinct absorption spectra.
By knowing the molar extinction coefficients of oxy-Hb and
deoxy-Hb at specific wavelengths, their temporal concentration
changes can be calculated using the modified Beer–Lambert

law.3 Cerebral hemodynamic changes related to underlying neu-
ronal brain activity are recorded using fNIRS sensors placed on
the surface of the scalp. Previous fNIRS studies have been used
to study stimulus-induced cerebral activation during visual,
motor, and cognitive tasks (see Ferrari and Quaresima4 and
Boas et al.5 for reviews). fNIRS has also been used to character-
ize spontaneous resting brain activity.6–8

A potential limitation of fNIRS is contamination from
unwanted physiological noise related to autonomic blood pres-
sure, respiratory signals, and cardiac pulsation.9 The sensitivity
of fNIRS measurements falls off exponentially with depth to
reach a penetration of ∼5 to 10 mm into the cortex of the
brain. This results in a high oversensitivity to superficial physio-
logical noise in the scalp, especially due to the skin flow, which
has been shown to have about a 16% contribution to fNIRS
changes.10 Previous work by Franceschini et al.11 showed
that the spatio-temporal distribution of these physiological
signals varies with underlying arterial and venous vascular
densities between anterior and posterior regions of the head.
They observed a specific spatial propagation pattern for blood
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pressure signals and heart rate activities moving periodically
from the anterior to the posterior and then middle regions of
the brain in normal subjects.

Contamination by systemic physiology poses several chal-
lenges to the analysis and interpretation of fNIRS neuroimaging
data. The functional connectivity within different cerebral
regions can be highly affected by physiological noise.12 In
the presence of systemic physiology, it is difficult to determine
the portion of the fNIRS signals attributed to oscillations arising
from neural connectivity in the brain. Within a limited range,
some low- and high-frequency noise components may be
removed using simple bandpass filtering (reviewed in
Huppert et al.9). For example, to suppress high-frequency instru-
ment noise and the fast cardiac oscillations, low-pass filtering
methods such as moving averaging and Wiener filtering have
been used efficiently.13 Similarly, high-pass filtering methods
are used to eliminate low-frequency (LF) drift as well as LF
activities such as blood pressure oscillations in the range
0.08 to 0.12 Hz.9 However, special care must be taken in han-
dling signals with overlapping frequency bands, as it is the case
between blood pressure and cerebral hemodynamic response,
and between blood pressure, respiratory signals, and cerebral
hemodynamic response.9 Similarly, due to the transient nature
of motion artifacts, more sophisticated algorithms have been
developed such as methods based on wavelet filtering,14

Wiener filtering,13 or independent component analysis
(ICA).15 External physiological recording such as respiratory
signals recorded using a chest belt, blood pressure, and cardiac
signals have also been used in standard regression methods.9,16

The assumption in regression analysis is that there is a time-
invariant linear relationship between independently measured
physiological signals and cerebral hemodynamic changes mea-
sured by fNIRS.17 Diamond et al.16 demonstrated that the rela-
tionship between fNIRS signals and external physiological
measurements could be nonstationary in time, reflecting a com-
plex and probably nonlinear relationship between systemic and
cerebral physiology. More recently, dedicated fNIRS measure-
ments from short distance (<1 cm) light source-detector spac-
ing, which only penetrate the scalp layer, can be used to
provide a more regional estimate of systemic physiology,
which is presumably less sensitive to these nonlinear and non-
stationary effects.18 Finally, the spatial structure of physiological
noise can also be exploited to remove systemic physiological
contaminations. Spatial covariance reduction methods based
on principal component analysis (PCA) remove spatial eigen-
vectors related to physiological noise with global spatial effects,
such as heart rate and blood pressure.11 Spatially unconstrained,
decomposition methods based on ICA separate fNIRS signals
into additive components such as brain hemodynamic
responses, signals reflecting baseline physiological changes,
and other signals related to respiration, vasomotion, noise,
and movement artifacts.19

The characterization of slow resting-state oscillations in
brain activity for connectivity analysis poses additional chal-
lenges in fNIRS due to the contamination of additional LF vas-
cular changes with no direct coupling to neuronal activities.20

These vascular changes are regional and may be generated
by the auto-regulation of regional cerebral blood flow.21

However, some regional cerebral hemodynamic changes are
strongly associated with neurovascular coupling partially regu-
lated by the autonomic control.22 There are other factors such as
thermoregulation and metabolic demand that contribute to local

cerebral hemodynamic changes,23 which are directly reflected in
fNIRS measurements. Therefore, any tools to characterize
physiological noise should take into account local changes in
systemic physiological fluctuations. The characterization of
fNIRS signal including both neural and vascular components
becomes more difficult during the resting state. This is basically
because fNIRS measurements include spontaneous resting-state
neural activity as well as systemic and local physiological fluc-
tuations with amplitudes comparable with that of task-induced
brain hemodynamic activities.24

This paper presents a single-channel decomposition method
based on the single-channel ICA (scICA)25 to characterize the
physiological contributions of oxy-Hb, deoxy-Hb, and total
hemoglobin (total-Hb) recordings from fNIRS. The scICA
method, as a subspace approach, was used to separate these
time series into their underlying sources, which were then
used to estimate the contribution of the constituent components
including LF oscillations, respiration, and cardiac pulsation to
the original fNIRS signals. We applied the scICA method to
the fNIRS data from a previously published dataset of 17
human subjects at rest, as described in Franceschini et al.11

The contribution of various sources of physiological noise
was then estimated for different cerebral regions across the
head. We evaluated the results at single-subject and group levels.

2 Methods

2.1 Subjects and Experimental Setup

The optical data used in this study were obtained from the exper-
imental data previously reported in Franceschini et al.11 The
resting fNIRS data have been collected from 17 healthy adults
(age range 35� 12 years) lying motionless in a supine position
in a quiet dark room. All subjects underwent two to three rest-
ing-state sessions of fNIRS measurements, each 300 s. The
fNIRS data have been collected with a continuous-wave optical
system (CW5 Imager, TechEn Inc., Milford, Massachusetts)
comprising 32 laser diodes (average output power of ∼1 mW)
at 690 and 830 nm and 16 avalanche photodiodes.11

A whole-head probe has been designed to cover the frontal,
parietal, temporal, and occipital lobes of the brain for each sub-
ject. Figure 1 shows the schematic of the emitter/detector con-
figuration on the head and the channels defined as the midpoints
between pairs of optodes. In total, 50 channels have been used
for data collection with a minimum interoptode distance of 3 cm
(see Franceschini et al.11 for more details). As shown in Fig. 1,
the fNIRS channels were grouped into eight cerebral regions
(left/right frontal, temporal, parietal, and occipital regions) for
single-subject and group analyses. The optical data were con-
verted to optical density changes as described in Huppert
et al.9 The modified Beer–Lambert law was used to calculate
the concentration change of deoxy-Hb and oxy-Hb based on
the differences in the absorption for the two wavelengths.
The concentration in total-Hb was calculated by summing
the concentrations in deoxy-Hb and oxy-Hb. The average differ-
ential path-length factor was assumed to be 6 for both
wavelengths.26

