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Abstract. Some very transparent cells in the optical tract of vertebrates, such as the lens fiber cells, possess
certain types of specialized intermediate filaments (IFs) that have essential significance for their transparency.
The exact mechanism describing why the IFs are so important for transparency is unknown. Recently, trans-
parency was described also in the retinal Müller cells (MCs). We report that the main processes of the MCs
contain bundles of long specialized IFs, each about 10 nm in diameter; most likely, these filaments are the
channels providing light transmission to the photoreceptor cells in mammalian and avian retinas. We interpret
the transmission of light in such channels using the notions of quantum confinement, describing energy transport
in structures with electroconductive walls and diameter much smaller than the wavelength of the respective
photons. Model calculations produce photon transmission efficiency in such channels exceeding 0.8, in opti-
mized geometry. We infer that protein molecules make up the channels, proposing a qualitative mechanism
of light transmission by such structures. The developed model may be used to describe light transmission
by the IFs in any transparent cells. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.4.1.011005]
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1 Introduction
Quantum wells (QW), quantum dots (QD), and other nanoscale
devices created new possibilities for the development of micro-
electronics and microoptics. One of the promising approaches is
based on photonic crystals, allowing the control of dispersion
and propagation of light.1,2 The best-known effects include
transmission or rejection of light in a given wavelength range
and waveguiding the light along linear and bent defects in a peri-
odic photonic crystal structure. A surface plasmon is a trans-
verse magnetic-polarized optical surface wave that propagates
along a metal-dielectric interface. Surface plasmons exhibit
a range of interesting and useful properties, such as energy
asymptotes in the dispersion curves, resonances, field enhance-
ment and localization, high surface and bulk sensitivities to
absorbed molecules, and subwavelength confinement. Because
of these attributes, surface plasmons found applications in a
variety of areas such as spectroscopy, nanophotonics, imaging,
biosensing, and circuitry.3–10 Plasmon theory was extensively
used to interpret the phenomena of light focusing at the
nanoscale.11–34 Technical applications of the optical nanodevices
have also been widely discussed,35–74 with several examples of
natural nanostructures for light harvesting, transmission, and
reflection described in plants and bacteria.75,76

Specific filament-like biological nanostructures were
described as necessary for the transparency of the vertebrate

crystalline lens. The lens in the vertebrates is built of the so-
called fiber cells; these cells are very narrow (3 to 5 μm) and
very long (millimeters), thus resembling fibers.77 These cells
have specialized beaded intermediate filaments (IFs) 10 to
15 nm in diameter, built of proteins filensin and phakinin.
Such fibers were described as indispensable for the fiber cell
transparency, with many alterations to these IFs of chemical
or genetic origin resulting in the lens cataract formation.78–86

Recently, a high level of transparency was also described in
certain retinal cells. It was shown that light transmission in the
vertebrate retina is restricted to specialized glial cells, which
have many other physiological functions. Indeed, Franze et al.87

in their pioneering studies demonstrated that the Müller glial
cells function as optical fibers. They demonstrated that Müller
cells (MCs) transmit visible-range photons from the retinal sur-
face to the photoreceptor cells, located deep under the surface.
In fact, the retina has inverted structure, thus the light projected
onto it has to pass through several layers of randomly oriented
cells with intrinsic scatterers before it reaches the light-detecting
photoreceptor cells.88,89 However, the guinea pig retina contains
a regular pattern of MCs arranged mostly in parallel to each
other, spanning the entire thickness of the retina (≈120 to
150 μm). The MC main cylindrical process90 that spans the
retina resembles an optical fiber, because of its capacity to
transmit light.87 These cells typically have several complex
side branches with functions not related to light transmission,
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with variable morphology.90,91 Thus, the main processes of
the MCs create a way for the light to go through the retina.
Here, we suggest that these main processes may contain special-
ized molecular structures functioning as optical waveguides.
Therefore, it is important to investigate the morphology of
the MCs main processes and develop a theoretical model of
light transmission by these cells.

Numerous materials form dielectric-conductive waveguides,
including carbon-based materials with high carrier mobility and
conductivity.92 Presently, we shall interpret the light transmis-
sion by MCs87 based on the model of light transmission by
a waveguide with conductive nanolayer coating. A dielectric
waveguide with a metal nanolayer coating is adequately
described by the plasmon theory.1–10 This theory uses the quan-
tum electronics approach to analyze the electromagnetic field
(EMF) energy transmission by such a waveguide. A plasmon is
understood as a conduction-band electron oscillation along the
waveguide surface at the external EMF frequency.3–8,16–21,53–69

Such oscillations are induced by the EMF at the input end of
the waveguide, and then the plasmon energy is transformed back
into the EMF at the output end of the waveguide.3–8,16–21,53–69

Presently, we shall focus our attention on the role of the quantum
confinement (QC) in the light transmission by MCs and nano-
tubes with a conductive coating, where the QC operates in the
direction normal to the coating. We will analyze the EMF-
induced transitions between the discrete states created in the
conductive coatings, and the excitation transport from the
input end of the waveguide to its output end. We shall demon-
strate that the excitation transport should operate simultaneously
with the state-to-state transitions, as the ground- and excited-
state wavefunctions span the entire surface of the nanocoating.
Now, we extend this approach to the analysis of the light trans-
mission by the MCs, proposing a mechanism describing this

phenomenon. This study has a direct impact on the medicine
of human vision, and also on the development of nanomedical
eye technology.

2 Experimental Methods and Materials
The presently used histological material was collected in Russia
in 1999 during the study of the bifoveal retina of the pied fly-
catcher (Ficedula hypoleuca). The eyeballs of the flycatcher
chicks 27 days after hatching were fixed in 3% gluteraldehyde
with 2% paraformaldehyde in 0.15 M cacodilate buffer and
postfixed with 1% OsO4 in the same buffer. The eyeballs were
oriented relative to the position of the pecten and embedded into
Epon-812 epoxy resin. Ultrathin sections 60-nm thick were
made on an LKB Bromma Ultratome ultramicrotome (L.K.B.
Instruments Ltd., Northampton, United Kingdom) and exam-
ined on a JEM 100B (JEOL Ltd., Japan) electron microscope
as described earlier.93

3 Experimental Results
The MCs in a Pied flycatcher eye extend from the vitreous body,
where the light is entering the retina, through the entire retina to
the photoreceptor cone cells, and thus the cell structure resem-
bles the one previously described in the guinea pig eye.87 The
MC bodies are located in a specific layer inside the retina, send-
ing the principal processes to both of its surfaces. Indeed, the
electronic micrograms show that the MC endfeet (inverted
cone-shaped parts of the MC covering the vitreous body, see
Fig. 1, red arrows) form the inner surface lining called the
inner limiting membrane (ILM), covering the entire inner sur-
face of the retina. The basal processes of the MCs originating
from the endfeet [Fig. 1(a), green arrows] protract away from the
inner surface, normally to it and essentially parallel to each other

Fig. 1 (a) Endfeet (red arrows) and basal processes (green arrows) of MCs in the Pied flycatcher retina.
(b) High magnification insert from (a), showing a part of cytoplasmic structure (green arrows) that has
parallel linear elements resembling IFs. This structure spans the cytoplasm from the narrow part of the
basal endfoot to the apical end that wraps around a cone photoreceptor, in the direction of light trans-
mission. Scale bar in (a) and (b) is 500 nm. (c) Schematic presentation of the MCs (green arrows) with
their endfeet (red arrows) and the cone photoreceptors (R, G, B). The light propagation direction coin-
cides with the red arrows.

Neurophotonics 011005-2 Jan–Mar 2017 • Vol. 4(1)

Makarov et al.: Quantum mechanism of light transmission by the intermediate filaments. . .



