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Abstract. Brain–computer interfaces (BCIs) allow individuals to use only cognitive activities to interact with their
environment. The widespread use of BCIs is limited, due in part to their lack of user-friendliness. Themain goal of
this work was to develop a more user-centered BCI and determine if: (1) individuals can acquire control of
an online near-infrared spectroscopy BCI via usability and performance-informed selection of mental tasks
without compromising classification accuracy and (2) the combination of usability and performance-informed
selection of mental tasks yields subjective ease-of-use ratings that exceed those attainable with prescribed
mental tasks. Twenty able-bodied participants were recruited. Half of the participants served as a control
group, using the state-of-the-art prescribed mental strategies. The other half of the participants comprised
the study group, choosing their own personalized mental strategies out of eleven possible tasks. It was con-
cluded that users were, in fact, able to acquire control of the more user-centered BCI without a significant change
in accuracy compared to the prescribed task BCI. Furthermore, the personalized BCI yielded higher subjective
ease-of-use ratings than the prescribed BCI. Average online accuracies of 77� 12.9% and 73� 12.9% were
achieved by the personalized and prescribed mental task groups, respectively. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.2.2.025001]
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1 Introduction

1.1 Brain–Computer Interfaces

Brain–computer interfaces (BCIs) allow individuals to interact
with their environment using only cognitive activities.1–4 BCIs
exploit a user’s brain signals for external device control without
requiring intentional muscle activations or peripheral nervous
system responses.3,5 The potential applications of BCIs are
vast. BCIs can be used by able-bodied individuals for gaming,
entertainment, and to accelerate learning.1,6 BCIs can also be
used by individuals with severe motor impairments as a means
of communication, as a way of controlling a wheel chair for
mobility, or as a method for controlling devices in their environ-
ment.4–7 Individuals with amyotrophic lateral sclerosis, spinal
cord injuries, brain stem stroke, complete paralysis, or muscular
dystrophy among other debilitating conditions stand to benefit
from BCIs.6,8 Indeed, BCIs have the potential to significantly
increase the quality of life for patients with severe motor
impairments.9

A BCI consists of an input, a translation algorithm, and an
output. The input to a BCI is the physiological signal that is
being harnessed. The input can be further broken down into
the access modality, which refers to how the signal is collected,
and the access pathway, which refers to how a change in that

signal is evoked. After the signal is collected, the translation
algorithm processes the signal to remove noise, extracts fea-
tures, extracts the most discriminant features, and trains a clas-
sifier to predict the class to which a case belongs. Finally, the
output of the BCI involves the control of an external device.5 For
a given BCI, any of the above factors can be modulated in order
to improve the BCI. Most papers focus on improving the trans-
lation methods, while only a few papers focus on improving the
input. The focus of this research is on improving the input access
pathway.

1.2 Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a noninvasive, safe,
portable, and low-cost optical neural imaging technique that
measures hemodynamic brain activity.2,3,6,10 Despite temporal
limitations, NIRS offers several advantages over other noninva-
sive BCI access modalities, including, for example, gel and
paste-free donning and flexibility of measurement environ-
ments. For further discussion of the relative merits of NIRS
as an access modality, refer to Refs. 3, 6, 8, and 10. NIRS
works by measuring the changes in the absorption of near-
infrared light that travels through the skin, periosteum, skull,
meninges, and the cerebral cortex of the brain. The amount of
light that is absorbed varies with the amount of oxygen in the
blood. Through a mechanism known as neurovascular coupling,
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areas of the brain that are active have an increase in oxygenated
hemoglobin (HbO), an increase in total hemoglobin (tHb), and
a decrease in deoxygenated hemoglobin (Hb).11–13 However,
other coupling trends have also been reported.14–20 NIRS pro-
vides an indirect measure of cognitive activity by ascertaining
the changes in the concentration of HbO and Hb in the brain.2,3

1.3 Prescribed Mental Tasks

NIRS is a promising access modality; however, to date, little
research has been done on the access pathways accompanying
this access modality.21 Currently, to the best of our knowledge,
most NIRS-BCI studies have used prescribed mental activation
tasks. The tasks used to control the BCI are chosen by research-
ers based on previous studies showing differentiability in the
activation or deactivation caused by a specific set of tasks.
By discriminating between the changes in the NIRS signal
resulting from the user performing each task, one is able to
control the binary BCI. Several different mental tasks have been
used in past NIRS-BCI studies, including mental math,2,9,14,22–29

mental singing,9,23,24 word generation,22,26,28 memory,6,26,28

mental counting,30 mental rotation,22 concentration,31 motor
imagery,3,8,10,32,33 and rest.2,6,9,22,24,25,27,29,30

1.4 Motivation for User-Selected Personalized
Mental Tasks

An alternative to using prescribed mental tasks is to use person-
alized mental tasks, where each user has a set of tasks selected
specifically for him or her. To date, the exploration of person-
alized mental tasks in NIRS-BCIs is limited. However, person-
alized tasks have been explored in fMRI34 and EEG21,35,36 BCI
studies. It appears that in all fMRI and EEG BCI personalized
task studies, the actual tasks were selected by the researcher
based solely on performance with the aim of improving the
BCI accuracy. Overall, these studies conclude that there is sig-
nificant intersubject variability in brain activation elicited by
the same mental tasks and cognitive processes; and as a result,
the tasks that are most effective for controlling a BCI vary
among users.21,34–36

Although improvements in accuracy are important, improv-
ing the BCIs usability has also been concluded in literature to be
vitally important. In a review of the first international meeting
devoted to BCI research and development, Wolpaw et al.
described that the widespread application of BCI-based commu-
nication systems will depend on cost, ease of training, ease-of-
use, and user satisfaction.5 Additionally, Bos et al. found that
ease-of-use was the second most important factor after accuracy
in BCI acceptance.37,38 Furthermore, a study by Holz et al. found
that ease-of-use was one of the most important aspects of
the BCI for four severely motor-restricted end-users.39 From
these studies, it can be concluded that BCI usability is very
important and even if classification accuracies are very high,
if users dislike performing their assigned tasks they are not
likely to use the BCI.5,37 Improving the ease-of-use of a BCI
could result in increased user satisfaction and user-friendliness,
which could lead to increased adoption and decreased BCI
abandonment.5,37,38

Currently, when using prescribed tasks or personalized tasks
chosen solely based on accuracy, users often find the assigned
tasks not suitable, unenjoyable, or difficult to perform.37,40,41 For
example, math tasks may not be suitable for individuals who
have difficulty with, minimal knowledge of, or a dislike for

arithmetic.40 Personalized mental tasks that are chosen by the
user based on both performance and usability could result in
the development of a more user-centered BCI that is easier to
use and more enjoyable.