During fNIRS data recordings, concurrent independent mea-
surements of cardiac activity, respiration, and blood pressure has
been made to assess their relationship to spontaneous cerebral
hemodynamic fluctuations for each subject. For this purpose, a
finger pulse oximeter (Nonin model 8600) has been used to rec-
ord continuously the arterial saturation and the heart rate from
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each subject’s left hand. The arterial blood pressure (ABP) has
also been measured using a custom-built beat-to-beat noninva-
sive blood pressure sensor.11 Finally, the respiratory signal has
been measured by using a strain gauge respiratory belt
(Sleepmate/Newlife Technologies, Resp-EZ). The external sys-
temic physiology signals have been recorded synchronously
with the optical data using a National Instrument 6023E card
with a sampling rate of 25 kHz. The acquired external data
were down sampled to match the sampling rate of the optical
measurements (10 Hz).

2.2 Single-Channel Decomposition of Functional
Near-Infrared Spectroscopy Signals

Figure 2 shows the decomposition process comprising three
main stages: preprocessing, predecomposition, and single-chan-
nel decomposition. In the preprocessing step, the fNIRS signals
were first bandpass filtered. Noisy channels were then rejected.
Finally, motion artifacts were removed using the spatial ICA.
The clean fNIRS signals of all channels were decomposed
using the scICA method. We developed a procedure to estimate
the optimal number of independent components (sources) for
each channel based on the identification of the frequency
bands associated with LF oscillations, respiration, and cardiac
activity as well as those related to cardio-respiratory inter-
actions. Finally, independent components associated with
each frequency band were identified and back-projected onto
the measurement space to recover the multichannel fNIRS sig-
nals corresponding to that frequency band. These steps will be
described in more detail in the following sections. All data

processing was done in MATLAB R2011b (The Mathworks,
Natick, Massachusetts).

2.2.1 Preprocessing

Bandpass filtering. The fNIRS data including the deoxy-
Hb, oxy-Hb, and total-Hb signals were bandpass filtered using
a fourth-order Butterworth filter to remove LF drift (below
0.01 Hz), high-frequency instrument noise, and fast oscillations
(above 1.5 Hz).

Noisy channel removal. We discarded emitter–detector
pairs (channels) with low signal-to-noise ratio (SNR) resulting
from poor contact with the scalp. We used two complementary
approaches to identify bad channels with poor-quality signals.
Since bad channels tended to have higher variances, we first
identified channels with variances greater than the average vari-
ance computed over all channels in the time domain. Then, the
channels with high variance were tested for the presence of car-
diac and other fluctuations considered as a sign of the quality of
optical data.9 For this purpose, we identified visually the fre-
quency bands of LF oscillations, respiratory, and cardiac signals
by analyzing the power spectral density (PSD) of each subject’s
external systemic physiology signals within the frequency
ranges reported in Ref. 27. Then, the relative spectral powers
of these frequency bands were computed for the high-variance
channels. The relative power of each frequency band of interest
was defined as the ratio of the spectral power in that frequency
band to the total power. Finally, the high-variance channels
showing relative power <25% within all three frequency
bands were discarded from further analysis. This threshold was
chosen based on the recommendations in Mesquita et al.8

to discard fNIRS channels with very poor coupling to the
head, which have little to no physiological components to the
signal.

Motion artifact reduction. For each subject, to further
increase the quality of the deoxy-Hb, oxy-Hb, and total-Hb
data, we removed motion artifacts from the multichannel fNIRS
data using spatial-ICA.28,29 In the spatial-ICA approach, a data
matrix X of N (observations, herein fNIRS data) rows by P
(measurement sites, herein fNIRS channels) columns is
assumed to be linearly mixed of non-Gaussian signals generated
from M (≤P) unknown statistically independent sources (S)

EQ-TARGET;temp:intralink-;e001;326;270X ¼ A · S: (1)

The main purpose of the decomposition using ICA is to find
an “unmixing matrix”W (the inverse of the mixing matrix A).W
is then used to separate independent sources as

Fig. 2 Schematic of the single-channel decomposition process.

Fig. 1 Probe geometry used for data collection.
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EQ-TARGET;temp:intralink-;e002;63;752Ŝ ¼ W · X: (2)

Among the methods suggested in the literature,28 we used the
deflationary kurtosis-based fastICA algorithm, which has been
widely used to estimate A andW based on maximization of non-
Gaussianity, considered as a measure of statistical independ-
ence. In this approach, the kurtosis, defined as the normalized
fourth-order marginal cumulant,30 is used as a contrast function
to measure the non-Gaussianity

EQ-TARGET;temp:intralink-;e003;63;651kðWÞ ¼ EfjSj4g − 2E2fjSj2g − jEfS2gj2
E2fjSj2g ; (3)

where S refers to components and Ef·g denotes the expectation.
The first step in the fastICA algorithm is centering the observed
vector X and whitening it using PCA. Then, the deflationary
kurtosis-based fastICA algorithm searches for a W, such that
the projection (W · X) maximizes the contrast function
[Eq. (3)] using a gradient-based update with a fixed step size.30

In general, fastICA is sensitive to initial values of W.30 To
tackle this problem, we used a modified version of fastICA,
called robustICA, which employs an exact line search of the
normalized kurtosis to find global maxima along given search
directions. This approach has shown to be computationally fast,
efficient, and insensitive to initial conditions.30 More impor-
tantly, robustICA estimates the optimal step size, which enhan-
ces the robustness of the algorithm in the presence of saddle
points and local extrema in the contrast function.

To perform robustICA, the first step was to prewhiten the
fNIRS data using the standard PCA approach by retaining
99% of the data variance. Then, the data were decomposed
into independent components by robustICA. To identify chan-
nels affected by motion artifacts, we used the kurtosis-based
method,31 in which kurtosis has been defined as a measure of
the “peakedness” of the probability distribution. We removed
the components having probability distribution sharply peaked
at the center (a kurtosis value >25) and then back-projected the
multichannel fNIRS data using the remaining components. A
kurtosis value of 25 as the threshold is close to the threshold
used in Chiarelli et al.,32 which described a similar kurtosis-
based selection criteria for wavelet filtering of fNIRS data.
Normally distributed noise will have a kurtosis close to a
value of 3.

2.2.2 Single-channel decomposition

In this stage, the multichannel fNIRS data (deoxy-Hb, oxy-Hb,
or total-Hb) were decomposed into their underlying components
(sources) using the scICA method. The main assumption of the
scICA method is that the observed signals are linear mixtures of
a number of statistically independent source signals with dis-
joint spectral support.33

In this method, the fNIRS signal of any given channel p was
first mapped into a multidimensional space using the time delay
embedding method as follows:33

EQ-TARGET;temp:intralink-;e004;63;147Xj ¼

2
66664

xjt xjtþτ · · · xjtþNτ

xjtþτ xjtþ2τ · · · xjtþðNþ1Þτ
..
. ..

