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Abstract. Recent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage
of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity.
Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can
be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors
(false negatives). The Bonferroni-based methods are especially stringent in controlling Type I errors of the most
activated channel with the smallest p value. To maintain a balance between Types I and II errors, effective
multiplicity (Meff) derived from the eigenvalues of correlation matrices is a method that has been introduced
in genetic studies. Thus, we explored its feasibility in multichannel fNIRS studies. Applying the Meff method
to three kinds of experimental data with different activation profiles, we performed resampling simulations
and found that Meff was controlled at 10 to 15 in a 44-channel setting. Consequently, the number of significantly
activated channels remained almost constant regardless of the number of measured channels. We demon-
strated that the Meff approach can be an effective alternative to Bonferroni-based methods for multichannel
fNIRS studies. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction

of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.2.1.015002]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a convenient,
noninvasive tool for assessing cortical hemodynamics in various
clinical and neuropsychological situations.1–4 The first noninva-
sive monitoring of brain hemodynamics during hyperventila-
tion1 was realized by Jobsis.5 One and a half decades later,
fNIRS developed into a genuinely “functional” measurement
tool allowing the assessment of human cognitive and visual
functions.6–9 As the term “spectroscopy” implies, fNIRS started
as a single-channel measurement. The number of channels
increased to a few that were distantly placed on the scalp so
as to avoid light interference between neighboring channels.10

Later, the problem of light interference was solved by adopting
a frequency division multiple access technique, and thus multi-
channel fNIRS using an array of optodes was invented to simul-
taneously monitor multiple brain regions.11 Multichannel fNIRS
basically generates discrete channel data. This also enables
interpolation from neighboring channels to fill the interchannel
space, called optical topography, to produce two-dimensional
continuous images of cortical activation.11 Moreover, in diffuse
optical tomography (DOT), a combination of short- and long-
distance channels utilizes depth resolution to reconstruct a con-
tinuous image, providing more accurate source estimations in
three-dimensional space.2,12–14

Since the invention of multichannel fNIRS, the number of
channels has increased to a few dozen in typical studies or to
over 100 for whole-head measurements.15 With increasing
multiplicity in fNIRS channels, we have to be aware of the
increasing importance of controlling Type I errors (or false pos-
itives). In the fNIRS scheme, this corresponds to the risk of
falsely treating nonactivated channels as activated channels.
In a single-channel measurement, the issue is whether or not
the channel is activated: there is only one hypothesis. In a multi-
ple-channel measurement, the number of hypotheses increases
up to the number of channels. Such multiple comparisons entail
increased risk of Type I errors, which should be controlled as
family-wise errors (FWEs). Unlike the experimental-wise
error rate control often used in psychological studies, where
a large number of possible comparisons are conducted, FWE
rate control deals with a limited number of comparisons that
are necessary to test hypotheses, which is to say the number
of channels.16

The FWE in multichannel fNIRS studies is typically con-
trolled using one of the two different approaches. When a con-
tinuous image is constructed, it is often treated using a random
field theory (RFT), where, in a smoothed image, the number of
falsely detected active blobs, or clusters of activated pixels or
voxels, is controlled to a certain statistical threshold (e.g.,
0.05 representing 5 blobs on average in 100 randomly generated
images).17 Typically, the number of false active blobs is set
to 0.05.

On the other hand, fNIRS data are often represented as chan-
nel-wise data. In this case, multiplicity is equal to the number of*Address all correspondence to: Ippeita Dan, E-mail: dan@brain-lab.jp
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channels. The most stringent control for FWE in channel-wise
data is the Bonferroni method, in which the statistical signifi-
cance level (α) is divided by the number of channels (M)

αBonf ¼
α

M
: (1)

The purpose of Bonferroni correction is not to allow a single
FWE, but this can be too stringent as it increases the chance for
Type II errors or false negatives. One alternative is an extension
of the Bonferroni method, called Holm’s correction, which
offers less stringent multistep and step-down procedures.18

Another often used alternative is the false discovery rate (FDR)
control method,19 which maintains a proportion of false posi-
tives relative to the total number of significant results. The
FDR is often favored in functional magnetic resonance imaging
(fMRI)20 and fNIRS21 studies because of its increased power in
comparison with FWE control methods.