We previously conducted an offline study to compare four
mental task frameworks: two user-selected personalized mental
task frameworks, a researcher-selected personalized mental task
framework, and a prescribed mental task framework.42 We
showed that user-selected personalized tasks have the potential
to yield higher perceived ease-of-use ratings.42 However, further
studies are needed to verify the value of personalized tasks by
comparing personalized and prescribed task selection schemes,
particularly in an online paradigm. To the best of our knowl-
edge, no other NIRS-BCI study has explored the use of person-
alized tasks and no other BCI studies have allowed users to
choose personalized tasks based on both performance and
ease-of-use.

1.5 Objectives

The aim of this research was to develop a more user-centered
personalized mental task access pathway for an NIRS-BCI
that allows individuals to choose tasks based on their perfor-
mance and subjective ease-of-use ratings. This study pursues
two research questions: (1) Can individuals acquire control of
an online NIRS-BCI via usability and performance-informed
selection of mental tasks without compromising classification
accuracy? (2) Can the combination of usability and perfor-
mance-informed selection of mental tasks for NIRS-BCI control
yield subjective ease-of-use ratings that exceed those attainable
with prescribed mental tasks?

2 Methods

2.1 Participants

Twenty able-bodied subjects (eight male) between the ages of
16 and 40 were recruited from the staff and students at Holland
Bloorview Kids Rehabilitation Hospital (Toronto, Canada).
All participants were right-handed according to the Edinburgh
handedness test.43 Participants had normal or corrected-to-
normal vision and had no known motor impairments, degener-
ative disorders, cardiovascular disorders, trauma-induced brain
injuries, drug or alcohol-related conditions, psychiatric condi-
tions, respiratory disorders or metabolic disorders. Participants
were asked not to smoke or drink alcoholic or caffeinated bev-
erages 3 h prior to each data collection session. The study was
conducted with informed consent and with ethics approval from
the Holland Bloorview Kids Rehabilitation Hospital and the
University of Toronto.

Half of the participants were randomly allocated to the study
group and chose their own personalized mental tasks, and the
other half to the control group, which were assigned prescribed
mental tasks. Since gender,44–47 handedness,46,47 and age48–50

have been shown to affect NIRS measurements, the two groups
were matched based on these three criteria. One participant
(male) from the personalized mental task group was excluded
from all results analysis since he was not able to follow the
experimental protocol. It is noted that the participants in the
study group went on to partake in 10 more sessions. Data from
those sessions were not used in the present analysis; however, it
was used to explore self-regulation as an alternative NIRS-BCI
access pathway in Ref. 51.
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2.2 Experimental Setup

The NIRS data were collected using a multichannel frequency-
domain NIRS system with a sampling rate of 31.25 Hz (Imagent
Functional Brain Imaging System from ISS Inc., Champaign,
IL).52 The NIRS system was used to measure the blood oxygen
content from the prefrontal cortex (PFC). The PFC is involved in
higher brain functions, including logical thinking, planning, and
emotion.26,53

Five laser diodes, each emitting 690 and 830 nm light, and
three photomultiplier tube detectors attached to a headband were
used. The headband was made out of a rubber polymer (3M
9900 series), which is comfortable on the skin and easily con-
forms to the shape of any head. Black fabric was sewn on the
outside of the headband to create tight, opaque pockets within
which the light sources and detectors were fit. These pockets
secured the sources and detectors, minimizing their motion
while maximizing their contact with the head. The headband
was centered on the participant’s forehead with reference to the
nose and was placed directly above the eyebrows, as shown in
Fig. 1(a).

The sources and detectors were arranged in a trapezoidal
shape. Each source and adjacent detector was separated by a
distance of 3 cm. This distance corresponds to a penetration
depth of ∼2.5 cm, which has been shown to reach the outer
layer of the cerebral cortex.14,54,55 Several other NIRS-BCI stud-
ies have also used a source—detector separation distance of
3 cm over the PFC.9,14,23–25,27 The source–detector configuration
allowed for the interrogation of nine discrete locations. A sche-
matic diagram of the configuration and points of interrogation is
shown in Fig. 1(b).

Neurofeedback was provided during all sessions in the form
of: (1) a trapezoid topographic image showing the real-time
changes in blood oxygenation levels over the PFC and (2) a
ball that rose and fell with the average change over the entire
interrogation area. The feedback was updated every 125 ms
and was calculated using cubic interpolation of the HbO values
between the points of interrogation. HbO was chosen for
the feedback since it has been cited to be more indicative of
activity than Hb and tHb.3,10 Participants were informed that
the red color on the feedback represented an increase in hemo-
dynamic activity, whereas the blue color represented a decrease
in hemodynamic activity. The activation feedback is shown in
Fig. 2.

2.3 Personalized Task Measures

In this study, 11 possible mental tasks were considered based on
their deployment in previous BCI studies or their documented
ability to induce PFC activity in functional imaging studies.
Each of the 11 tasks is described in Table 1. To facilitate a
user-centered approach to task selection that allows one to strike
a personal balance between usability and performance, two task
measures were invoked, namely, a total ease-of-use score and
a weighted slope (WS) score.

2.3.1 Total ease-of-use score

Subsequent to performing an iteration of each task, users rated
their perceived ease-of-use on a five-point Likert-type scale,
ranging from “very easy” to “very difficult,” as per recommen-
dations for measuring post-task usability.65,66 A total ease-of-use

Fig. 1 (a) NIRS headband placed over the forehead. (b) Experimental source and detector configuration.
The solid circles represent detectors; the open circles represent light source pairs; the x’s represent
points of interrogation; and the starred areas represent the FP1 and FP2 positions of the international
10 – 20 EEG system.

Fig. 2 User interface for session 5, blocks 2 and 3 (online classification with score feedback).
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score for each task was determined as the average ease-of-use
rating across all iterations of the task.