. . .
. ..

.

xjtþðm−1Þτ xjtþmτ · · · xjtþðm−1þNÞτ

3
77775
; (4)

where xjt is the sample point of channel j at time t, τ is the lag
term, and m is the embedding dimension (or number of lags). In
this representation, the dynamics of the brain hemodynamic sys-
tem generating the measured fNIRS data was constructed by
creating a series of delay vectors from the original signal.33

In MATLAB, this can be constructed using the function
“convmtx” of the data vector x of size <1 by N > with m � τ
lags and then keeping only every τth row. The matrix Xj
(m-by-N), therefore, contains shifted versions of the original
data and was constructed for all fNIRS channels p, p ¼ 1∶P.
Since, in this study, the fNIRS data have been optimally sampled
(fs ∼ 10 Hz considered to be fast enough to capture hemo-
dynamic changes related to the cardiac activity) and the lowest
frequency of interest was 0.01 Hz, we set τ andm to 1 and 1000,
respectively (as recommended in Jimenez-Gonzalez and
James33). Each constructed X was prewhitened using the
singular value decomposition method34 and decomposed by
robustICA into its spectrally independent components.

Our main problem was to determine the optimal number of
ICs (sources). In the standard ICA applied to multichannel
electroencephalography data, the number of ICs is usually
restricted to the number of sensors.35 Concerning the single-
channel ICA, by definition, the maximum number of components
for the decomposition of any channel’s fNIRS signal could not
exceedm, the number of delayed vectors in the matrix Xj, which
was previously constructed for each channel. However, when a
large number of components is used for decomposition, it is dif-
ficult to determine the physiological relevance of the components
having spurious spectral peaks. We developed an estimation pro-
cedure comprising two stages to determine the optimal number of
ICs associated with physiological sources for each subject’s
multichannel fNIRS data on a channel-by-channel basis (see
Sec. 2.2.3 for details). The estimation procedure was repeated
for all P (≤50) channels and 17 subjects.

2.2.3 Estimation of optimal number of sources

For each subject and channel, the estimation procedure was
employed in two steps to determine the optimal number of
ICs associated with physiological sources.

Step 1: In the first stage of the estimation procedure, for
each subject’s multichannel fNIRS data (deoxy-Hb,
oxy-Hb, or total-Hb), we created a frequency-band
matrix MFB with Nfb rows, where Nfb is the number
of frequency bands of interest, and two columns includ-
ing lower- and upper-frequency limits.

First, an average normalized PSD was computed for
each fNIRS channel by decomposing its signal into K in-
dependent components using the single-channel decompo-
sition method described in Sec. 2.2.2, where K was the
number of the retained principal components (PCs) that
accounted for 99% of the variance of the channel’s signal.
Then, the PSDs of the K independent components were
computed using the Welch spectral estimation method36

with a hamming window of length 1000 samples and an
overlap of 20%. The window lengths and overlaps were
chosen empirically to achieve high-frequency resolution
(0.01 Hz) and good spectral smoothness for the fNIRS
data length of 3000 samples (300 s). Finally, the PSDs
of the K independent components were normalized to
their total power, and then averaged to obtain the average
normalized PSD (PSDAN) for the channel.
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It can be noted that the normalization procedure was nec-
essary to avoid spectral peaks of different magnitudes mask-
ing each other during averaging. The whole procedure was
repeated for all P (≤50) channels. Then, a spatially averaged
PSD (PSDSA) was computed by averaging the PSDAN of all
P channels. By averaging across all channels, we removed
spurious spectral peaks of single channels. On the other
hand, global spectral peaks with low power were retained
through the normalization process. All frequency bands of
the PSDSA were identified by finding the points of inflection
using the first and second derivatives. In PSDSA, the spectral
peaks (local maxima) were identified by finding the zeros of
the first derivative of the spectrum. We then used the zeros of
the second derivative of the spectrum to identify the upper
and lower limits of each frequency band, i.e., the inflection
points on the spectrum, at which the concavity changes from
up to down or vice versa. The Nfb spectral peaks and fre-
quency bands were stored in the matrix MFB, which was
then used to estimate the number of sources for each channel
in the multichannel fNIRS data.

Step 2: In the second stage of the estimation procedure, for
each channel in the fNIRS recording, the optimal num-
ber of sources (IC components) was determined
between the minimum (NSmin) and maximum (NSmax)
number of sources. NSmin was set to 3 because in
this study, we mainly dealt with three main physiologi-
cal frequency bands associated with (1) LF fluctuations
caused by hemodynamic changes in ABP and local
brain hemodynamic activity; (2) respiration (with a
spectral peak at fR); and (3) cardiac activity (with a
spectral peak at fC). NSmax was determined using the
prewhitening procedure by finding the minimum num-
ber of PCs (NPC) retaining 99% of the fNIRS data vari-
ance. Therefore, the optimal number of sources was
estimated in the interval [3NPC].

For each fNIRS channel, the estimation procedure
started by first decomposing the channel fNIRS signal
into three components (NSmin ¼ 3). Then, for each compo-
nent, a normalized PSD (PSDAN) was calculated and ana-
lyzed to identify its frequency bands with the method
described earlier in this section. The components were
grouped based on their frequency content. For this purpose,
the number of groups was set to Nfb, i.e., the number of
frequency bands included in the matrixMFB of the channel.
Therefore, for each frequency band in MFB, all the compo-
nents whose PSDAN showed a spectral peak within that fre-
quency band were grouped. Each component was included
in multiple groups if its PSDAN exhibited spectral peaks in
all the frequency bands associated with the groups. Then,
the grouped ICs were projected back to the original fNIRS
signal space and the resulting signal was filtered within the
frequency band of the class to remove out-of-band spec-
tral peaks.

At each run, the residual of the decomposition procedure
usingNS sources was computed by subtracting the sum of the
reconstructed signals from the original signal. The relative
power of the residual was calculated as the ratio of the
power of the residual and the total power of the original signal.

After each run, NS was increased by an increment of one
and the whole estimation procedure was repeated. The

optimal number of ICs was finally set to the value with
which the relative power of the residual of the decomposi-
tion did not change more than 1% by increasing the number
of sources (Fig. 3). The main goal of this step was to retain
spectral peaks with significant power; therefore, weak spec-
tral peaks, for which no physiological relevance could be
found, were not modeled in our study.

2.3 Single-Subject Spectral Analysis

For each subject, we first determined the association of the spec-
tral peaks in the PSDSA (see Sec. 2.2.3) of deoxy-Hb, oxy-Hb,
and total-Hb with different physiological components. The fre-
quency bands and their spectral peaks with highest power for LF
oscillations, respiration (fR), and cardiac pulsations (fC) were
identified on the average normalized PSD of the external
physiological signals.