[Fig. 1(a), green arrows], and spreading around branches of
other cells. We suggest that similar to what was found in the
guinea pig,87 the light incident from the vitreous body is entering
the endfeet [Fig. 1(a), red arrows], and next the excitation energy
flows from the basal process to the cell body to the apical proc-
esses, where it is transferred to the cone photoreceptor outer
segment, as shown in Fig. 1(c). The diameter of the MC main
process in the Pied flycatcher may be <1 μm [Fig. 1(a)]; there-
fore, these cells working as waveguides should be described as
natural nano-optical structures.

We also studied the cytoplasm of the MCs in the apical and
basal processes, discovering parallel structures that span the cell
cytoplasm all the way through from the inner membrane to the
photoreceptors. A higher magnification insert of a part of the
basal process of the MC87 [see Fig. 1(b)] shows this structure
within the cytoplasm of the cell process, repeating all of its
curves. This structure resembles a bundle of parallel IFs with
the outer diameter of 10 nm, with some smaller microparticles
organized around the filaments. The IFs in the glial cytoplasm
are most often associated with globular particles of chaperone
proteins (usually termed crystallines)94 that stabilize these long
filaments, or with nucleoprotein particles.95 These filaments
span almost the entire 400 to 500 μm of the MC length, from
the endfoot to the photoreceptor (the outer membrane), thus
recalling the previous observations in other species.96 The fila-
mentary structure is absent in the MC endfeet. Unfortunately,
neither the precise ultrastructure of this intermediate-filament
bundles in the MCs nor the continuity of the filaments, which
may be important for understanding the mechanism of their
operation, could be resolved on the presently used equipment,
and will be investigated additionally. Usually, the IFs have their
external diameter varying within 8 to 13 nm, with each filament
typically built of eight protofibrils.97 Such specific IFs in the
lens fiber cells are apparently responsible for the optical trans-
parency of these cells.78–86 In our opinion, the bundles of IFs in
the MCs of the Pied flycatcher eye are the structures responsible
for the transmission of luminous energy to the photoreceptor
cells, deserving a close attention of quantum physics.

4 Theoretical Models
Here, we will discuss the (1) quasiclassical and (2) QC
approaches to the analysis of light transmission by the IFs in
MCs. The two approaches may be summarized as follows:

1. The quasiclassical approach disregards the state quan-
tization and the terms of the ground and excited states.
The EMF thus induces surface oscillations of the
electrons in the conductive material at the interface
with the dielectric, with the oscillations described by
classical electrodynamics.

2. The energy quantization and the QC are taken into
account. The energy transmission is deduced by con-
sidering the electronic excited states, as described by
quantum mechanics.

4.1 Quasiclassical Approach

We already mentioned numerous studies1–74 that developed the
theory of plasmonic quantum electronics and its applications to
dielectric-conductive waveguides. Figure 2 shows this model
schematically, where only the Ek component of the electric

field may produce plasmons, exciting electronic oscillations
polarized along the surface of the waveguide.

The efficiency of the energy transmission by a waveguide is
significantly dependent on the profile of its input zone.3–18,64–74

Presently, however, we shall not discuss the plasmonic theory in
detail, focusing our attention on the more exact quantum
approach.

4.2 Quantum Confinement

Analyzing tubes with nanometer-thick conductive walls, we
must take into account the QC,92,98,99 appropriate for the light
transmission by tubes with the diameter smaller than the wave-
length of light.

As we already mentioned, the parallel electric field compo-
nent Ek contributes to the plasmonic excitations, whereas the
normal component E⊥ contributes to exciting the discrete states
created by the QC in the tube nanowalls. Thus, we shall consider
the interaction of these field components with the respective
quasicontinuum and discrete electronic states, followed by the
EMF emission at the other end of the waveguide. The theoretic
analysis of the QC in the device shown in Fig. 1 is very complex.
Therefore, we simplified the system by considering a cylinder
with the internal diameter r0, wall thickness ρ, and length l. The
cylinder is linked to a cone, with the wall thickness ρ cosðαÞ,
height h, and aperture 2α. Still, the problem admits numerical
solutions only, with the results that we shall discuss next. We
shall assume that the wavefunction amplitude is continuous at
the contact surfaces between the cylinder and the two cones (see
Fig. 3). Thus, we shall analyze the excitation at the input cone,
the excitation transport via the cylinder, and the emission at the
output cone, for the sake of symmetry.

To evaluate these phenomena qualitatively, we need to deter-
mine the quantum states in the cylindrical part using cylindrical
coordinates, and the quantum states in the conical part using

E
H

P EE ||

E p

Fig. 2 Schematic presentation of the input section of the lightguide
with a nanothick conductive wall. P is the Poynting vector, E is the
electric field vector of the incident EMF, H is its magnetic field vector.

r0

ρ

L

α

h

EM F
input

EM F
ou tput

Fig. 3 The model for qualitative analysis. The waveguide is com-
posed of a tube and two cones, with conductive walls.
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conical coordinates. It is impossible to solve the Schrödinger
equation analytically in a conical system, which we shall, there-
fore, analyze approximately. We shall also assume an increased
excited-state population density in the output conical piece (the
right side of the diagram) as compared to the input conical piece
(the left side of the diagram). Thus, the energy transport in the
model system reproduces the phenomena occurring in nature,
where the excitation ends up on the chromophore molecules
contained in the cone photoreceptor cells, with the higher
excited-state density in the chromophores modeled by that in
the output conical piece.

4.2.1 Cylindrical coordinates

We solved the eigenstate problem for the conductive nanolayers,
using the Schrödinger equation in the cylindrical coordinates
(Appendix A). To this end, we used the boundary conditions
equivalent to an axial potential box with infinite potential
walls, an acceptable approximation for qualitative analysis.
Generally, the Schrödinger equation in cylindrical coordinates
reads

EQ-TARGET;temp:intralink-;e001;63;524−
ℏ2

2m
Δψðr;φ; zÞ ¼ Eψðr;φ; zÞ; (1)

where

EQ-TARGET;temp:intralink-;e002;63;471ψðr;φ; zÞ ¼ ψðr;φÞψðzÞ; (2)

and m is the effective electron mass. A detailed analysis of this
equation is presented in Appendices A and B. The emission
intensity at the output end of our axisymmetric system may
be written in the dipole approximation as follows:
EQ-TARGET;temp:intralink-;e003;63;401

Iemiss ∝ jhψgðr;φ; zÞj~rejψ excðr;φ; zÞij2PexcðtÞ
¼ jhψgðr;φ; zÞj~rejψ excðr;φ; zÞij2e−γzðEz;excÞt; (3)

where hψgðr;φ; zÞj~rejψ excðr;φ; zÞi is the matrix element of the
optical dipole–dipole transition. We shall further use Eq. (3) in
the approximate numerical analysis of the light transmission by
the IFs.

4.2.2 Qualitative analysis of the solutions at the input and
output cones

Making use of the axial symmetry of the system, we shall use
the cylindrical coordinates. Appendix C presents the secular
equation (SE) and the respective boundary conditions. It is pos-
sible to solve the SE only numerically, although we may obtain
some qualitative results even without solving it. Next, we
present the numerical results for the light transmission by the
system of Fig. 4. In the input cone (Fig. 3), the electric field
component interacts with the internal conical surface, exciting
both longitudinal and transverse states. A detailed analysis of
the energy transmission coefficient for the device shown in
Fig. 3 is presented in Appendix D, with the resulting coefficient
given by (see Appendix D)

EQ-TARGET;temp:intralink-;e004;63;133T ¼ Gem

Gabs

≈
Zexc

Zabs

: (4)

Equation (4) gives the light transmission efficiency as deter-
mined by the QC mechanism. In Sec. 4.2.3, we will carry out the

numerical analysis of the QC effects for the device shown in
Fig. 4.

4.2.3 Numerical analysis of the light transmission by
the device of Fig. 4

All parameters used for numerical analysis are listed in Table 1
and shown in Fig. 4.