2.3.2 WS score

Task performance was captured by a task-specific WS score that
represents the ability of a subject to consistently increase or
decrease their hemodynamic activity by performing a task.
Specifically, the WS score, WSi, for the i’th task, was defined
as

WSi ¼
1
N

P
N
j¼1 mijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P
N
j¼1

h
mij −

�
1
N

P
N
k¼1 mik

�i
2

r ; (1)

where mij and mik are the slopes of the least square line of best-
fit to the hemodynamic activity over time for the j’th or k’th

iteration of the i’th task, and N is the number of times the
task was performed. For each iteration j or k, of each task, i,
an average response is computed from the hemodynamic
response (Δ½HbO�) from each of the nine channels (i.e., nine
points of interrogation). A slope value, mij or mik, is extracted
from the best-fit line to each channel-averaged response. The
WS score is then computed as the mean of all slopes for each
iteration of a given task divided by the corresponding standard
deviation, providing a measure of the tendency for a task to con-
sistently increase or decrease hemodynamic activity.

2.4 Data Collection Sessions

All participants took part in five data collection sessions on five
separate days, spanning a period of one week. In each session,
participants were seated in front of a computer in a dimly
lit room. The general protocol was the same for all sessions.

Table 1 Eleven mental tasks used in sessions 1 to 3.

Task Description

Mental math (Math) Participants were prompted with a math problem that appeared in the top right corner of the screen, and they
were asked to repeatedly subtract a two digit number from a three digit number. For example, given 986-12;
the participant would mentally evaluate 986-12=974; 974-12=962; 962-12=950; and so on. Numbers were
randomly generated. This task has been used in several previous NIRS-BCI studies.2,9,14,22–29,56,57

Mental singing (Music) Participants were asked to sing a song in their head. They were informed they could choose to sing any song
they wanted, but they were asked to pick a song that they liked. This task has been used in previous NIRS-
BCI studies.9,22–24

Word generation (Words) Participants were asked to think of as many words as possible that start with a specific letter. For example, if
the letter “D” appeared on the screen, the user may think of the words: dog, draft, door, deli, and so on.
Letters (excluding x and z) were randomly generated. This task has been used in previous NIRS-BCI
studies.22,26,28,58

Tangram puzzle (Rotation) Participants were prompted with a tangram puzzle in the top right corner of the screen, and were asked to
imagine rotating the pieces to make a final picture. This task was chosen because it has been shown to alter
PFC activity, measured using NIRS in a non-BCI study.59 A similar task was also used in a previous NIRS-
BCI study.22,59

Relaxing with counting (Counting) Participants were asked to slowly count in their heads while relaxing. A similar task has been used in
a previous NIRS-BCI study.30,57

Happy thoughts (Happy) Participants were asked to think about the details of a past event in their life that made them very happy. This
task has been used in a previous NIRS-BCI study.60 This task also uses episodic memory, which has been
shown to alter activity in the PFC.19

Word color (Stroop) Participants were prompted with a series of color names. The words were also colored, but the color of the
words did not always match the written word. For example, the word blue may have been written in red ink.
The participants were asked to say the real color of the word in their head. This task is commonly referred to
as the stroop task. This task has been used in a previous NIRS non-BCI study.61,62

Visualizing the future (Future) Participants were asked to imagine their life in five years, specifically focusing on their future day-to-day
activities. This task was chosen for its potential to alter activity in the PFC. The PFC is part of the default
mode network and has been shown to be activated when envisioning the future and during self-relevant
mentalization.20

Relaxing with focus on
the feedback (Focus)

Participants were asked to relax and focus on the feedback. A similar task has been used in a previous
NIRS-BCI study.31

Motor imagery (Motor) Participants were asked to imagine moving their arms or legs. Motor imagery has been investigated in
previous NIRS-BCI studies, but strictly over the motor cortex.3,8,33 This task was included since it has been
shown that the PFC is also affected by motor imagery.63,64

Rest (Rest) Participants were asked to relax and let their minds rest. This task has been used in previous NIRS-BCI
studies.2,6,9,22,24,25,27,29,30,56
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Each session started with a short warm-up period which allowed
the user to become familiar with the interface. Following the
warm-up, each participant took part in three data collection
blocks. During each data collection block, the participant per-
formed either 22 task intervals (sessions 1, 2, and 3) or 20
task intervals (sessions 4 and 5). Each task interval involved
a task being performed for 17 s, followed by a 20 s rest. The
duration of the task and rest activities was chosen on the
basis of preliminary data and past work.24,25 A schematic illus-
tration of the overall study, session, and block structure is shown
in Fig. 3.

2.4.1 Sessions 1 to 3

Participants performed each of the 11 tasks twice per block. The
tasks were presented in a random order. Immediately after per-
forming each task and before the 20 s rest, the user was asked to
rate the task in terms of its ease-of-use and desirability for BCI
control. The 20 s rest period allowed cortical hemodynamic
changes from the previous task and the ease-of-use scoring
to dissipate. The goal of these three sessions was to determine
the magnitude of change in blood oxygenation when the
participants performed each task and to determine the level
of subjective enjoyment of each task. By the end of the third
session, participants had performed each task 18 times
(3sessions×3blocks×2iterations), and thus N ¼ 18, in Eq. (1)
above.

2.4.2 Session 4

The control group was assigned the mental math and rest tasks
irrespective of their performance in the first three sessions.
These tasks represent the current state-of-the-art in NIRS-
BCIs.23,25–27 On the other hand, the study group was instructed
to choose their own pair of personalized tasks from among
the 11 possibilities. To inform their choice, participants were
provided with their total ease-of-use rating for each task from
sessions 1 to 3. In addition, for each task, participants were pre-
sented with line graphs depicting HbO concentration changes
averaged over the nine points of interrogation. Graphs for the
top three tasks for increasing hemodynamic activity (highest WS
scores) and the best three tasks for decreasing the hemodynamic

activity (lowest WS scores) were shown. Participants were
asked to choose a preferred task that tended to increase their
hemodynamic response, their “increasing task,” and another
that tended to decrease their hemodynamic response, their
“decreasing task.” Subsequently, participants were prompted
to perform their two tasks: mental math and rest for the com-
parison group, and personalized tasks for the study group.

2.4.3 Session 5

In the first block, participants were prompted to perform their
two tasks as in session 4. During the second and third blocks of
the fifth session, participants continued to perform their two
tasks when prompted by the interface (Fig. 2) but received
the corresponding label (i.e., increase or decrease task) esti-
mated by the computer. A score counter was updated, displaying
the number of times that the computer correctly labeled (clas-
sified) the task performed by the user. On average, classification
took 1 to 2 s; however, this will vary depending on the speed of
the computer. An example of the user interface from session 5,
block 3, is shown in Fig. 2.