The respiratory harmonics were also identified between fR
and fC. We filtered the fNIRS signals above 1.5 Hz; therefore,
the cardiac harmonics were not analyzed. To identify frequency
peaks associated with nonlinear cardio-respiratory couplings,
we used the cross bicoherence method37 to compute the normal-
ized bispectrum of the external respiratory and cardiac signals
for each subject. For this purpose, we used the higher-order
spectral analysis toolbox in MATLAB.38

For the bispectral analysis, each fNIRS time series was par-
titioned into 30 nonoverlapping segments considered to be the
optimal number of segments required for reliable power
estimation.37 The respiration self-coupling and bifrequencies
due to interactions between the respiratory and cardiac systems
were then identified and labeled on the normalized average PSD
of the deoxy-Hb, oxy-Hb, and total-Hb signals.

For each subject, the PSD of the back-projected signals were
computed channel by channel and divided into LF fluctuations
including very low frequency (XVLF, 0.01 to 0.08 Hz) and LF
(XLF, 0.08 to 0.15 Hz) oscillations, respiration (XfR and its

Fig. 3 Residual relative power (output of the source number estima-
tion procedure) as a function of number of sources for Subject 1. The
curve shows how the residual relative power decreases with increas-
ing number of sources. For this subject, only one fNIRS channel was
excluded from the decomposition procedure due to its poor quality.
Sources above the upper bound (94) have been rejected by PCA.
LB, lower bound; UB, upper bound; and NSopt, optimal number of
sources.
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harmonics XH), and cardiac activities (XfC and cardio-respira-
tory components XCR). Then, for each channel the percentage
contribution of these activities were obtained by computing
the power ratio of their respective frequency band to the total
power of the original signal. The resulting percentage values
were averaged over all channels and over those located within
different cerebral regions as indicated in Fig. 1. Since each sub-
ject underwent two to three resting-state sessions, the results
were averaged over the sessions for each subject.

For each subject, we also computed the percentage of resid-
uals resulting from the PCA method (RPCA) and the decompo-
sition procedure (RDP) using the optimal number of sources.

The decomposition was formulated as

EQ-TARGET;temp:intralink-;e005;63;609Yfnirs ¼ A1 × XVLF þ A2 × XLF þ B1 × XfR þ B2 × XH

þ C1 × XfC þ C2 × XCR þD × RPCA þ E × RDP;

(5)

where Yfnirs is each channel’s fNIRS signal, and A; B; C;D, and
E are the related percentage contributions of the hemodynamic
sources described above. To further estimate the contributions of
very low frequency (VLF) and LF related to the brain autore-
gulatory oscillations as well as global signals driven by varia-
tions in the ABP, for each subject, we first decomposed the
externally recorded ABP signal using the same technique

employed to decompose the resting-state fNIRS signals (see
Sec. 2.2.2). Then, we computed the maximum magnitude
squared coherence (CVLF and CLF) between the VLF and LF
components of the ABP signals and those of fNIRS channels.
The magnitude squared coherence, a function of frequency,
varies between 0 and 1. We used the function mscohere39 to
investigate frequency-domain correlation between ABS and
fNIRS signals using Welch’s overlapped averaged periodogram.
The maximum magnitude squared coherence values were used
to estimate the percentage contribution of the VLF and LF com-
ponents of the brain oscillations (XBA VLF and XBA LF) using the
following equations:

EQ-TARGET;temp:intralink-;e006;326;620XBA VLF ¼ ð1 − CVLFÞ · XVLF XBA LF ¼ ð1 − CLFÞ · XLF:

(6)

In this approach, we assumed that ABP had a global effect
across all fNIRS channels.

2.4 Intersubject Variability

We performed a PCA-based cluster analysis to probe intersub-
ject variability in the percentage contributions of LF fluctua-
tions, respiration, cardiac activity, and other components to
the deoxy-Hb, oxy-Hb, and total-Hb signals. For this purpose,
we first created a matrix M of size P ×Q

EQ-TARGET;temp:intralink-;e007;63;456M ¼

2
664
Q

LFdeoxy-Hb
1 Q

LFoxy-Hb
1 QLFtotal-Hb

1

..

. ..
. ..

.

Q
LFdeoxy-Hb
17 Q

LFoxy-Hb
17 QLFtotal-Hb

17

Q
Rdeoxy-Hb

1 Q
Roxy-Hb

1 QRtotal-Hb

1

..

. ..
. ..

.

Q
Rdeoxy-Hb

17 Q
Roxy-Hb

17 QRtotal-Hb

17

Q
Cdeoxy-Hb

1 Q
Coxy-Hb

1 QCtotal-Hb

1

..

. ..
. ..

.

Q
Cdeoxy-Hb

17 Q
Coxy-Hb

17 QCtotal-Hb

17

3
775; (7)

where P was the total number of subjects (herein 17), and
Q was the total number of the average percentage contri-
bution values obtained across all channels for the three
frequency bands: LF fluctuations, respiration (R), and car-
diac activity (C) for deoxy-Hb, oxy-Hb, and total-Hb. To
identify major differences between subjects, we used PCA
to project the two-dimensional (2-D) matrix into a lower
dimensional space. This was done before clustering to
identify directions of maximal variance.40 This prepro-
cessing has been shown to provide a more robust cluster-
ing by removing directions with low variance. We selected
the first PCs, which explained at least 90% of all varia-
tions in contributions of the three frequency bands. To
find a reasonable number of clusters, the reduced matrix
was first clustered using the k-means clustering method41

with k clusters. To determine the optimal number of clus-
ters, k was set to the number of selected PCs. Then, the
clustering was performed and the similarity between par-
titions was computed. The clusters were merged if they
fell inside two within-cluster standard deviation of the
others. Using this approach, we found the optimal number
of clusters to classify subjects based on their similarities in
the percentage contributions of slow activity, respiration,
and cardiac activity. Finally, we performed statistical com-
parison between the clusters for deoxy-Hb, oxy-Hb, and
total-Hb.

3 Results

3.1 Spectral Analysis

Figure 4 shows the results of the spectral analysis for Subject 1.
The normalized PSDs of the deoxy-Hb, oxy-Hb, and total-Hb
signals were computed by averaging the PSDs of all the chan-
nels. In Fig. 4(a), threemain peaks can be seen at∼0.02 Hz (slow
activity), 0.13Hz (respiration), and1.18Hz (cardiac pulsations).
The magnitudes of these peaks have obscured the other spectral
peaks. To extract other spectral peaks, we used the scICA-based
decomposition approach described in Sec. 2.2.2. Figure 4(b)
shows the normalized PSD resulting from the decomposition
of the deoxy-Hb, oxy-Hb, and total-Hb signals. In this subplot,
the other spectral peaks are clearly distinguishable from the
spectral background. It is of note that in this representation
themagnitudes of peaks carry no information because the ampli-
tudes of their corresponding independent components have been
normalized to unity during the decomposition process.