Figure 4 shows the relevant geometrical parameters of the
device. The internal diameter of the cylindrical tube is r0,
and its wall thickness is ρ, the same as that of the conical pieces.
The length of the cylindrical tube is L2, the length of the entire
device is L1, the length of the input and output pieces is
L3 ¼ ½ðL1 − L2Þ∕2�, and R is the curvature radius of the curved
conical pieces. We shall assume that r0 ≫ ρ. The larger radius of
the input and output cones is calculated as follows (Fig. 4):

EQ-TARGET;temp:intralink-;e005;326;348Rd ¼ r0 þ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2

3

q

¼ r0 þ R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðL1 − L2Þ2
4R2

r �
: (5)

The boundary ring shown in the zoom-in box in Fig. 4 is
normal to both the internal and the external limiting surfaces.

E
H

P EE ||

E p

L 1

L 2

L 3

R

ρ

R d

Fig. 4 The model for numerical analysis, showing a cross section of
the waveguide with conductive walls. R is the curvature radius
referred to in Fig. 5 and 6.

Table 1 Parameters used in the numerical analysis.

Parameter Definition

r 0 The internal diameter of the cylindrical tube

ρ Cylindrical tube wall thickness

L1 Length of the device

L2 Length of the cylindrical section

L3 Length of each of the conical pieces

R Curvature radius of the curved conical pieces

Rd The larger radius of each of the conical pieces
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Due to the axial symmetry of the system, we shall obtain the
numerical solution of the SE in the cylindrical coordinates (see
Appendix E). Since specific boundary conditions are created in
the system considered (Fig. 4), the absorbed EMF energy is ree-
mitted by the electronic excited states mainly in the output zone.
This result is similar to the superemission observed in an active
lasing medium. However, the similarity is only indirect, as it is
impossible to create an inverse population distribution by an
optical transition between the ground and the excited state.
We shall address the spectral selectivity of the device in a fol-
low-up publication.

4.3 Numerical Calculations

Numerical analysis was carried out using homemade
FORTRAN software and the method of finite differences.100

We solved the Eqs. (26) and (30) numerically using
λEMF ¼ 400 nm and several different sets of the parameter
values: ρ ¼ 10 nm; r0 ¼ 5ρ, 10ρ, 15ρ, and 20ρ; L1 ¼ n1ρ;
L2 ¼ n2ρ; L3 ¼ ρ½ðn1 − n2Þ∕2�; R ¼ n3ρ (see Fig. 4). We
used the following values of the size multipliers: n1 ¼ 1000,
n2 ¼ 800, and n3 ¼ 100;200; : : : ; 1000. We present the results
in terms of the absorption efficiency

EQ-TARGET;temp:intralink-;e006;63;502ηðn3Þ ¼
W
W0

; (6)

where W0 is the EMF intensity incident within the device cross
section

EQ-TARGET;temp:intralink-;e007;63;437W0 ¼ Sd

Z
∞

0

jEkλðωλÞj2dωλ: (7)

We obtained the numerical solution of Eq. (76) using the
finite difference method.100 We used a homemade FORTRAN
code for the numerical analysis of this equation combined with
Eqs. (80) and (7), with Fig. 5 showing the calculated results.

Figure 5 shows calculated plots of the transmission
efficiency η on the curvature radius R (see Fig. 4). The values
of the variable model parameters are: ρ ¼ 10 nm, (1) r0 ¼ 5ρ,
(2) r0 ¼ 10ρ, (3) r0 ¼ 15ρ, and (4) r0 ¼ 20ρ.

The efficiency of the light transmission varies with the geom-
etry, with the maximum values corresponding to the following
parameter sets: (1) R ¼ 2.23 μm, with the maximum cone

radius Rd;max ¼ 0.29 μm; (2) R ¼ 2.94 μm, Rd;max ¼ 0.28 μm;
(3) R ¼ 3.64 μm, Rd;max ¼ 0.29 μm; (4) R ¼ 4.73 μm,
Rd;max ¼ 0.31 μm.

4.4 On the Mechanism of Light Transmission by
Müller Cells

We found that MCs contain internal longitudinal channels,
with their diameter of around 10 nm, of unknown nature. As
a hypothesis enabling the usage of the above mechanism, we
shall assume that such channels have electrically conductive
walls. Protein molecules are biologically viable building blocks
for such conductive walls, as proteins have high electronic con-
ductivity even in dry state, with the values approaching those
typical for molecular conductors. These high values of the
electrical conductivity apparently result from the existence of
conjugated bonds in their structure, enabling high electronic
mobility.101 However, in a simplified qualitative approach, we
shall now consider the electronic states in a cylindrical carbon
nanotube (CNT).

4.5 Electronic State Structure in a Carbon
Nanotube

We shall start with a graphene monolayer, which has a conju-
gated π-system, with the energy gap between the bonding and
antibonding/conductive zones vanishing asymptotically with
the increasing system size.102 The local symmetry at each of
the carbon atoms is D3h, whereas the symmetry of the graphene
elementary cell is D6h. The macroscopic symmetry of the gra-
phene sheet depends on its geometry. Presently, we shall analyze
the effects of the local D3h symmetry around a C atom. On each
of the C atoms, there are three hybridized atomic orbitals

EQ-TARGET;temp:intralink-;e008;326;395ψD3h
AO ¼

8>>><
>>>:

1ffiffi
2

p ½ð2sÞ þ ð2pyÞ�
1ffiffi
3

p
h
ð2sÞ þ

ffiffi
3

p
2
ð2pxÞ − 1

2
ð2pyÞ

i
1ffiffi
3

p
h
ð2sÞ −

ffiffi
3

p
2
ð2pxÞ þ 1

2
ð2pyÞ

i

9>>>=
>>>;
; (8)

located within the plane of the sheet, and one atomic orbital
ð2pD3h

z;AOÞ normal to the sheet.103 These orbitals form an ortho-
normalized set of states. In a CNT, the local symmetry around
a C atom changes to C3v, as three of the orbitals now form a
pyramidal structure, with the pyramid height dependent on
the CNT radius.103 Thus, the ð2pD3h

z;AOÞ orbital is mixed with
the other atomic states ðψD3h

AO Þ, their contribution increasing
when the radius is reduced. The respective perturbation creates
splitting between the bonding and antibonding/conductive
zones, with the energy gap between these zones increasing
for smaller values of the CNT radius.104 Similarly, the presence
of O, S, N, P, and other heteroatoms affects the energy gap. The
interaction with the EMF causes transitions to an excited state,
with the excited-state wavefunction distributed over the entire
CNT, which will facilitate the energy transport between the
input and the output cones. Presently, we have no experimental
evidence favoring this mechanism, which could explain the
earlier reported light transmission by MCs.87 However, the
MC structure as described in Sec. 3 is apparently compatible
with the proposed mechanism, with the CNTs substituted by
the protein fibers. Unfortunately, the structure of such protein
fibers of the IFs is still unknown, thus we may only speculate
that such proteins have a common conjugated π-system similar

1

R (μm)
0 2 4 6 8 10 12

η

0.0

0.1

0.2

0.3

0.4
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2

3

4

Fig. 5 Calculated plots of the transmission efficiency η on the curva-
ture radius R (see Fig. 4). The values of the variable model param-
eters are: ρ ¼ 10 nm, (1) r 0 ¼ 5ρ, (2) r 0 ¼ 10ρ, (3) r 0 ¼ 15ρ, and
(4) r 0 ¼ 20ρ.
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to that of the CNTs. Therefore, the electronic excited states will
have their excitation energy distributed over the entire conju-
gated π-system of the molecule; thus, such a protein fiber
may be excited at its input tip and then the excitation may lose
its energy by emission at the output tip. Hence, good electric
conductivity of the IF proteins is a necessary condition for
the presently discussed mechanism, which we shall explore in
our future studies.