2.5 Signal Treatment

2.5.1 Filtering

NIRS data are affected by various sources of physiological
noise. In particular, the NIRS signal is contaminated with the
Mayer wave at a frequency of 0.1 Hz, the respiration cycle
at a frequency of 0.2 to 0.4 Hz, and the cardiac cycle at a fre-
quency of 0.5 to 2 Hz.23,67 To mitigate the influences of these
noise sources, the NIRS signal was passed through a digital low-
pass filter in real-time using a third-order Chebyshev infinite
impulse response cascade filter with a pass-band from 0 to
0.1 Hz, a transition band from 0.1 to 0.5 Hz, a stop-band from
0.5 Hz onwards, and a pass band ripple of 0.1 dB.

2.5.2 Calculating hemoglobin concentrations

After filtering the data, the changes in concentrations of HbO,
Hb, and tHb, i.e, Δ½HbO�, Δ½Hb�, and Δ½tHb�, were calculated
using the modified Beer–Lambert’s law.3,5,68,69

Fig. 3 Study, session, and block structure.
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Δ½tHb� ¼ Δ½Hb� þ Δ½HbO�; (4)

where IλB is the mean light intensity measured at the baseline at
wavelength λ, IλA is the light intensity measured at any given
time at wavelength λ, ελHb and ελHbO are the specific extinction
coefficient of deoxygenated and oxygenated hemoglobin, respec-
tively, at wavelength λ, DPFλ is the differential path factor at
wavelength λ, and r is the geometric distance between the emitter
and detector. For a derivation of these equations, see Refs. 69 and
60. In this study,

r ¼ 3 cm; ε690 nm;Hb ¼ 2.1382 mM−1 cm−1;70

ε830 nm;Hb ¼ 0.7804 mM−1 cm−1;70

ε690 nm;HbO ¼ 0.3123 mM−1 cm−1;70

ε830 nm;HbO ¼ 1.0507 mM−1 cm−1;70

DPF690 nm ¼ 6.51 and DPF830 nm ¼ 5.86.71

2.5.3 Feature extraction and feature selection

Features were extracted over four time windows (0 to 5 s, 0 to
10 s, 0 to 15 s, and 0 to 17 s). Features included the temporal
changes in the three chromophores (Hb, HbO, and tHb) at
each of the nine points of interrogation (4 timewindows ×
3 chromophores × 9 points of interrogation ¼ 108 features) and
the spatiotemporal changes of the zero to fourth order discrete
orthogonal Chebyshev image moments (4 time windows ×
3 chromophores × 15 image moments ¼ 180 features).25 A total
of 288 features were thus extracted from the data.

The temporal feature extraction involved normalizing each
measured response by subtracting the mean and dividing by
the standard deviation, and then determining the least square
line of best-fit slope of the concentration change of each of
the three chromophores over each of the four time windows.
For example, the first feature was the least square line of
best-fit slope of [Hb] at the first point of interrogation over the
first 5 s that the task was performed. Temporal features have
been previously deployed with NIRS-BCIs.25,27,29,72,73

To derive the spatial features, topographic images for
Δ½HbO�, Δ½Hb�, and Δ½tHb� were generated by spatial interpo-
lation of the data at the nine points of interrogation. Specifically,
cubic interpolation at equally spaced intervals between the
points of interrogation was performed, as in Ref. 25, to create
a trapezoidal image, 21 pixels in height and with parallel sides
21 and 61 pixels in length. To account for intertrial variability,
the pixel values were normalized to fall between 0 and 1, as in
Ref. 25. To summarize the spatial changes, zero to fourth order
discrete orthogonal Chebyshev polynomial image moments
were extracted from each image at every instance in time.

Image moments are a weighted average of the image pixel inten-
sities and take the general form:

Mmn ¼
XNx−1

x¼0

XNy−1

y¼0

PmðxÞPnðyÞfðx; yÞ; (5)

where, fðx; yÞ is the intensity distribution of the Nx by Ny

image, x and y are the pixel coordinates,m and n are the degrees
(orders) of the Chebyshev polynomials, mþ n is the moment
order, and PmðxÞ and PnðyÞ are the two-dimensional orthogonal
Chebyshev polynomials,74 calculated using Eqs. 9 and 12 and
Table 2 from Ref. 74. A total of 15 image moments were
extracted from each image at each time point, one for each pos-
sible permutation of moment orders of 0, 1, 2, 3, and 4, as shown
in Table 2. Finally, the simple least square line of best-fit slope
of each image moment signal was calculated over each time
window. For example, the first feature was the least square
line of best-fit slope of the change of the zeroth order moment
(m ¼ n ¼ 0) of [Hb] over the first 5 s that the task was
performed.

The sequential forward floating search (SFFS) algorithm was
used to select a subset of eight features from the total feature set
used for classifier training.25,75 In general, SFFS uses a criterion
function to assess the discriminative capabilities of each candi-
date feature set. Starting with an empty feature set, the algorithm
sequentially adds features with the largest criterion value. At
each iteration, the method also removes a previously added
feature that is presently the least significant with respect to the
criterion function.75 We used the Fisher criterion to assess the
discriminatory capabilities of each feature set, as in Refs. 25

Table 2 Degree m and n of each of the 15 image moments.

Image moment number Moment order (m þ n) m n

1 0 0 0

2 1 0 1

3 1 1 0

4 2 0 2

5 2 2 0

6 2 1 1

7 3 0 3

8 3 3 0

9 3 1 2

10 3 2 1

11 4 0 4

12 4 4 0

13 4 1 3

14 4 3 1

15 4 2 2
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and 29. For this study, the target number of eight features was
chosen on the basis of preliminary data and past work.29,72

2.5.4 Pattern classification

An ensemble of three classifiers was used to differentiate
between task-induced changes in the hemodynamic response,
as in Ref. 25. In particular, for each participant, three linear dis-
criminant analysis classifiers (LDAs) were trained. In general,
LDAs seek to separate classes by projecting the training samples
onto a line that maximizes class separabilty.76 The first classifier
was trained using eight features selected from the 108 temporal
features; the second classifier was trained using eight features
selected from the 180 spatiotemporal features; and the third clas-
sifier was trained using eight features selected from all 288
features (temporal and spatiotemporal). Feature extraction and
selection are described in Sec. 2.5.3. The trained classifier
was used to label testing data into one of the two classes.
Each classifier predicted the class of the test data, and the overall
classification was determined using a majority vote,77 a decision
scheme in which the final label is taken to be the one predicted
by the majority of classifiers. For example, if the decisions of
the three classifiers are respectively, class 1, class 2, and class 1,
the majority vote would yield class 1 as the predicted label. The
data used for training and testing the classifier are described in
Sec. 2.6.1. For more information on classification and LDA,
please refer to Ref. 76.