The same spectral analysis and decomposition procedure
were applied to the auxiliary signals recorded synchronously
with the fNIRS signals. As shown in Figs. 4(c) and 4(d), the
same spectral peaks were found for the auxiliary as those
observed for the fNIRS signals. On average across all subjects,
the frequency of the systemic ABP varied between 0.05 and
0.15 Hz. The respiration and cardiac activity exhibited a single
peak in the frequency ranges [0.13 to 0.36 Hz] and [0.75 to
1.3 Hz], respectively.
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As described earlier, we also investigated nonlinear cardio-
respiratory couplings using the cross-bicoherence method
(Sec. 2.3) for each subject. Figure 5 shows a contour plot of
the estimated bicoherence for Subject 1. As shown, the
cross-bicoherence method revealed a peak at bifrequency
(0.13 to 0.13 Hz) indicating the respiratory self-coupling.
The cardio-respiratory coupling has caused a strong bispectral
peak at bifrequency (0.13 and 1.18 Hz). All other peaks are
related to the nonlinear couplings between the respiratory com-
ponents (main peak fR, and its harmonics H1 and H2) and the
cardiac frequency (fC). The nonlinear interactions appear as
fC � n · fR, where n refers to the n'th respiratory harmonic.
All the peaks labeled at the spectral and bispectral analysis
stages were used to compute the percentage contribution of
LF, respiratory, and cardiac activities to the fNIRS signals.

3.2 Contribution of Functional Near-Infrared
Spectroscopy Components

On average, the decomposition was performed for all subjects
with 37 components and 49 channels after removing noisy chan-
nels. Figure 6 shows the average percentage contributions of the
LF, respiratory, and cardiac activities and their cross coupling
components to the deoxy-Hb, oxy-Hb, and total-Hb signals.

For each subject, the averaged percentage contribution of
each activity was first computed across all channels for (a)
deoxy-Hb, (b) oxy-Hb, and (c) total-Hb. The grand average per-
centage values were then computed across all subjects. As
shown in Figs. 6(a)–6(c), slices 1 and 2, during the resting
period two LF components (below 0.15 Hz) were observed.
One peaked between 0.01 and 0.08 Hz, associated with slow
activities including spontaneous brain hemodynamic activities
as well as very LF content of blood pressure variations
[shown as VLF in Fig. 6(d)], and the other peaked between
0.08 and 0.15 Hz, mainly related to variations in blood pressure
represented as LF in Fig. 6(d). The percentage contributions of
VLF were much higher than those of LF in deoxy-Hb, oxy-Hb,
and total-Hb.

The main spectral peak of the respiration (Fig. 6, slice and
peak 3) showed a higher contribution to deoxy-Hb (9.4%) in
comparison with the one computed for the spectral peak of
the cardiac activity (7.3%; Fig. 6, slice and peak 5 and
Table 1). An inverse trend was observed for oxy-Hb and
total-Hb. Interestingly, compared to oxy-Hb (7.2%) and total-
Hb (5.9%), deoxy-Hb (10.9%) showed higher contributions
for the respiratory harmonics (Fig. 6, slice and peak 3) as
well as for the nonlinear cardio-respiratory couplings (Fig. 6,
slice and peak 6 and Table 1). No significant differences

Fig. 4 Results of power spectral analysis for Subject 1. (a) Normalized PSD and (b) full spectra averaged
over all source–detector pairs for deoxy-Hb, oxy-Hb, and total-Hb signals. To obtain the results in plot (a),
the PSD of the deoxy-Hb, oxy-Hb, and total-Hb signals were obtained by averaging the PSDs over all the
fNIRS channels. The resulting averaged PSDs were normalized to the maximum power value obtained
across deoxy-Hb, oxy-Hb, and total-Hb. To obtain the results in plot (b), each of the fNIRS channels was
first decomposed using the single-channel decomposition method (see Sec. 2.2.2). The PSDs of the
channel’s independent components were normalized to their total power, and then averaged to obtain
the average normalized PSD for the channel. Finally, the averaged PSDs were calculated across chan-
nels. In a similar way, plots (c and d) were obtained for the externally recorded ABP, respiration, and
cardiac signals for Subject 1.
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were observed in the residuals of the PCA and decomposition
methods between deoxy-Hb, oxy-Hb, and total-Hb [Figs. 6(a)–
6(c), slices 7 and 8 and Table 1].

The percentage contributions of the subcomponents of LF,
respiration, and cardiac activities have been shown in
Table 1. As illustrated, the main contributions belonged to
VLF, and the main spectral peaks of respiration and cardiac

activities for deoxy-Hb, oxy-Hb, and total-Hb. For slow activ-
ities, LF showed higher contributions for oxy-Hb and total-Hb
in comparison with deoxy-Hb.

On average across all subjects, in the VLF band, almost 80%
of the contributions belonged to the brain autoregulatory activ-
ities and the rest to the systemic blood pressure variations. In the
LF band, more than 85% of the contributions belonged to the

Fig. 6 Average percentage contribution of LF, respiratory, and cardiac activities to the deoxy-Hb (panel
a), oxy-Hb (panel b), and total-Hb (panel c) signals. The pie charts show the contributions of LF activities
(slices 1 and 2), respiration (slice 3) and its harmonics (slice 4), cardiac activity (slice 5) and its nonlinear
couplings with the respiratory components (slice 6). The percentage of residuals resulted from the PCA
method (slice 7) and that from our decomposition method (slice 8) have been also shown in the pie charts
(a)–(c). The slices 1 to 6 correspond to peaks 1 to 6 shown in plot (d).

Fig. 5 Results of the bispectral analysis between the respiratory and cardiac signals for Subject 1. As
shown, the cross-bicoherence analysis reveals phase coupling between the respiratory and cardiac sys-
tems. The strong peak at bifrequency (0.13 and 0.13 Hz) indicates the respiratory self-coupling. The peak
at bifrequency (0.13 and 1.18 Hz) is related to the cardio-respiratory coupling. All other peaks (f 2 � f 1)
belong to the nonlinear couplings between the respiratory components (main peak f R , and its harmonics
H1 and H2) and the main peak of the cardiac activity (f C ). The color scale is shown normalized to the
maximum peak in the image.
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brain autoregulatory activities for deoxy-Hb, oxy-Hb, and total-
Hb. Averaged over subjects, the percentage contributions of the
VLF components of the brain autoregulatory activity for deoxy-
Hb, oxy-Hb, and total-Hb were more than four times the values
obtained for the systemic changes in the ABP signal. This ratio
was much higher for LF.

Concerning the respiratory subcomponents, the main peak
has shown the highest percentage contribution compared to
the other subcomponents. However, the first and the second har-
monics as well as the nonlinear cardio-respiratory couplings
(fC � fR) showed increased contributions to deoxy-Hb in com-
parison with those found for oxy-Hb and total-Hb. However, the
main cardiac peak showed higher contribution to oxy-Hb and
total-Hb compared to deoxy-Hb (Table 1).