In Sec. 4.6, we present the results of the model calculations
using ρ ¼ 0.5 nm, providing a better approximation to the geom-
etry of the optical channels in the MCs (see Secs. 2 and 3).

4.6 Numerical Calculations for the Device with
ρ ¼ 0.5 nm

We carried out the model analysis for the following parameter
values: ρ ¼ 0.5 nm; r0 ¼ 5ρ, 10ρ, 15ρ, and 20ρ; L1 ¼ n1ρ;
L2 ¼ n2ρ; L3 ¼ ρ½ðn1 − n2Þ∕2�; R ¼ n3ρ, where n1, n2, and
n3 are the size multipliers. Note that this time the size multipliers
have larger numeric values, so that the total channel lengths are
similar: n1 ¼ 20;000, n2 ¼ 19;960, and n3 ¼ 100, 200, 300,
400, 500, 600, 700, 700, 800, 900, and 1000. Figure 6
shows the numerical results. Here, all of the parameters ρ,
r0, L1, n1, L2, n2, L3, R, and n3 are the same as defined above.

Once more, the EMF transmission efficiency has a maximum
for each of the parameter sets, corresponding to the following
values: (1) R ¼ 95.7 nm, Rd;max ¼ 3.0 nm; (2) R ¼ 125.6 nm,
Rd;max ¼ 5.4 nm; (3) R ¼ 155.5 nm, Rd;max ¼ 7.8 nm; and
(4) R ¼ 213.5 nm, Rd;max ¼ 10.2 nm. As it follows from the
results, the optimal radius of the input and the output sections
(Rd;max) of the optical channels increases in comparison to the
radius of the cylindrical section, while the difference Rd;max − r0
decreases, all with the increasing r0. In effect, we obtain
ðRd;max∕r0Þ − 1 ≪ 1, with the overall geometry very similar
to that of a cylindrical tube. However, the most notable result
is the high efficiency of the EMF transmission by such small
diameter channels, as obtained in the calculations.

4.7 Theoretical Description of the Absorption and
Emission Spectra

Here, we shall calculate the shape of the spectral band in the
absorption/resonance emission spectrum. The shape of the spec-
tral band is described by (see Appendix F)

EQ-TARGET;temp:intralink-;e009;326;555PGEðtÞ ≈D ×
�

γ

ðωexc;g − ωÞ2 þ γ2

�
2

; (9)

where

EQ-TARGET;temp:intralink-;e010;326;507D ¼
����E0e
ℏ

hψgðr;φ; zÞj~rejψ excðr;φ; zÞi
����
2

: (10)

Taking into account the algorithm developed above for the
calculation of the transition matrix element D, and using also

EQ-TARGET;temp:intralink-;e011;326;445γ ≈
1

τemiss

∝ jhψgðr;φ; zÞj~rejψ excðr;φ; zÞij2; (11)

we calculated the absorption band shape for the system of Fig. 4
using a home-made FORTRAN code with the following geo-
metric parameters: r0 ¼ 25 nm, ρ ¼ 4 nm, L1 ¼ 10 μm, L2 ¼
9 μm, and R ¼ 0.5 μm. The resulting spectrum is shown in
Fig. 7.

We see that the band maximum in Fig. 7 is located at
24;275 cm−1, having the width of 6786 cm−1. A similar
approach will be used in the follow-up papers to analyze the
polarization selectivity105 and the spectral selectivity of the IFs.

5 Discussion
We analyzed in detail the role of the QC in the transmission of
the electromagnetic energy by axisymmetric nanochannels with
conductive walls, the channel diameter much smaller than the
wavelength of the electromagnetic radiation. Note that the trans-
mission of the EMF by such structures may be described by
the well-developed and frequently applied plasmon–polariton
theory.1–37 The presently developed approach amounts to
an extension of the plasmon–polariton theory in the QC
limit.31,73 Indeed, we describe the quantum states in a waveguide
built of nanostructured conductive materials. We assume that the
interaction of the EMF with the waveguide produces a transition
into the quantum excited state that is delocalized over the entire
device, in agreement with the standard plasmon–polariton theory
approach, where the energy of the EMF is transported within
the waveguide in the form of excited-state electrons.1–8,42–72

However, there are some terminological differences; here, the
excited state may be described as an exciton, whereas the plas-
mon–polariton theory describes such excited states as plasmons
or polaritons. We presume that these are different designations
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ture radius R (see Fig. 4). The values of the variable model param-
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Fig. 7 Calculated test absorption spectrum for device shown in
Fig. 4, where the device parameters are: r 0 ¼ 25 nm, ρ ¼ 4 nm,
L1 ¼ 10 μm, L2 ¼ 9 μm, R ¼ 0.5 μm.
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for the same physical phenomena, resulting from different quali-
tative descriptions of the behavior of the system. The difference
between the quasiclassical and QC approaches was discussed
above, under “the theoretical model.” Both approaches describe
the efficiency of the EMF energy transmission from the input
section to the output section. The energy loss in both cases
is determined by the energy relaxation processes. In the first
model, these are described as friction exerted by the lattice
on the electrons, whereas the second model describes radiation-
less relaxation due to exciton–phonon interaction. In both cases,
the relaxation may be characterized by the phenomenological
parameter γ, identical for the two models in the zero-order
approximation. Therefore, both models should produce identical
energy transmission efficiencies in the zero-order approxima-
tion, with any deviations appearing in higher orders only. We
did not address this issue at this time.

Presently, we analyzed a waveguide device with the same
geometry of the input and the output sections. In principle,
the energy transfer efficiency may depend on the geometry
of each of these sections, thus allowing extra opportunities to
optimize it. The optimum dimensions should also depend on
the wavelength of the EMF, with a possibility of separate opti-
mization for each of the color-vision photoreceptors. We shall
explore these issues in a follow-up publication.

Our main goal was to develop an understanding of the mech-
anisms of optical transparency of the MCs and other specialized
transparent biological cells; next, we shall discuss the possible
chemical composition of the waveguide structures. Note that
protein molecules are universal structural building blocks in ani-
mal cells. Apparently, appropriate proteins may form the con-
ductive walls of the nanostructured waveguides, as proteins
have high electronic conductivity even in the dry state, with val-
ues approaching those of typical molecular conductors. These
high values of electrical conductivity result from the existence
of conjugated bonds in the structure of proteins, enabling high
electronic mobility.102 Note that the experimental data and
a quantum-mechanical model for the light transmission by
CNTs, enabled by their conjugated π-electron system, were
reported by several authors.106,107 Their results correlate quite
well with the conclusions derived from our present models.
Still, the exact composition and structure of the specialized
IFs in the MCs remain unknown, setting goals for future studies.

Thus, as we already noted earlier,108 we should never over-
look the direct transmission mechanism of luminous energy by
biological nanostructures, including cellular IFs, based on
their quantum nano-optical properties, along with the classical
mechanisms reported earlier.83,109,110 Recently, Labin et al.111

considered light transmission by MCs using a classical model
of a light guide that uses the difference between the refraction
index of these cells and that of the surrounding medium to con-
fine the light and guide it toward the light-sensitive cones.
Interestingly, they also arrive at the conclusion that the light-
transmission coefficient of the MC depends on the wavelength,
with red and green light guided to the cones more efficiently
than blue light. We find this result counter-intuitive, as generally
it is more difficult to focus or guide the light with the larger
wavelength (red) as compared to that with the shorter wave-
length (blue), with a thicker waveguide required for the red
light.