2.6 Data Analyses

2.6.1 Determining accuracies

Classification of NIRS signals can either be performed offline,
following the completion of data collection, or online, in real-
time, as the data are being collected. In general, the aim of off-
line classification is to provide an estimate of how a classifier,
trained on the data collected, would perform on similar future
data. Offline classification also provides the ability to make
adjustments to the analysis methods, such as extracting and
selecting different features. By contrast, online classification
involves training a classifier using previously collected data,
and then predicting the class of new data in real-time as the
task is being performed. Online classification enables real-time
control and can provide the user with immediate feedback.

Offline accuracies were calculated retrospectively after all
the offline data had been collected. Specifically, all data col-
lected in session 4 and the first block of session 5 were pooled
together, and accuracies were determined using 30 iterations of
five-fold cross-validation. Cross-validation is a well-established
method for statistically estimating classifier performance, namely,
how well the classifier will generalize when presented with pre-
viously unseen data.78 Specifically, cross-validation involved
randomly partitioning the data into five equally sized portions
(folds). Next, each fold was used as testing data, while the other
four folds were used as training data. The training data were
used for feature selection and classifier training, and the testing
data were used to estimate classification accuracy. This process
was repeated until all folds had been used for testing and five
classification accuracies had been obtained. Five-fold cross-val-
idation was then repeated 29 more times, with new, randomly
partitioned folds. Finally, the 150 accuracies were averaged to
provide an overall mean offline accuracy for each participant
(30 iterations × 5 folds ¼ 150 accuracies).

Online accuracies were calculated in real time. The classifier
was trained using all the offline data (session 4 and the first block
of session 5), and each new task was classified immediately after
being performed. Specifically, in the final two blocks of session
5, the data were classified using an online classifier trained on
the offline data.27

2.6.2 Comparison of ease-of-use

The ease-of-use ratings for each task were summed across all 18
instances where the task was performed. These sums were then
used to rank the tasks based on ease-of-use for that participant,
where a rank of 1 represented the hardest task to perform and a
rank of 11 represented the easiest task to perform. Finally, the
ordinal ease-of-use rankings of the two groups were compared
using a two-tailed Mann–WhitneyU-test. For all statistical tests,
normality of the data was confirmed using the Shapiro–Wilk
normality test.

2.6.3 Comparison of accuracies

The offline and online accuracies achieved over sessions 4 and 5
by the personalized mental task group were compared to the
prescribed mental task group using a two-tailed Student’s t-
test for two independent means (α ¼ 0.05). Additionally, the
personalized mental task groups offline classification accuracies
between the participant’s personalized tasks and the state-of-the-
art prescribed mental strategies (mental math and rest) at the end
of session 3 were compared using a two-tailed Student’s t-test
for two dependent means (α ¼ 0.05). The offline classifications
were performed using 10 iterations of five-fold cross-validation
and using two extracted features from the data collected in ses-
sions 1 to 3, which consisted of 18 data points per task.

2.6.4 Evaluation of WS score

In order to verify the suitability of the WS score, a Pearson cor-
relation between the WS score and the online accuracy achieved
by the participants was investigated. The total WS score for each
participant was determined by the absolute difference between
the WS scores for the increasing and decreasing tasks after the
third session, as shown in Eq. (6)

TotalWSID ¼ jWSI −WSDj; (6)

where I is the increasing task in a given pair and D is the
decreasing task in a given pair.

2.6.5 Evaluation of feedback

At the end of the fifth session, participants were asked to rate on
a seven-point Likert-type scale how helpful they found the con-
tinuous activation feedback to be, with 1 denoting not helpful
and 7 meaning most helpful. The helpfulness of the feedback
was compared between the two groups using a two-tailed
Student’s t-test for two independent means (α ¼ 0.05).

2.6.6 Analysis of time windows of selected features

A frequency count of the features selected from the different
time windows (0 to 5 s, 0 to 10 s, 0 to 15 s, and 0 to 17 s)
was conducted with all the data collected during the offline
sessions. This count was completed for the selected eight fea-
tures, including all 19 participants, for each of the three classi-
fiers (temporal, spatiotemporal, and temporal combined with
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spatiotemporal). For feature selection methods, please refer to
Sec. 2.5.3. In total, 456 features were considered.

3 Results

3.1 Ease-of-Use: Personalized Versus Prescribed
Tasks

The perceived ease-of-use of the personalized task group and
prescribed task group are shown in Fig. 4(a). A Mann–Whitney
U-test revealed that the overall tasks’ ease-of-use of the BCI was
significantly higher for the personalized mental task group com-
pared to the prescribed mental task group (z¼2.16, p¼0.0308).

A high variability was observed in the perceived ease-of-use
ratings for tasks that users found to be easiest among both per-
sonalized and prescribed task groups. Each task was rated very
high (5/5) by some users and very low (1 or 2/5) by other users.
The intersubject variability in the tasks’ ease-of-use supports
the notion that different individuals find different mental tasks
easy to use.

3.2 Offline and Online Classification Accuracies

The offline and online classification accuracies achieved in ses-
sions 4 and 5 by the personalized mental task group and the

prescribed mental task group are shown in Tables 3 and 4.
Both groups achieved average online classification accuracies
greater than 70%, which has been cited as the accuracy required
for an effective BCI.79 However, only the personalized mental
task group achieved an average offline accuracy >70%. On
average, the personalized mental tasks group achieved an
offline accuracy of 75%� 10.8% and an online accuracy of
77%� 12.9%, whereas the prescribed mental task group
achieved an offline accuracy of 68%� 12.9% and an online
accuracy of 73%� 12.9%. Statistically, the classification
accuracies achieved by the two groups were not significantly
different, as evaluated by a two-tailed t-test for two indepen-
dent means (offline accuracies: t ¼ 1.29, p ¼ 0.213; online
accuracies: t ¼ 0.554, p ¼ 0.587).