Figure 7 shows the regional differences in the contributions
of LF (sum of VLF and LF), respiration (sum of the main peak

and its harmonics), and cardiac activity (sum of the main peak
and its nonlinear cardio-respiratory couplings) to the deoxy-Hb,
oxy-Hb, and total-Hb signals. To obtain these results, we com-
puted the mean and standard deviation of the contribution values
across all channels positioned in the left and right frontal, tem-
poral, parietal, and occipital regions (see Fig. 1) across all sub-
jects. We then statistically compared different cerebral regions
using the Mann–Whitney nonparametric test42 with P < 0.05.

For deoxy-Hb, statistical comparisons showed significant
bilateral decrease in the contribution of the brain slow activity
(VLF) moving from the anterior to the posterior parts of the
brain. Conversely, the cardiac activity showed higher contribu-
tions in the posterior parts of the brain. The right frontal and
temporal lobes showed higher percentage contribution for the
slow activity with respect to the left side. In all other cases, sym-
metry was observed between the left and right hemisphere of the
brain. In oxy-Hb and total-Hb signals, differences were sta-
tistically significant between the occipital regions and frontal
areas for LF brain activities and cardiac pulsations. Higher var-
iations were observed in the power of the cardiac activity in the
posterior regions across all subjects. For respiration, no signifi-
cant differences between cerebral regions were observed in
deoxy-Hb, oxy-Hb, and total-Hb signals.

3.3 Intersubject Variability

Figure 8 shows the results of the intersubject clustering. Using
the clustering analysis, we identified two distinct physiology
types (denoted I and II) included nine and eight subjects, respec-
tively. There were two primary features that distinguished the
two physiology types. First, type-I showed a lower contribution
of slow activity including VLF and LF components to the
deoxy-Hb, oxy-Hb, and total-Hb signals in comparison with
type-II. Second, the type-I cluster contained a higher percentage
contribution for the respiration (main peak and its harmonics)
and cardiac activity (main peak and nonlinear coupling compo-
nents) in comparison to type-II. Table 2 summarizes all signifi-
cant differences between physiology type-I and type-II
with P < 0.05.

We further used the unpaired t-test with a significance level
of P < 0.05 to determine whether the frequencies of the main
peak for slow activity, respiration, and cardiac activities differed
significantly between the two subject groups. The subjects
exhibiting physiology type-I had significantly lower frequencies
for slow activity (0.012� 0.002 Hz) and respiration
(0.21� 0.05 Hz) in comparison with the second subject
group showing physiology type-II with (0.014� 0.004 Hz)
for slow activity and (0.27� 0.05 Hz) for respiration. No sig-
nificant differences in cardiac frequencies (1.07� 0.15 Hz)
were found between both physiology types.

For each physiology type, Fig. 9 shows the contribution ratio
(oxy-Hb/deoxy-Hb) for slow activity, respiration, and cardiac
activity per subject. As shown, for slow activity and respiration,
subjects characterized by type-I physiology exhibited slightly
higher contribution ratios in comparison with type-II.
However, for type-II, the cardiac contribution ratios were greater
than those observed for type-I.

4 Discussion
We have presented a method for decomposing fNIRS signals
based on the information from the temporal and spectral
domains. The fNIRS data were collected during the resting
state across the whole brain in the frontal, temporal, parietal,

Table 1 Average percentage distribution of sub-components of the
slow activity, respiration, and cardiac activities. The percentage val-
ues were computed by averaging the values obtained for all subjects.
See Fig. 5 for component descripion.

Oxy-Hb Deoxy-Hb Total-Hb

Slow oscillations (total) 51.70% 51.60% 51.60%

VLF 43.50% 47.10% 41.50%

LF 8.20% 4.50% 10.10%

Respiratory (total) 17.60% 20.30% 17.20%

Main 10.40% 9.40% 11.30%

Harmonics (all) 7.20% 10.90% 5.90%

1st 5.78% 7.86% 4.74%

2nd 1.16% 2.52% 1.01%

3rd 0.20% 0.44% 0.13%

4th 0.06% 0.07% 0.02%

Cardiac (total) 23.10% 20.50% 23.50%

Main 13.10% 7.30% 14.70%

Cardio-Respiratory (all) 10.00% 13.20% 8.80%

f C þ f R 3.19% 4.05% 2.97%

f C–fR 4.94% 6.15% 4.28%

f C þ 2f R 0.88% 1.34% 0.64%

f C–2fR 0.56% 0.90% 0.44%

f C þ 3f R 0.32% 0.53% 0.27%

f C–3fR 0.12% 0.22% 0.20%

Noise (total) 7.60% 7.60% 7.70%

Unaccounted physiology 5.70% 5.40% 6.00%

White noise 1.90% 2.20% 1.70%

Total 100.00% 100.00% 100.00%
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and occipital locations. The multichannel optical data were first
converted to deoxy-Hb and oxy-Hb signals and then prepro-
cessed to remove motion artifacts and noisy channels. The
multichannel deoxy-Hb, oxy-Hb, and total-Hb signals were ana-
lyzed in the spectral domain to obtain an average normalized
spectrum across all fNIRS channels. The full spectrum was
then used to decompose fNIRS signals through the single-chan-
nel ICA method on a channel-by-channel basis. The fNIRS sig-
nal was decomposed into components that incorporated
information of interest from the spatial, temporal, and the spec-
tral domain. The components of interest contained nonredun-
dant information with no overlap in the frequency domain.
The independent components were regrouped based on their fre-
quency spectral similarities to identify different spatio-temporal

components that contributed to the deoxy-Hb, oxy-Hb, and
total-Hb signals. The results were then explored to investigate
the spatial variability across unilateral and bilateral brain areas
in all subjects and consequently to estimate the contribution of
LF oscillation, respiration, and cardiac pulsations to the deoxy-
Hb, oxy-Hb, and total-Hb signals. For group inference, the
results of the scICA analysis performed on each subject were
compared.

4.1 Single-Channel Decomposition

Previous approaches to removing contamination from systemic
physiology on fNIRS data have fallen into either spatial or tem-
poral methods. Spatial methods such as PCA9,43 or spatial ICA

Fig. 8 Results of the intersubject clustering performed on the percentage contribution of slow activity,
respiration, and cardiac activities to the deoxy-Hb, oxy-Hb, and total-Hb signals.

Fig. 7 Spatial distribution of contribution of slow activity, respiration, and cardiac activity to the (a) deoxy-
Hb, (b) oxy-Hb, and (c) total-Hb signals. The results are represented as the mean and standard deviation
of percentage contribution values computed over the fNIRS channels positioned in the left (L) and right
(R) frontal (Fr), temporal (Tp), parietal (Pt), and occipital (Op) regions across all subjects.
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methods attempt to remove systemic physiology by projecting
out components with the same spatial covariance as systemic
noise from the measurements of interest. For example, in the
work by Franceschini et al.,11 a resting (baseline) scan was
used to construct the spatial components of systemic noise

from PCA, which were then projected from the fNIRS scans
during the task. However, this approach works well only
when the several conditions are met. First, the spatial covariance
of the task-related activity must be distinguishable from the
background systemic noise. In practice, this requires a large

Table 2 Characteristic significant differences between Clusters 1 and 2 (physiology type I and II). VLF, very low frequency; LF, low frequency; f R ,
respiration, main peak; H, respiration, harmonics; f C , cardiac activity, main peak; f C � n · f R , cardio-respiratory couplings; and NS, not significant.