All of the considerations presented here refer to conductive
nanostructured IF bundles. Unfortunately, the structure and
electric conductivity of the MC IFs remain unknown. However,

the electric conductivity of different proteins was studied and
reported earlier.101,112 Such electric conductivity of the polypep-
tide systems 101,112 was explained by their structure, including a
common conjugated π-system involving the entire length of the
polypeptide molecule. We already mentioned that the electric
conductivity is needed for our models to be valid. It was also
shown113 that self-assembled monolayers formed by conforma-
tionally constrained hexapeptides are electrically conductive
and generate photocurrent. Thus, peptide-based self-assembled
monolayers efficiently mediate electron transfer and photoin-
duced electron transfer on gold substrates. These results112 may
be described in terms of high electron mobility within the pep-
tide monolayer in its electronic ground and excited states. We,
therefore, infer that the IF polypeptides should be electrically
conductive, enabling the presently proposed quantum mecha-
nism as a complement and/or alternative to the classic mecha-
nisms of the luminous energy transport within the retina.

6 Conclusions
In this study, we report that MCs have long channels (waveguide
structures), around 10 nm in diameter, spanning the larger part
of the cell process, from the apex of the basal endfoot to the
photoreceptor cells. Following the idea that such channels act
as waveguides, we developed a QC model of the light transmis-
sion by the waveguides much thinner than the wavelength of the
light quanta. We used our model for the qualitative analysis of
the light transmission by such waveguides, with the calculations
showing that such devices may transmit light with very high
efficiencies from their input section to the output section,
already possible in a device with a much simplified geometry.
This mechanism was extended to the light transmission by the
waveguides (specialized IFs) in the MCs, concluding that such
waveguides are most probably built of proteins. Proteins have
sufficient electric conductivity for the mechanism to be opera-
tional due to the presence of extended conjugated multiple
bonds in their structure. The presently reported studies have
a direct impact in the medicine of human vision and on the
development of nanomedical vision technology.

Appendix A
Using cylindrical coordinates, the Laplace operator may be
presented as follows:

EQ-TARGET;temp:intralink-;e012;326;279Δ ¼ ∂2

∂r2
þ 1

r
∂
∂r

þ 1

r2
∂2

∂φ2
þ ∂2

∂z2
: (12)

In Eq. (12), we may separate the radial and angular coordinates

EQ-TARGET;temp:intralink-;e013;326;223

∂2ψðr;φÞ
∂r2

þ 1

r
∂ψðr;φÞ

∂r
þ 1

r2
∂2ψðr;φÞ

∂φ2
þ 2m

ℏ2
Er;ϕψðr;φÞ ¼ 0;

(13)

EQ-TARGET;temp:intralink-;e014;326;166

∂2ψðzÞ
∂z2

þ 2m
ℏ2

EzψðzÞ ¼ 0; (14)

provided the wavefunction may be written as

EQ-TARGET;temp:intralink-;e015;326;116ψðr;φÞ ¼ ψðrÞψðφÞ: (15)

Thus,
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EQ-TARGET;temp:intralink-;e016;63;752

∂ψðφÞ
∂φ

¼ iΛψðφÞ; ψðφÞ ¼ CφeiΛφ; (16)

and

EQ-TARGET;temp:intralink-;e017;63;706

∂2ψðφÞ
∂φ2

¼ −Λ2ψðφÞ: (17)

Since

EQ-TARGET;temp:intralink-;e018;63;655

∂2ψðφÞ
∂φ2

þ 2m
ℏ2

EφψðφÞ ¼ 0; ψðφÞ ¼ Ce�iΛφ; (18)

we can write

EQ-TARGET;temp:intralink-;e019;63;604

∂2ψðrÞ
∂r2

þ 1

r
∂ψðrÞ
∂r

−
Λ2

r2
ψðrÞ þ 2m

ℏ2
Er;φψðrÞ ¼ 0: (19)

The latter may be rewritten as follows:
EQ-TARGET;temp:intralink-;e020;63;555

d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ
�
2m
ℏ2

Er;φ −
Λ2

r2

�
ψðrÞ

¼ d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ
�
k2 −

Λ2

r2

�
ψðrÞ ¼ 0: (20)

The boundary conditions for the infinite-potential walls are

EQ-TARGET;temp:intralink-;e021;63;469ψðrÞ ¼
�
0; r ¼ r0
0; r ¼ r0 þ ρ

: (21)

Taking into account the boundary conditions, we conclude
that the wavefunction is defined only in the ½r0; r0 þ ρ� interval.

A.1 Solution
The equation for the radial function may be written as
EQ-TARGET;temp:intralink-;e022;63;368

d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ
�
2m
ℏ2

Er;φ −
Λ2

r2

�
ψðrÞ

¼ d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ
�
k2 −

Λ2

r2

�
ψðrÞ ¼ 0

k2 ¼ 2m
ℏ2

Er;φ: (22)

For Λ ¼ 0, we may write

EQ-TARGET;temp:intralink-;e023;63;257

d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ k2ψðrÞ ¼ 0: (23)

The solution of the latter equation may be presented as

EQ-TARGET;temp:intralink-;e024;63;203ψk0ðrÞ ¼ C1Jk0ðkrÞ þ C2Yk0ðkrÞ; (24)

where

EQ-TARGET;temp:intralink-;e025;63;161JkiðyÞ ¼
X∞
j¼0

ð−1Þj
Γðiþ jþ 1Þj!

�
y
2

�
2jþ1

; (25)

EQ-TARGET;temp:intralink-;e026;63;116YkiðyÞ ¼ cosðπ · iÞ½JkiðyÞ · cosðπ · iÞ − Jk;−iðyÞ�; (26)

are Bessel functions. For i ¼ 0, the Bessel functions may be
written as

EQ-TARGET;temp:intralink-;e027;326;752Jk0ðyÞ ¼
X∞
j¼0

ð−1Þj
Γðjþ 1Þj!

�
y
2

�
2jþ1

; (27)

EQ-TARGET;temp:intralink-;e028;326;713Yk0ðyÞ ¼ cosðπ · 0Þ½Jk0ðyÞ · cosðπ · 0Þ− Jk;0ðyÞ� ¼ 0: (28)

Thus, the solution may be presented as follows:

EQ-TARGET;temp:intralink-;e029;326;675ψk0ðrÞ ¼ C0Jk0ðkrÞ ¼ C0

X∞
j¼0

ð−1Þj
Γðjþ 1Þj!

�
kr
2

�
2jþ1

: (29)

The latter relationship may be approximately presented as

EQ-TARGET;temp:intralink-;e030;326;615ψk0ðrÞ ¼ C0

�
C1

sinðkrÞ
kr

þ C2 cosðkrÞ
�
: (30)

Taking into account the boundary condition r ¼ r0;
ψk0ðrÞ ¼ 0, we obtain

EQ-TARGET;temp:intralink-;secA1;326;548

ψk0ðr0Þ ¼ C0

�
C1

sinðkr0Þ
kr0

þ C2 cosðkr0Þ
�
¼ 0;

C2 ¼ −C1

sinðkr0Þ
kr0 cosðkr0Þ

¼ −
C1

kr0
tgðkr0Þ:

Thus,

EQ-TARGET;temp:intralink-;e031;326;463

ψk0ðrÞ ¼ C0C1

�
sinðkrÞ
kr

−
1

kr0
tgðkr0Þ cosðkrÞ

�

¼ C 0
0

�
sinðkrÞ
kr

−
1

kr0
tgðkr0Þ cosðkrÞ

�
: (31)

Taking into account the other boundary condition r ¼ r0 þ ρ;
ψk0ðrÞ ¼ 0, we obtain

EQ-TARGET;temp:intralink-;e032;326;368

ψk0ðrÞ¼C 0
0

�
sin½kðr0þρÞ�
kðr0þρÞ −

1

kr0
tgðkr0Þcos½kðr0þρÞ�

	
¼0

1

ðr0þρÞ tg½kðr0þρÞ�¼ 1

r0
tgðkr0Þ: (32)

EQ-TARGET;temp:intralink-;e033;326;294kðr0þρÞ ¼Arctg

��
1þ ρ

r0

�
tgðkr0Þ

�
þnπ n¼ 0;1;2; : : : :

(33)

The latter equation cannot be solved directly, although it is
apparent that the energy of the system states is a discrete
function in the radial direction.