For the personalized mental task group, offline analysis was
conducted to compare the classification accuracies between
the participant’s personalized tasks and the state-of-the-art pre-
scribed mental strategies (mental math and rest) at the end of
session 3. The average offline classification accuracy for the
personalized tasks was 71.8� 11.5% versus 57.7� 8.8% for
prescribed tasks. A Student’s t-test for two dependent means
revealed that the personalized task accuracies were significantly
higher than the prescribed task accuracies (t ¼ −2.90, p ¼
0.0198). These results are shown in Fig. 4(b).

Fig. 4 (a) Ease-of-use rankings for personalized and prescribed task groups. (b) Classification accuracy
of personalized tasks (chosen after session 3) and prescribed tasks (mental math and rest) for the per-
sonalized mental task group in sessions 1 to 3.

Table 3 Accuracies achieved by prescribed task group.

ID Offline (%) Online (%)

101 62.2 52.5

102 76.8 82.5

103 68.2 67.5

104 92.8 95.0

105 57.4 65.0

106 71.6 77.5

107 79.3 82.5

108 47.7 60.0

109 63.2 82.5

110 59.5 67.5

Average 67.9 73.3

Table 4 Accuracies achieved by personalized task group.

ID Offline (%) Online (%)

1 81.7 95.0

2 69.2 57.5

3 71.6 77.5

4 76.6 60.0

5 51.4 72.5

7 75.3 72.5

8 90.0 92.5

9 82.5 76.3

10 76.4 85.0

Average 75.0 76.5
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3.3 Variability in Personalized Tasks

The tasks chosen by the participants of the personalized mental
task group as their increase and decrease tasks are shown
in Fig. 5.

Note that a variety of tasks were chosen for both increase
and decrease tasks. Nine of the eleven tasks were chosen at
least once, and the only tasks that were not chosen at all were
motor imagery and visualizing the future. Of the 11 tasks,
relaxing-with-focus was chosen most often as the increasing
task, and word generation was most often chosen as the decreas-
ing task. This variability in task choice supports the notion that
different individuals prefer different mental tasks. Interestingly,
mental math was chosen as an increase task by one participant
and a decrease task by another participant. The same phenome-
non was observed with the relaxing-with-counting task. This

observation suggests a high intersubject variability in the hemo-
dynamic response produced by each task.

A Hinton plot of the WS scores at the end of session 3 for the
personalized mental task group is shown in Fig. 6. Intersubject
variability in WS scores is evident; each of the 11 tasks resulted
in positive WS scores in some users and negative scores in
others.

As previously mentioned, two tasks were not chosen by any
of the participants, motor imagery and visualizing the future.
Yet, as seen in Fig. 6, they were among the top three increase
and decrease tasks for all participants, except P8. Moreover,
motor imagery was the top increase task for P5 and the top
decrease task for P10 and visualizing the future was the top
increase task for P7. This raises the question as to why these
tasks were never chosen by any of the participants. Upon further
analysis of the questionnaires and written comments, many of
the participants did not enjoy performing these tasks. They
found performing motor imagery to be cumbersome and visu-
alizing the future to be very abstract and difficult to perform
consistently.

3.4 Selection of Personalized Tasks Using
the WS Score

Figure 7 is a scatter plot of each participant’s online classifica-
tion accuracy along with their corresponding total WS score.

The WS scores have a strong positive Pearson’s correlation
with the online accuracy (ρ ¼ 0.61; p < 0.01).80,81 This suggests
that there is potential in using the WS score as a measure of task
suitability for controlling an NIRS-BCI.

Additionally, we computed the correlation between the off-
line accuracy achieved in sessions 1 to 3 to the total WS score at
the end of session 3 over all participants and for all 55 pairwise
combinations of tasks. A moderate positive Pearson’s correla-
tion was found between the WS scores and the offline accuracies
(ρ ¼ 0.4, p < 0.001).80,81 This finding reinforces the potential in
using the WS score as a measure of task suitability for control-
ling an NIRS-BCI.

3.5 Helpfulness of Feedback

On average, users found the feedback moderately helpful with a
rating of 5.2� 1.2 on a seven-point Likert scale. The personal-
ized mental task group had an average helpfulness rating of
5.8� 1.0, whereas the prescribed mental task group had an

Fig. 5 Personalized tasks chosen by users to increase and decrease
their hemodynamic activity.

Fig. 6 Hinton diagram of weighted slope (WS) scores at the end of
session 3. Positive and negative values are represented by white and
black squares, respectively, and the size of each square is propor-
tional to the magnitude of eachWS score. Chosen tasks are indicated
by a dashed box surrounding the corresponding black or white
square. The largest square represents a magnitude of 1.63.

Fig. 7 Plot of online accuracy in session 5 versus WS score. A
regression line was fit to the plot with a slope of 13.54� 4.3. The
95% confidence intervals are plotted as dotted lines.
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average helpfulness rating of 4.7� 1.1. Based on a Student’s
t-test for two independent means, the personalized mental task
group had a significantly higher helpfulness ratings than the pre-
scribed mental task group (t ¼ 2.27, p ¼ 0.036). Moreover, all
participants in the personalized mental task group, other than
P7, found the feedback to be helpful (rating > 4). By contrast,
only five participants in the prescribed mental task group found
the feedback to be helpful (P102, P104, P105, P108, and P109).
Overall, this indicates that participants in the personalized men-
tal task group found the feedback significantly more helpful than
participants in the prescribed mental task group.

3.6 Time Window Feature Selection Analysis

All four time windows (0 to 5 s, 0 to 10 s, 0 to 15 s, and 0 to 17 s)
were frequently chosen during feature selection for each partici-
pant. Overall, the 0 to 17 s time window was chosen most often,
followed by, in descending frequency of selection, the 0 to 5, 0
to 15 and 0 to 10 s time windows, as shown in Fig. 8. This result
is in line with previous findings by Power et al.24 The largest and
smallest time windows were chosen most frequently likely
because they capture both gradual and early changes in the
hemodynamic signal. Additionally, the overall distribution of
selected time windows was similar for both the personalized
and prescribed mental task groups.