However, we must note here that the Bonferroni correction,
Holm’s correction, and FDR controlling methods all start from
the same multiplicity, which is equal to the number of channels,
to control Type I errors for the most activated channel.
Differences in stringency appear only in channels with less acti-
vation. Here, we encounter a dilemma: in order to identify as
many activated channels as possible, regions of interest should
be broader with a larger number of channels, but this can lead
to a reduced number of statistically activated channels being iden-
tified due to inflated multiplicity. For example, in a typical multi-
ple-channel fNIRS with 20 channels, an uncorrected p-value of
0.0025 in the most activated channel is necessary to achieve a
corrected p-value of 0.05. Nevertheless, in a recent whole-head
measurement using 120 channels, the uncorrected p-value neces-
sary for a corrected p-value of 0.05 was 0.0004. Hence, fNIRS
researchers employing a multiple-channel measurement often get
stuck in what is known as the “Valley of Bonferroni.”

Thus far, only one approach, called the Dubey/Armitage–
Parmar (D/AP) method,22 has been used to avoid applying cor-
rection with a large multiplicity equaling the number of channels
in fNIRS studies.23–25 The D/AP method utilizes the spatial cor-
relation between a given channel and other channels to correct
the multiplicity of the given channel. One problem with this
method is that the multiplicity differs among channels, so
regional bias cannot be avoided. In addition, since the D/AP
method is dependent on correlation, it is only applicable to
a single contrast.

One plausible approach for solving these FWE correction
issues in multichannel fNIRS would be the correction with
the effective multiplicity (Meff ) using eigenvalues of correlation
matrices. TheMeff method was invented by Nyholt26 for correc-
tion for multiple testing in the field of genome studies. This
method adjusts the original multiplicity by reducing the contri-
bution of large correlations to obtain theMeff . It was later modi-
fied to recount the Meff after leveling out large eigenvalues.27

Since this method was dependent on logical criteria and sepa-
ration of integer and fraction parts of the eigenvalues, Galwey28

proposed a more general equation to exclude such dependence.
When a set of correlated data, say activation data from fNIRS

channels, are given, theMeff method decomposes the correlation
matrices of the data to yield eigenvectors that reflect the strength
of the correlation between each data point. From these eigenval-
ues, the Meff method estimates the effective multiplicity that
corresponds to the number of independent tests. Accordingly,
multiple hypotheses are corrected by Meff instead of M.

Inspired by the potential of the Meff method, here we exam-
ined its utility in statistical analyses for multiple-channel fNIRS
data. We prepared three sets of experimental data with focused,
moderate, and broad activations. From these, we generated
synthetic data with smaller multiplicity and compared the per-
formance of the Bonferroni and Meff methods. Based on these
results, we will discuss whether the Meff approach can be an
effective alternative to Bonferroni-based methods.

2 Materials and Methods

2.1 Correction Methods

In this study, we compared two methods for correcting FWE.
One is a conventional Bonferroni method used to adjust the sig-
nificance level (α) by dividing it by the number of tests as in
Eq. (1) presented above. The other is the Meff method utilizing
eigenvalues of correlation matrices. To reflect the strength of
correlation between each data point, the Meff method adjusts
the original multiplicity to yield the effective multiplicity,
Meff

26–28 In multichannel fNIRS group analyses with multiple
subjects, we derive a correlation matrix from measured signals,
such as channel-wise average values of oxy-Hb signals, from
multiple subjects and calculate the eigenvalues. We then obtain
theMeff from the eigenvalues and apply it instead of the original
M to adjust the α value.

Let us explain the theoretical framework of the Meff method
using a typical fNIRS data structure as an example. Note that
the major Meff methods described below were originally devel-
oped for genetic data, but we modified them to fit the fNIRS data
scheme. When multiple-channel fNIRS data are obtained from
M channels for N subjects, summary data for group analyses
can be denoted as βM×N . Then, the eigenvalues (λi) are derived
from a correlation matrix (M ×M) of the measured signals
(βM×N) as follows:

λ1; λ2; : : : ; λM: (2)

Using the eigenvalue variance Vλ, Nyholt
26 calculated the

Meff as described below:

Meff ¼ 1þ ðM − 1Þ
�
1 −

Vλ

M

�
;

Vλ ¼
XM
i ¼ 1

ðλi − 1Þ2∕ðM − 1Þ: (3)

In order to present a more accurate estimate of Meff , Li and
Ji27 introduced a new calculation for Meff as described below:

Meff ¼
XM
i¼1

fðjλijÞ; fðxÞ¼ Iðx≥ 1Þþðx− ½x�Þ; x≥ 0: (4)

Iðx ≥ 1Þ is an indicator function, which yields 1 when x ≥ 1
and gives 0 otherwise. [x] is the floor function, which gives the
largest integer less than or equal to x.