Activity Component

Cluster 1 (C1) versus Cluster 2 (C2)

deoxy-Hb oxy-Hb total-Hb

Slow activity VLF C1 < C2 C1 < C2 C1 < C2

LF C1 < C2 C1 < C2 C1 < C2

Respiration f R C1 > C2 C1 > C2 C1 > C2

H C1 > C2 C1 > C2 C1 > C2

Cardiac activity f C C1 < C2 C1 < C2 C1 < C2

f C � n · f R C1 > C2 C1 > C2 C1 > C2

Cluster Component deoxy-Hb oxy-Hb total-Hb

1 ff Rg versus fHg < > >

ff Cg versus ff C � n · f Rg < < <

ff Rg versus ff Cg > > >

fHg versus ff C � n · f Rg < < <

ff R þ Hg versus ff C þ ðf C � n · f RÞg > > >

2 ff Rg versus fHg NS > >

ff Cg versus ff C � n · f Rg NS > >

ff Rg versus ff Cg < < <

fHg versus ff C � n · f Rg < < <

ff R þ Hg versus ff C þ ðf C � n · f RÞg < < <

Fig. 9 Contribution ratio (oxy-Hb/deoxy-Hb) for slow activity, respiration, and cardiac activities per sub-
ject and physiology type.
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number of fNIRS measurements that cover an area of the head
larger then the region activated by the task. Second, the spatial
covariance of the physiological noise signal must be stationary.
Finally, this approach requires that measurement channels with
poor coupling to the head (e.g., high levels of random noise) be
removed in preprocessing to accurately estimate the spatial
covariance structures. While spatial filtering methods can be
applied to analysis of task-related fNIRS signals, these methods
cannot be applied to resting-state connectivity studies.

Temporal filtering methods have also been proposed for
removing systemic noise. For removal of high-frequency
noise such as the main frequency of the cardiac cycle, low-
pass linear filtering methods can be applied. However, conven-
tional bandpass filtering will not work properly to remove res-
piratory, heart-rate variability, or blood pressure-induced
fluctuations mainly because the frequency band of interest to
be removed is not known a priori and in general are not
well separated spectrally from the frequencies of the evoked
hemodynamic brain response. Temporal regression methods
have been used to remove systemic noise, but require a measure
of external physiology with a good quality to remove physio-
logical noise. These methods provide undesirable results
when the transfer functions between the sources of activities
(here heart and lungs) and the brain are time varying or nonlin-
ear. Diamond et al.44 proposed an adaptive regression method
using a Kalman filter to address this issue of stationarity of
the transfer function from systemic measurements to the
brain signal. However, the assumption of a nonstationary linear
transfer function from systemic circulation to the brain is an
oversimplification of the system. Alternatively, fNIRS measure-
ments with a short separation between the source and detector
positions can provide a more regional estimate of systemic
physiology since these measurements only probe the superficial
skin layers.6 These short distances can be used as a local regres-
sor of physiological noise. However, these short-separation sig-
nals represent a mixture of different physiological contributions
(cardiac, respiratory, and blood pressure) that cannot be sepa-
rated. When these measurements are used as a linear regressor,
an assumption is made that the relative contributions of the
physiological signals within the regressor are the same as the
contamination in the fNIRS brain measurement. This is only
partially true since the deeper measurements contain contami-
nation from both the skin and brain and the brain may have
a quite different sampling of arterial and venous contributions
from what is captured in the short-distance measurement. When
multiple physiological oscillations are contained within a single
regressor as is the case in the short-distance correction methods,
there is a possibility to introduce artifact frequencies into the
measurement of interest, e.g., if ratio of arterial–venous sensi-
tivity differs from the regressor. This is also true in the case of
using measurements of systemic physiology from the body. For
example, a pulse-oximeter signal from the finger contains a mix-
ture of both cardiac (and harmonics) and respiratory (and har-
monics) frequencies. Across the brain, the ratio of these mixed
components will vary.

Single-channel ICA is a demixing procedure for decompos-
ing a single time course into its constituent components. Unlike
spatial ICA, which decomposes a matrix of data (multiple chan-
nels recorded over time) into components, scICA operates on a
vector of data (single channel over time) and decomposes the
data based on statistically independent components consisting
of groups of covarying frequencies from within that one

channel. This is an underdetermined decomposition, where a
single channel is converted into multiple independent time
series. For source analysis in fNIRS signals, we found several
advantages for scICA over spatial ICA. First of all, if only a
single fNIRS channel signal is recorded or very few channels
are available, scICA is able to decompose the signal into its con-
stituent components even with small contribution to the signal.33

In the case of multichannel recordings, scICA still performs
much better than spatial ICA when the activity of interest is
highly localized and present only on a few channels. This is
because the scICA method utilizes temporal information to iso-
late underplaying components. Second, the basic assumption to
use spatial ICA is that the propagation delays between sources
and sensors are negligible. This is not the case for the brain
hemodynamic activities with spatially varying delays.45 This
property affects the identifiability power of the spatial ICA
method. However, scICA produces less desirable results
under circumstances where the signal generated by underlying
sources has components with joint spectral support in the fre-
quency domain.33

The success of ICA analysis is dependent on several factors.
First, the output of spatial and/or temporal ICA depends on the
number of components.46 If too few components are used, the
signal will not be efficiently unmixed. However, if too many
components are used, then the underlying signals (physiology)
will be split across multiple components. In our approach, the
produced components need to be analyzed to identify noise-
related components and the relevant ones related to the signal
of interest.47 To solve these problems, we developed two objec-
tive algorithms to efficiently estimate the number of sources as
well as to identify the components related to LF oscillations,
respiration, and cardiac activity. Our approach for estimating
the number of sources searched the optimal number of compo-
nents between a lower bound, defined as the minimum number
of components needed to identify three main frequency bands
associated with LF activities, respiration, and cardiac pulsations,
and a upper bound, defined as the minimum number of PCs used
to reduce data dimensionality. We also used the robustICA
method, which has the advantage over the commonly used
fastICA algorithm, which is quite sensitive to the initial
values.30 In addition, the efficiency of our decomposition
approach depended on how well the components related to
the respiratory harmonics as well as those related to the nonlin-
ear cardio-respiratory couplings could be identified. To label
spectral peaks, we required external physiology. This might
be considered as a weakness of our method; however, we
only used these reference signals to identify peaks not for the
decomposition purpose.