4 Discussion

4.1 Ease-of-Use

Relating to our second research question, the task usability rat-
ings for the personalized task NIRS-BCI were found to be
significantly higher than those of the prescribed task NIRS-
BCI. This finding is nontrivial because participants selected
tasks based on both ease-of-use and WS scores of each task.
Each participant had the opportunity to choose their task by
evaluating their own personal ease-of-use/effectiveness tradeoff.
Incidentally, our previous offline single-group study also iden-
tified a significantly greater perceived ease-of-use for user-
selected personalized mental tasks compared to prescribed
tasks.42

The significance of developing an easier to use BCI has been
well established in literature. As described in Sec. 1.4, ease-of-
use is an identified enabler in the development of BCIs. Ease-of-
use is recognized as one of the key attributes to the widespread
application of BCI-based communication,5 one of the most
important factors in BCI acceptance,37,38 and one of the most
important aspects of the BCI for four severely motor-restricted

end-users.39 Furthermore, ease-of-use has been linked to satis-
faction, which has been shown to positively impact adoption and
BCI abandonment.5,37,38 Overall, an easier to use BCI is vitally
important.

4.2 Online and Offline Classification

In support of our first research question, it was determined that
individuals can acquire control of an online NIRS-BCI via
usability and performance-informed selection of mental tasks
while maintaining classification accuracies statistically compa-
rable to those of the prescribed task group. This finding corrob-
orates that of our previous offline single-group study, where no
significant difference was observed between the accuracies of
user-selected personalized mental tasks and prescribed tasks.42

This study adds to the expanding literature of online NIRS-
BCI research. Online classification is a critical step toward real-
world BCI applications and presents various challenges not
applicable to offline classification, including hardware and soft-
ware adaptations to allow for immediate classification, and to
address classifier generalization issues.29 The online accuracies
achieved in this study are on par with those reached by Schudlo
et al.,29 and Coyle et al.,3 and exceed the accuracies of other
online NIRS-BCI studies, such as those by Chan et al.82 and
Stangl et al.83 Our training paradigm was similar to that of pre-
vious online NIRS-BCIs (i.e., used in Ref. 29) but with fewer
samples for classifier training and a shorter task performance
interval of 17 s compared to 20 s used by Schudlo et al.29

This shorter response interval can improve the communication
rate and decrease the mental demand placed on BCI users.

It should be noted that it is possible that a small nonsignifi-
cant increase in the accuracy of personalized mental tasks was
actually also present. The power of the online test was calculated
to be only 9.8%, and the associated Cohen’s d effect size was
only 0.3 (a small effect). A sample size of 166 participants per
group would be necessary to increase the power of this analysis
to 80%. Since the effect size appears to be small and a very large
number of participants would be required to detect a significant
difference, the authors conclude that conducting further analysis
using this design is not justified.

However, it is possible that future studies using other tasks or
a different length of testing may result in significant differences.
For example, with fewer tasks, there may be a larger effect size
or smaller standard deviation of the personalized mental task
group. It is also possible that if longitudinal data were taken
for both groups, a greater difference in accuracy may emerge.
The ease-of-use of selected tasks may be amplified during
extended use, and this could have an effect on the BCI accuracy
over time.

Additionally, it should also be noted that users chose their
personalized tasks based on both subjective evaluation of per-
formance and usability of the task. Had task choice been exclu-
sively based on performance, a change in accuracy may have
been more apparent.42 However, our findings collectively sug-
gest that perceived ease-of-use may trump accuracy for some
users and may facilitate BCI control. For example, the benefits
of personalization in initial acquisition and learning have been
demonstrated in other areas of research. In education, person-
alization has increased learning, motivation, and depth of
engagement.84 In an air traffic control training study, researchers
found that personalized adaptive task selection based on both
efficiency and preference led to more efficient training than
nonpersonalized task selection.85

Fig. 8 Frequency of occurrence of each time window (0 to 5 s, 0 to
10 s, 0 to 15 s, and 0 to 17 s) among the selected features.

Neurophotonics 025001-10 Apr–Jun 2015 • Vol. 2(2)

Weyand et al.: Usability and performance-informed selection of personalized mental tasks. . .



In line with previous literature, users in the present study
achieved significantly higher offline accuracies in some tasks
than other tasks.21,34–36 To the best of our knowledge, no
other BCI research study has compared online or offline clas-
sification accuracies between a personalized and prescribed
mental task group. However, one study by Dobrea et al. con-
ducted a within group comparison of personalized mental tasks
and prescribed mental tasks. In this EEG BCI study, Dobrea
et al. explicitly compared the offline accuracy of the chosen
personalized tasks to a set of prescribed state-of-the-art tasks.
Dobrea et al. found that the best combination of four tasks
from a choice of 12 tasks (chosen based on classification accu-
racies) achieved a greater accuracy than the state-of-the-art quar-
tet of mental tasks for all four participants.21 In line with this
result, our study also concluded that the personalized task
group achieved significantly higher accuracies using their per-
sonalized tasks than the state-of-the-art prescribed tasks (mental
math and rest), based on the session 3, offline, within-subject
classification results.

4.3 Variability in Hemodynamic Changes

Overall, all tasks elicited increases in hemodynamic activity in
some participants and decreases in others (Fig. 6). The anterior
PFC is known to be involved in various executive functions,
including: working memory, decision making, predicting future
events, multitasking, maintaining attention, and emotional
control.19,53,60 Additionally, the medial anterior PFC is part of
the default mode network (DMN), which is associated with
deactivations below resting baseline levels during various
goal-directed cognitive tasks and is also activated during auto-
biographical memory and envisioning the future.19,20

The task that resulted in the most consistent increase in
hemodynamic activity across participants appears to be happy
thoughts. Happy thoughts elicited an increase in activity in
all but one participant (P1). This could be due to the fact that
happy thoughts involve emotional control, which is believed to
be a function of the PFC, and it also involves autobiographical
memory, which is known to activate the DMN.19,20

Interestingly, the task that appears to result in the most con-
sistent decrease in hemodynamic activity across participants
was word generation; it was also the most commonly chosen
decrease task. Word generation resulted in a strong decrease
in hemodynamic activity in all participants other than P4 and
P10. Word generation has often been associated with activa-
tions in the left PFC;58,86 however, other trends have also been
observed.17 The observed decrease in activation with respect to
the baseline may be a consequence of measuring mainly over the
medial PFC, since the main language areas are predominantly
situated on the left side of the brain.87 Furthermore, the decrease
in hemodynamic activity may be attributable to a deactivation in
the DMN or resource sharing with the adjacent verbal areas.88