To solve the equation

EQ-TARGET;temp:intralink-;e034;326;197

d2ψðrÞ
dr2

þ 1

r
dψðrÞ
dr

þ
�
k2 −

Λ2

r2

�
ψðrÞ ¼ 0; (34)

we represent the radial function as follows:

EQ-TARGET;temp:intralink-;e035;326;140ψkΛðrÞ ¼ rΛχkΛðrÞ; (35)

thus, our equation becomes
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EQ-TARGET;temp:intralink-;e036;63;752

d2χkΛ
dr2

þ Λ2

r
dχkΛ
dr

þ k2χkΛ ¼ 0: (36)

Taking its derivative, we obtain

EQ-TARGET;temp:intralink-;e037;63;707

d

dr

�
d2χkΛ
dr2

þ Λ2

r
dχkΛ
dr

þ k2χkΛ

	

¼ d3χkΛ
dr3

−
Λ2

r2
dχkΛ
dr

þ Λ2

r
d2χkΛ
dr2

þ k2
dχkΛ
dr

¼ 0: (37)

Substituting

EQ-TARGET;temp:intralink-;e038;63;624

dχkΛ
dr

¼ rχkΛþ1; (38)

we obtain

EQ-TARGET;temp:intralink-;e039;63;577

d3χkΛþ1

dr3
þ Λ2

r
dχkΛþ1

dr
þ k2dχkΛþ1 ¼ 0; (39)

which is equivalent to the equation obtained above. Since

EQ-TARGET;temp:intralink-;e040;63;528χkΛþ1 ¼
1

r
dχkΛ
dr

; (40)

we may write

EQ-TARGET;temp:intralink-;e041;63;480χkΛþ1 ¼
�
1

r
d

dr

�
Λ
χk0: (41)

Taking into account the solution for ψk0ðrÞ ¼ χk0ðrÞ, we obtain

EQ-TARGET;temp:intralink-;e042;63;429χkΛ ¼
�
1

r
d

dr

�
Λ
ψk0ðrÞ: (42)

Taking into account that

EQ-TARGET;temp:intralink-;e043;63;373ψkΛðrÞ ¼ rΛχkΛðrÞ; (43)

we finally obtain
EQ-TARGET;temp:intralink-;e044;63;331

ψkΛ ¼ C0rΛ
�
1

r
d

dr

�
Λ
ψk0ðrÞ

¼ C 0
0r

Λ
�
1

r
d

dr

�
Λ
�
sinðkrÞ
kr

−
1

kr0
tgðkr0Þ cosðkrÞ

�
: (44)

For the z coordinate, we may write

EQ-TARGET;temp:intralink-;e045;63;251

∂2ψðzÞ
∂z2

þ 2m
ℏ2

EzψðzÞ ¼ 0;

ψðzÞ ¼ C1eikz þ C2e−ikz;

k ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffi
2mEz

p
: (45)

Assuming that ψðzÞ ¼ 0 at z ¼ 0, we obtain

EQ-TARGET;temp:intralink-;e046;63;154ψðzÞ ¼ C0 sinðkzÞ: (46)

Assuming now that ψðzÞ ¼ 0 at z ¼ L, we obtain

EQ-TARGET;temp:intralink-;e047;326;752

kL ¼ nπ;

k ¼ nπ
L

¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffi
2mEz

p
;

Ez ¼
ℏ2n2π2

2mL2
; (47)

EQ-TARGET;temp:intralink-;e048;326;675 Z
L

0

ψðzÞdz ¼ C2
0

Z
L

0

sin2ðkzÞdz

¼ C2
0

�
L
2
−

1

4k
sin

�
2πn
L

z

�
L

0

�
¼ C2

0

L
2
¼ 1

C0 ¼ �
ffiffiffiffi
2

L

r
: (48)

Thus, we finally obtain
EQ-TARGET;temp:intralink-;e049;326;568

ψkΛk0 ¼C 00
0

ffiffiffiffi
2

L

r
rΛ
�
1

r
d

dr

�
Λ

×
��

sinðkrÞ
kr

−
1

kr0
tgðkr0ÞcosðkrÞ

�	
eiΛϕ sin

�
πn
L
z

�
: (49)

Appendix B
Thus, we wrote Eq. (22) as follows:
EQ-TARGET;temp:intralink-;e050;326;454

−
ℏ2

2m
∂2ψðr;φÞ

∂r2
ψðzÞ − ℏ2

2m
1

r
∂ψðr;φÞ

∂r
ψðzÞ

−
ℏ2

2m
1

r2
∂2ψðr;φÞ

∂φ2
ψðzÞ − ℏ2

2m
∂2ψðzÞ
∂z2

ψðr;φÞ

¼ ðEr;ϕ þ EzÞψðr;φÞψðzÞ. (50)

Using the coordinate separation, we obtain
EQ-TARGET;temp:intralink-;e051;326;354

∂2ψðr;φÞ
∂r2

þ 1

r
∂ψðr;φÞ

∂r
þ 1

r2
∂2ψðr;φÞ

∂φ2
þ 2m

ℏ2
Er;ϕψðr;φÞ ¼ 0;

∂2ψðzÞ
∂z2

þ 2m
ℏ2

EzψðzÞ ¼ 0: (51)

We solve the above equations in Appendix A, with the result
given by
EQ-TARGET;temp:intralink-;e052;326;259

ψkΛk 0 ¼ C 0 0
0

ffiffiffiffi
2

L

r
rΛ
�
1

r
d

dr

�
Λ

×
��

sinðkrÞ
kr

−
1

kr0
tgðkr0Þ cosðkrÞ

�	
eiΛϕ sin

�
πn
L

z

�

× e
i
ℏðErþEzÞt; (52)

for the ground state, and
EQ-TARGET;temp:intralink-;e053;326;154

ψkexcΛexck 0excðtÞ¼C 00
0

ffiffiffiffi
2

L

r
rΛ
�
1

r
d

dr

�
Λexc

×
��

sinðkexcrÞ
kexcr

−
1

kexcr0
tgðkexcr0ÞcosðkexcrÞ

�	

×eiΛexcφ sin

�
πnexc
L

z

�
e−

γrðEr;excÞ
2

t−γzðEz;excÞ
2

tþ i
ℏðEr;excþEz;excÞt; (53)
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for the excited states, where the quantization caused by the QC
in the radial direction is described by

EQ-TARGET;temp:intralink-;e054;63;730kðr0þρÞ ¼¼Arctg

��
1þ ρ

r0

�
tgðkr0Þ

�
þnπ n¼ 1;2; : : : :

(54)

The latter equation may be solved numerically to obtain the
values of k and hence the energies of the eigenstates. There is
also the state quantization in the axial direction, although with L
much larger than the diameter the respective energy spectrum is
a quasicontinuum

EQ-TARGET;temp:intralink-;e055;63;616Ez ¼
ℏ2n 02π2

2mL2
n 0 ¼ 1;2; : : : : (55)

We introduce γiðEiÞ, the quantum state widths, describing the
excited state relaxation dynamics, including their radiative
decay. Note that the Ek component causes transitions within
the quasicontinuum, whereas the E⊥ component causes transi-
tions within the radial discrete spectrum. Note also that the
eigenvalues for the general wavefunction are

EQ-TARGET;temp:intralink-;e056;63;507EnΛn 0 ¼ hψkΛk 0 ðr;φ; zÞjĤjψkΛk 0 ðr;φ; zÞi: (56)

Generally, an eigenstate wavefunction involves the entire
system; however, we may still evaluate the time evolution of
an excited state as described next.99 To calculate the time-depen-
dent probability of the excited state prepared in the initial
moment of time, we calculate the square of the absolute
value of the probability amplitude

EQ-TARGET;temp:intralink-;e057;63;408PexcðtÞ ¼ jAexcðtÞj2: (57)