4.2 Contribution of Functional Near-Infrared
Spectroscopy Components

Using scICA, we were able to decompose the deoxy-Hb, oxy-
Hb, and total-Hb signals into their underlying components. The
benefits of our approach are twofold. First, as we showed, on
average across all subjects, 93% of total fNIRS signal power
could be decomposed through the decomposition procedure
into the constituent components including LF oscillations, res-
piration and its harmonics, and cardiac pulsations and cardio-
respiratory components. The remaining signal power constituted
the residuals of our method and PCA. This decomposition
helped us to understand the percentage contribution of different
physiological sources to deoxy-Hb, oxy-Hb, and total-Hb.
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Compared to oxy-Hb and total-Hb, deoxy-Hb showed higher
variability across subjects. This is consistent with the results
reported by others.47 This can be explained by the lower
SNR of deoxy-Hb, which made the full decomposition a bit
harder. However, during the full spectrum identification process,
we found that the powers of fluctuations of different frequency
bands in deoxy-Hb were lower than those in oxy-Hb and total-
Hb, but their percentage contribution were slightly different
from oxy-Hb and total-Hb. Similar observations have been
reported by Cui et al.48 In our study, as expected, oxy-Hb
and total-Hb showed a higher percentage contribution in LF
fluctuations and cardiac pulsations in comparison with
deoxy-Hb. This is in agreement with the findings reported by
other research groups.5,49

We observed higher contribution (40% to 45%) for very LF
fluctuations (0.01 to 0.08 Hz) than that (5% to 10%) found for
LF oscillations (0.08 to 0.15 Hz). However, VLF and LF exhib-
ited similar spatial extent.

LF fluctuations have shown a global physiological origin.27

As shown in Fig. 8, we also observed a global effect in VLF and
LF in the deoxy-Hb, oxy-Hb, and total-Hb signals. The LF
power was more pronounced in the anterior regions; however,
symmetry was observed between the left and right hemispheres.

In a recent study, through the analysis of fNIRS data col-
lected in the sensorimotor region, Katura et al.21 have shown
that 35% of the oxy-Hb signal could be attributed to VLF
and LF activities. As shown in Table 1, we found that higher
average percentage contribution (50%) for VLF and LF oscilla-
tions in deoxy-Hb, oxy-Hb, and total-Hb across all brain areas
during the resting state. Duan et al.7 suggested that the LF fluc-
tuations in resting-state fNIRS signals may reflect spontaneous
brain activity. Since LF fluctuations from background physiol-
ogy overlap with the LF fluctuations from neuronal activity, we
therefore postulate that the increase that we observed in the
power of LF fluctuations relates more to the spontaneous back-
ground physiology. This may also show that the LF content of
fNIRS data decreases in task-induced brain activation.

Using fMRI, a high proportion (75%) of the global LF blood
oxygen level dependent noise variance has shown to be attrib-
uted to respiratory factors.50 In our study, the respiratory main
contributions were in the main respiratory peak and its harmon-
ics, which on average constituted 20% of the total power of the
deoxy-Hb, oxy-Hb, and total-Hb signals. In the fMRI signal, the
respiratory artifact is due to both physiological blood pressure
and oxygenation changes similar to those expected to effect the
fNIRS signal, but also due to the magnetic susceptibility artifact
from expansion of the lungs. This susceptibility artifact only
affects the MRI signal and would not show up in the fNIRS
and could explain some of the reason why respiratory oscilla-
tions account for a larger faction of MRI variance. In addition,
fNIRS signals contain contributions from both the skin/scalp
and the brain, and this might also account for a discrepancy
with the fMRI reports.

4.3 Variability Between Subjects

On average, we found 20% variability across subjects in differ-
ent frequency bands. The intersubject variability could be
explained by differences between the brain hemodynamic
responses of the subjects during the resting state. However,
other reasons included the imprecision in the position of the
optode between subjects, and removing noisy and artifactual
fNIRS channels in the predecomposition stage. In some

cases, the latter process reduced the number of channels per
brain regions to one. This increased the variability per subject
and consequently across subjects.

Our data fell into roughly two types of physiology, with type-I
subjects associated with lower relative cardiac and slow compo-
nent activity, but higher respiratory contributions than type-II.
Since this result was for sensors placed all around the head,
this finding seems to reflect global physiological patterns and
could be explained by differences in the relative contribution
of the arterial and venous compartments between subjects in
these two groups. Physiologically, this could reflect different lev-
els of baseline cerebral perfusion [e.g., baseline blood flow, vol-
ume, vascular volume fractions, or vascular transit time (the ratio
of baseline flow and volume; see Ref. 51)] and further investiga-
tion is needed to understand these subject-level differences.

4.4 Application of Single-Channel Independent
Component Analysis to Physiological Noise
Removal

This work focused on the identification of physiological sources
of noise within fNIRS data collected from a probe covering the
whole head. A motivation for this study to better understand the
nature of this noise is the aim to improve the estimate of brain
activity or to characterize neural-related resting-state fluctua-
tions. Using single-channel ICA, we were able to decompose
the time course of a single fNIRS measurement into its constitu-
ent physiological components. We propose that this decompo-
sition could be used in future work in the context of removing
physiology from fNIRS measurements in several ways. First,
following the spatial-temporal methods previously described
in this context based on conventional PCA or ICA such as
those described in Zhang et al.,9,43 the scICA method could
allow more control over removing subcomponents of the sig-
nals. In addition, this method could be applied to filter short-
separation fNIRS signals wherein the short-separation measure-
ments, which correspond to local scalp measurements, could be
further decomposed by scICA and used as multiple regressors.
In the short-separation regression methods (e.g., White et al.6),
the measurement of the scalp signal is used to regress noise from
the longer-separation measurements to isolate the brain from the
scalp. However, this regression assumes that the relative contri-
butions of the arterial/venous compartments are the same across
the probe volume. In other words, a single coefficient is used to
model the relationship of the total signal (cardiac, blood pres-
sure, and respiratory) in the short-separation compared to the
long-separation measurements. The scICA method applied to
the short-separation measurement could provide the means to
unmix these physiological components, which could allow
multiple regressors to be used in the filtering to account for
differences in the relative contributions of these signals across
space. Future work is needed to investigate this hypothesis.

5 Conclusion
In summary, our study makes several contributions to the fNIRS
analysis field. First, the proposed approach decomposes fNIRS
measurements into their underlying components or sources. It
also provides information on the number of sources, their spatial
distribution, as well as their temporal and spectral content. Most
importantly, this approach can be applied to single-channel fNIRS
data as well as the recordings with multiple channels. The decom-
position method is not sensitive to the spatially varying propaga-
tion delays between sensors and the sources of activities. We
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investigated the percentage contribution of the systemic physiol-
ogy to the deoxy-Hb, oxy-Hb, and total-Hb signals from subjects
in the resting state. Our results enable us to better understand the
brain hemodynamics during the resting state.
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