The prescribed tasks of mental math and rest were associated
with both activations and deactivations among participants. Rest
was usually accompanied by decreased hemodynamic activity
(all participants other than P2, P4, and P10), while math usually
resulted in increased hemodynamic activity (all participants
other than P5, P7, and P8). Similar trends have been observed
in literature.14,16,27 The increase in hemodynamic activity when
performing mental math could be attributed to the engagement
of working memory,73 while the decrease in hemodynamic
activity associated with the rest task could be related to mental
relaxation. On the other hand, the math task-induced decrease

and rest task-associated increase may be related to role of the
medial PFC in the DMN.19,20

Intersubject differences in cortical hemodynamic responses
may, in part, be related to interindividual differences in cognitive
processing and brain anatomy. Researchers have shown that
there is a large intersubject variation in the size, shape, and posi-
tion of various regions of the brain.89,90 Thus, it may not be sur-
prising that functional activation of the PFC (the region of focus
in our study) varied among participants. EEG BCI researchers
have drawn similar conclusions about the diversity of thought
patterns between individuals.21,35

The large intersubject variability that appears to be present in
most tasks confirms the need for personalized mental strategies.
Our results corroborate research showing that the most effective
task for controlling a BCI will vary among users.21,22,24,26,34,91

4.4 Suitability of Personalized Task Selection
Method

Personalized tasks were chosen on the basis of both perfor-
mance and ease-of-use. Incidentally, research in human–com-
puter interactions has identified these considerations to be the
two most important factors for BCI acceptance.37

The WS score was proposed as a measure to aid users in
choosing their own personalized mental tasks. By providing a
method to evaluate each task’s effectiveness, irrespective of
task pairings, the WS score simplified the selection of person-
alized mental tasks. Moreover, when using the WS score to
select personalized tasks, the user is only concerned with one
value per task (the task’s effectiveness); by contrast, when using
classification accuracies, the user is overwhelmed with all
55 pairwise classification accuracies. The positive correlation
between the WS score and accuracy (Fig. 7) supports the use
of the WS score as a measure of task effectiveness.

4.5 Helpfulness of Feedback

On average, the personalized and prescribed task groups found
the continuous activation feedback somewhat helpful. This is in
line with the findings of a previous NIRS-BCI study by Schudlo
et al. where a similar form of feedback was deployed and found
to be moderately helpful (3.13� 1.25 on a five-point Likert
scale) by users.29

The personalized mental task group found the feedback to be
significantly more useful than did the prescribed mental task
group. This could be due to the fact that users in the former
group chose their tasks based, in part, on the feedback.
Continuous rather than intermittent (e.g., score feedback) feed-
back may better support long-term use of the BCI. Specifically,
continuous feedback may promote adaptation of mental strate-
gies and could potentially increase the accuracy and usability of
the BCI over time.92,93

4.6 Significance

To date, personalized mental tasks have been explored in fMRI34

and EEG21,35,36 BCIs. To the best of our knowledge, these stud-
ies have only explored researcher-selected tasks based solely on
performance, with the aim of improving BCI accuracy. By con-
trast, the present study investigated user-selected personalized
tasks with the aim of improving ease-of-use. To the best of
our knowledge, to date, the exploration of personalized mental
tasks in NIRS-BCIs is limited to one offline, single-group study
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that illustrated the potential of user-selected tasks in increasing
ease-of-use.42 The present study extends that earlier work by
evaluating user-selected personalized mental tasks online in
a two-group design.

4.7 Limitations and Future Work

The study was conducted exclusively with able-bodied partic-
ipants. The findings reported herein likely do not reflect the per-
formance of individuals with severe motor impairments. Further,
it would be challenging to perform the personalized mental task
protocol with individuals who have reached the total locked-in
stage.92 Nonetheless, with minor adjustments, we anticipate that
the proposed protocol could be applied to clients with incom-
plete locked-in syndrome who retain reliable visual gaze and
a yes/no response. For example, the ease-of-use ratings would
need to be administered via a binary selection, scanning para-
digm. There are several potential reasons why an individual with
locked-in syndrome could stand to benefit from a BCI. First,
even if eye gaze has been maintained, muscle fatigue could limit
effective communication. Second, conditions such as amyotro-
phic lateral sclerosis are progressive; therefore, when clients
transition from a locked-in to a total locked-in state, eye gaze
may no longer be a viable access pathway. Literature has sug-
gested that gaining control of the BCI prior to reaching total
locked-in syndrome may increase the rate of success.4,94–96

Further research and testing on the target population is necessary
before conclusions about the effectiveness of personalized men-
tal tasks in a communication BCI can be drawn.

Second, this study was conducted under ideal environmental
conditions (quiet and dimly-lit room) that may not be indicative
of most real-world settings. Further research should be con-
ducted to assess the effect of environmental conditions on the
system’s performance.

Finally, when using NIRS as an access modality for a BCI,
there is the potential for systemic contributions to the sig-
nal.27,29,97 Since near-infrared light travels through the scalp
and skull before reaching the brain, the recorded signal may
contain systemic artefacts. Some researchers have proposed
using simultaneous shallow measurements to remove the sys-
temic portion of the deep NIRS signal.82,98 However, the effect
of such filtering on classification accuracies has yet to be fully
quantified.82 Other studies by Hoshi et al. and Villinger et al.
reported minimal task-related changes in the systemic blood
flow.15,99 Furthermore, for the purpose of BCI design, it can
be argued that as long as the system is able to differentiate
between mental states, the exact origin and composition of the
signal may be a moot point.

5 Conclusion
This study explored the possibility of allowing participants to
choose their own personalized mental tasks, based on both
performance and usability, to control an online NIRS-BCI.
Our findings suggest that individuals can acquire control of
an online personalized NIRS-BCI with classification accuracies
comparable to those of an NIRS-BCI with prescribed, state-
of-the-art tasks. The personalized mental task NIRS-BCI was
significantly easier to use than its prescribed mental task
counterpart. Users appeared to be able to effectively choose per-
sonalized mental tasks using the WS score as the measure of
performance and post-task ease-of-use ratings as the measure
of usability. Overall, the personalized mental task NIRS-BCI
provided a more user-centered and easier-to-use online BCI

without compromising accuracy. Personalized mental tasks
may support the development of more user-friendly BCIs.
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