The probability amplitude is then

EQ-TARGET;temp:intralink-;e058;63;365AexcðtÞ ¼ hψkexcΛexck 0
exc
ðt ¼ 0ÞjψkexcΛexck 0

exc
ðtÞi; (58)

where
EQ-TARGET;temp:intralink-;e059;63;323

ψkexcΛexck 0
exc
ðt ¼ 0Þ ¼ C 0 0

0

ffiffiffiffi
2

L

r
rΛ
�
1

r
d

dr

�
Λexc

×
��

sinðkexcrÞ
kexcr

−
1

kexcr0
tgðkexcr0Þ cosðkexcrÞ

�	

× eiΛexcϕ sin

�
πnexc
L

z

�
; (59)

and
EQ-TARGET;temp:intralink-;e060;63;212

ψkexcΛexck 0excðtÞ¼C 00
0

ffiffiffiffi
2

L

r
rΛ
�
1

r
d

dr

�
Λexc

×
��

sinðkexcrÞ
kexcr

−
1

kexcr0
tgðkexcr0ÞcosðkexcrÞ

�	

×eiΛexcϕ sin

�
πnexc
L

z

�
e−

γrðEr;excÞ
2

t−γzðEz;excÞ
2

tþ i
ℏðEr;excþEz;excÞt: (60)

Therefore,

EQ-TARGET;temp:intralink-;e061;63;101PexcðtÞ ¼ e−γrðEr;excÞt−γzðEz;excÞt: (61)

The phenomenological parameters γrðEr;excÞ and γzðEz;excÞ are,
respectively, dependent on Er;exc and Ez;exc, while γrðErÞ ¼ 0

and γzðEzÞ ¼ 0 for the ground state. We shall discuss the trans-
verse (in the radial direction) and the longitudinal (parallel to the
cylinder axis) excited states. Provided the longitudinal excited
state is unrelaxed ½γzðEz;excÞ ¼ 0�, the probability to find the
system in the transverse excited state is

EQ-TARGET;temp:intralink-;e062;326;675PexcðtÞ ∝ e−γrðEr;excÞt: (62)

Conversely, if the transverse excited state is completely
relaxed, the probability to find the system in the longitudinal
excited state is

EQ-TARGET;temp:intralink-;e063;326;610PexcðtÞ ¼ e−γzðEz;excÞt: (63)

We conclude that the conductive nanolayer contains the total
excitation energy immediately after the excitation, whereupon
the excitation decays according to Eqs. (61)–(63). To analyze
the energy transport, we shall next consider the absorption
and the emission at the input and output cones, respectively.

Appendix C
The Schrodinger equation may be written as

EQ-TARGET;temp:intralink-;e064;326;477

−
ℏ2

2m
∂2ψðr;φ; zÞ

∂r2
−

ℏ2

2m
1

r
∂ψðr;φ; zÞ

∂r
−

ℏ2

2m
1

r2
∂2ψðr;φ; zÞ

∂φ2

−
ℏ2

2m
∂2ψðr;φ; zÞ

∂z2
¼ Er;ϕ;zψðr;φ; zÞ; (64)

where r and z coordinates may be separated from φ using the
wavefunction in the form

EQ-TARGET;temp:intralink-;e065;326;382ψðr;φ; zÞ ¼ ψðr; zÞψðφÞ: (65)

Using the same approach as in Appendix A, we may write

EQ-TARGET;temp:intralink-;e066;326;340

∂2ψðr; zÞ
∂r2

þ 1

r
∂ψðr; zÞ

∂r
þ ∂2ψðr; zÞ

∂z2
þ
�
k2 −

Λ2

r2

�
ψðr; zÞ ¼ 0;

k2 ¼ 2mEr;z

ℏ2
: (66)

The boundary conditions for this problem may be written as

EQ-TARGET;temp:intralink-;e067;326;258ψðr;zÞ¼
�
0; z1¼ r0

tgðαÞ ;z2¼hþ r0
tgðαÞ

0; r1ðzÞ¼ z · sinðαÞ;r2ðzÞ¼ z · sinðαÞþρ · cosðαÞ :
(67)

Since the variables r and z do not separate in Eq. (66), the
problem may be solved only numerically using the boundary
conditions in Eq. (67).
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Appendix D
The energy absorbed upon excitation is proportional to

EQ-TARGET;temp:intralink-;e068;63;725

Zabs ∝ ðSin − SoutÞ
Z

∞

0

ρexcðωÞ
ρg

E2ðωÞ

× jhψgðr;φ; zÞj~rejψ excðr;φ; zÞij2dω
¼ πf½h · tgðαÞ þ r0 þ ρ�2 − r20g

×
Z

∞

0

ρexcðωÞ
ρg

jCφ;gCφ;excjE2ðωÞ

× jhψgðr; zÞe−iΛgϕj~reðjrej;ϕ; zÞjψ excðr; zÞeiΛexcφij2dω;
(68)

where EðωÞ is the electric field amplitude spectrum of the EMF,
ρg ¼ ρg;longρg;transv, ρexcðωÞ ¼ ρexc;longðωÞρexc;transvðωÞ are the
level densities of the ground and excited states, respectively.
Here, we assume that the level density of the ground state is
constant, while that of the excited state is dependent on ω;
ψgðr;φ; zÞ, ψ excðr;φ; zÞ are the wavefunctions of the ground
and excited states and ~reðjrej;φ; zÞ is the vector of the electron
location in the conductive nanolayer. The absorbed energy is
then transferred to the cylindrical part; here, the probability
of the excited-state wavefunction transmission (ξ, the transmis-
sion coefficient) and reflection (ζ, the reflection coefficient)
depends on the angle α. The transmitted energy has a maximum
in function of α, and, therefore, may be optimized. Similarly, we
may describe the energy transmission to the output cone. The
excited states in the output cone will emit with the same spec-
trum as that of the excitation, as the relaxation of the excited
states is quite slow, compared to the excitation transfer in our
model (Fig. 3). Generally, the transmission and reflection coef-
ficients are, respectively,

EQ-TARGET;temp:intralink-;e069;63;371

ξðωÞ ¼ ξ0ðωÞ · eiφξðωÞ;

ζðωÞ ¼ ζ0ðωÞ · eiφζðωÞ: (69)

Here, jξðωÞj þ jζðωÞj ¼ 1; ξ0ðωÞ, ζ0ðωÞ are real functions of
ω, and φξðωÞ, φζðωÞ are the phase angles. Thus, the fraction of
the absorbed energy transmitted to the excited states of the
output cone is

EQ-TARGET;temp:intralink-;e070;63;276

Zexc ∝ πf½h · tgðαÞ þ r0 þ ρ�2 − r20g

×
Z

∞

0

jξðωÞ · ξ 0ðωÞj ρexcðωÞ
ρg

× jCφ;gCφ;excjE2ðωÞjhψgðr; zÞe−iΛgϕj~reðjrej;ϕ; zÞ
× jψ excðr; zÞeiΛexcφij2dω; (70)

where ξðωÞ, ξ 0ðωÞ are the transmission coefficients from the
input cone to the cylinder, and from the cylinder to the output
cone, respectively. If ξ0ðωÞ ¼ ξ 0

0, ΔϕξðωÞ ¼ 2πωL, and

EQ-TARGET;temp:intralink-;e071;326;752

Zexc ∝ πf½h · tgðαÞ þ r0 þ ρ�2 − r20g

×
Z

∞

0

jξ0ðωÞj2 · cos2ð2πωLÞ
ρexcðωÞ

ρg

× jCφ;gCφ;excjE2ðωÞjhψgðr; zÞe−iΛgφj~reðjrej;φ; zÞ
× jψ excðr; zÞeiΛexcϕij2dω: (71)

Let us consider the EMF emission by the output cone.
Assuming two equivalent cones, the Poynting vector P 0 of
the output EMF will be parallel to the input Poynting vector
P, and parallel to the axis of symmetry. Then, the density of
the emission intensity is

EQ-TARGET;temp:intralink-;e072;326;610Gem ¼ zexc
πf½h · tgðαÞ þ r0 þ ρ�2 − r20g

φem (72)

where

EQ-TARGET;temp:intralink-;e073;326;559φem ¼ ðγdτemÞ−1; γd ¼
1

τem
þ γrelax; (73)

where γrelax, τem are the radiationless relaxation width and
the characteristic emission time, respectively. We assume that
γrelax ¼ ð2π∕ℏÞjhVEDij2ρD ≪ ðτemÞ−1, because jhVEDijρD ≪ 1.
Here, hVEDi is the matrix element of the interaction coupling the
emitting and the dark states in the system, and ρD is the density
of the dark states. Therefore, φem ≈ 1.

Appendix E
To describe the interaction with the EMF, we present the linear
momentum as follows:

EQ-TARGET;temp:intralink-;e074;326;395p̂ ¼ p̂e −
e
c
Â ¼ −iℏ∇ −

e
c
Â: (74)

Here, A is the vector potential. The potential must be zero
inside the device, thus we rewrite the SE as
EQ-TARGET;temp:intralink-;e075;326;336

Ĥψ ¼
�
−

ℏ2

2 m
Δ − iℏ

e
mc

∇ · Âþ e2

c2
Â2

�
ψ

≈
�
−

ℏ2

2 m
Δ − iℏ

e
mc

∇ · Â

�
ψ ¼ Eψ : (75)

Here, the first term in the Hamiltonian describes the motion of
the electron in the nanolayer and the second—its interaction
with the EMF. The second term describes a perturbation to the
steady-state problem, describing mixing of the ground state with
the excited states. Using the perturbation theory, we first obtain
the states in absence of a perturbation

EQ-TARGET;temp:intralink-;e076;326;197

∂2ψðr; zÞ
∂r2

þ 1

r
∂ψðr; zÞ

∂r
þ ∂2ψðr; zÞ

∂z2
þ
�
k2 −

Λ2

r2

�
ψðr; zÞ ¼ 0:

(76)

Here, Λ is the orbital momentum projection on the symmetry
axis. The geometry of the device (Fig. 4) in conjunction with
the condition of infinite potential on the walls determines the
boundary conditions. Using these, we obtain the energies fEk;Λg
and the respective eigenvectors fψk;Λðr; zÞ · eiΛϕg describing
the unperturbed states. Next, we calculate the probability of
the transitions induced by the EMF
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EQ-TARGET;temp:intralink-;e077;63;752

W ¼ 2π

ℏ
jhV̂Λgkg;Λekeij2δðke − kg − kλÞ

¼ ℏ
2πe2

m2c2
jhψkg;Λg

ðr; zÞ · eiΛgϕj ~∇e · Â

× jψke;Λe
ðr; zÞ · eiΛeϕij2δðke − kg − kλÞ: (77)

Here, kg, ke, and kλ are the wave vectors of the ground and
excited states, and of the incident EMF, respectively. We may
then use the latter relationship and calculate the transition prob-
ability leading to the light emission in the output cone of the
device.

We present the vector potential as

EQ-TARGET;temp:intralink-;e078;63;609Â ¼
X
kλ

~Akλe
ið~kλ·~r−ωλtÞ: (78)

Here, kλ ¼ ðωλ∕cÞ. Since the Poynting vector ~P ¼ ½~E × ~H�
points along the device axis, the electric and magnetic field

vectors ~E ¼ −ð1∕cÞð∂~A∕∂tÞ, ~H ¼ ½∇ × ~A� are normal to it.
Thus,

EQ-TARGET;temp:intralink-;e079;63;517ð ~∇e · ÂÞ ¼
X
kλ

½ ~∇e · ~Akλe
ið~kλ·~r−ωλtÞ�; (79)

and
EQ-TARGET;temp:intralink-;e080;63;464

W ¼ 2π

ℏ
SdjhV̂Λgkg;Λexckexcij2δðke − kg − kλÞ

¼ ℏ
2πe2

m2c2
Sd

×
Z

∞

0

jhψkg;Λg
ðr; zÞ · eiΛgϕj ~∇e · ~Akλe

ið~kλ·~r−ωλtÞ

× jψke;Λe
ðr; zÞ · eiΛeϕij2δðke − kg − kλÞdkg; (80)

where

EQ-TARGET;temp:intralink-;e081;63;345Sd ¼ πR2
d: (81)

Note that we substituted the sum over the kg values in
Eq. (80) by integration. We used Eq. (80) in numerical calcu-
lations of the energy transmission efficiency by the device, by
the mechanism that involves absorption of a photon at the input
cone, and its emission at the output cone. Note that in the

numerical analysis, the matrix element hψkg;Λg
ðr; zÞ · eiΛgφj ~∇e ·

~Akλe
ið~kλ·~r−ωλtÞjψke;Λe

ðr; zÞ · eiΛeφi was approximated by the

term ~EðtÞhψkg;Λg
ðr; zÞ · eiΛgφj~rejψke;Λe

ðr; zÞ · eiΛeφi, which cor-
responds to the electric dipole approximation (see Appendix F).

Appendix F
Using the fundamentals of the time-dependent perturbation
theory, the probability of the EMF-induced transitions between
the ground and excited electronic states in the dipole approxi-
mation may be presented as follows:

EQ-TARGET;temp:intralink-;e082;63;128PGEðtÞ ¼ jað1Þk ðtÞj2 ¼
���� − i

ℏ

Z
t

0

VGEðtÞdt
����
2

; (82)

where að1Þk ðtÞ is the first-order coefficient of the time-dependent
perturbation theory in the system eigenvector presentation

EQ-TARGET;temp:intralink-;e083;326;752

Vg;excðtÞ ¼ E0ehψgðr;φ; zÞj~rejψ excðr;φ; zÞi
× eiωexc;gt−γtðeþiωt þ e−iωtÞ

~EðtÞ ¼ ~E0ðeþiωt þ e−iωtÞ
~d ¼ e~re

ωexc;g ¼
1

ℏ
ðEð0Þ

exc − Eð0Þ
g Þ: (83)

Eð0Þ
exc, E

ð0Þ
g are the zero-order energies of the excited and

ground states, respectively, γ is the relaxation rate of the elec-
tronic excited state. Thus,
EQ-TARGET;temp:intralink-;e084;326;616

PGEðtÞ ¼
����E0e
ℏ

hψgðr;φ; zÞj~rejψ excðr;φ; zÞi
����
2

×
����− i

Z
t

0

ðeiðωexc;gþωÞt−γt þ eiðωexc;g−ωÞt−γtÞdt
����
2

¼D×
����− i

�
eiðωexc;gþωÞt−γt

iðωexc;g þωÞ− γ
þ eiðωexc;gþωÞt−γt

iðωexc;g −ωÞ− γ

�∞
0

����
2

≈D×
����i 1

iðωexc;g −ωÞ− γ

����
2

¼D×
����− 1

−ðωexc;g −ωÞ− iγ

����
2

; (84)

where

EQ-TARGET;temp:intralink-;e085;326;441D ¼
����E0e
ℏ

hψgðr;φ; zÞj~rejψ excðr;φ; zÞi
����
2

: (85)

Thus,

EQ-TARGET;temp:intralink-;e086;326;390PGEðtÞ ≈D ×
���� − ðωexc;g − ωÞ − iγ

ðωexc;g − ωÞ2 þ γ2

����
2

: (86)

The band shape is determined by the second term in the latter
relationship, i.e.,

EQ-TARGET;temp:intralink-;e087;326;326PGEðtÞ ≈D ×
�
−

γ

ðωexc;g − ωÞ2 þ γ2

�
2

: (87)

The latter relationship determines the spectral profiles of
the absorption and resonance emission.
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