Galwey28 pointed out that the Meff by Li and Ji gives more
weight to the fractional part than to the integer part and proposed
a generalized function as follows:

Meff ¼
�XM

i¼1

ffiffiffiffi
λi

p �2

∕
XM
i¼1

λi: (5)

Neurophotonics 015002-2 Jan–Mar 2015 • Vol. 2(1)

Uga et al.: Exploring effective multiplicity in multichannel functional near-infrared spectroscopy. . .



In this research, we implemented Galwey’s function to
calculate Meff because this method is optimized for multiple
signals with strong correlations and can be treated in a continu-
ous way.

2.2 Experimental Procedures

Experimental data used in this study were obtained from three
of our previous, separate studies29–31 and reanalyzed from differ-
ent perspectives. Here, we briefly describe the experimental
procedures.

Participants in the visual-based oddball task (OBT, task 1)
comprised 22 right-handed, healthy children (15 boys, 7 girls;
average age ¼ 9.8 years, SD ¼ 2.0, and range: 6 to 13 years).
Those for the verbal category fluency task (CFT, task 2) com-
prised 22 right-handed, healthy volunteers (6 participants were
excluded; 16 males, 6 females; average age ¼ 34.0 years,
SD ¼ 10.5, and range: 22 to 57 years). Those for the naming
task (NMT, task 3) comprised 26 right-handed, healthy
volunteers (4 participants were excluded; 19 males, 7 females;
averageage¼33.7 years, SD¼10.7, and range: 22 to 57 years).
Written informed consent was given by all participants and, in
the case of the OBT experiment, their parents. The study was
approved by the Jichi Medical University ethics committee.

In the OBT, participants were requested to push a button in
response to stimuli. The task included detection of and response
to infrequent (oddball) target events included in a series of
repetitive events. During the session, subjects viewed a series
of pictures once every second and responded with a key
press to every picture. In the baseline block, subjects were pre-
sented one picture and asked to press a blue button for that pic-
ture. Following the baseline block, two kinds of pictures were
presented sequentially and the participants were instructed to
respond to the standard stimuli and target stimuli by pressing
a blue and red button, respectively. Each session consisted of
six block sets, each containing alternating baseline (25 s) and
oddball (25 s) blocks.

In the CFT, participants were requested to overtly generate
words for five categories. The task paradigm was a periodic
block design with five alternating conditions of rest (30 s)
and experimental task (20 s).

In the NMT, participants were requested to overtly name
the content of a picture exhibited by an experimenter. The task
paradigm was a periodic block design with five alternating con-
ditions of rest (30 s) and experimental task (20 s). During the
experimental task, each picture was presented for about 3 s.

2.3 Evaluation of Meff

Using resampling simulations from experimental data of fNIRS
studies, we evaluated the relationship between Meff values and
the number of channels. For the resampling simulations, we
selected, from published studies, three kinds of experimental
data with different activation profiles: OBT data from children
with lateralized focused activation (task 1),29 CFT data from
adults with lateralized moderately focused activation (task
2),30 and NMT data from adults with bilateral broad activation
(task 3).31 The β-values of a general linear model (GLM) with
regression to a hemodynamic response function or the average
values of oxy-Hb signals were used as summary data. Because
the measured signals of the children contained many movement
artifacts, the averaged values of oxy-Hb, which were compatible
with β-values, were selected to analyze the children’s data

(note that β-values match the average when a GLM is performed
with regression to a box-car function alone). Specifically, after
the blocks with considerable artifacts were removed, for each
channel of each subject the averaged differences in oxy-Hb val-
ues between each task and the preceding baseline periods were
further averaged across the task blocks.29

To find the relationship between the number of channels and
the Meff , we randomly resampled a given number channels
(m∶ð1 ≤ m ≤ 44Þ) from each dataset and calculated Meff . For
each m, resampling was performed 1000 times, and the average
value and standard deviation were calculated.

In order to find the relationship between the overall number
of channels and the number of channels detected as active with
the Meff derived for a given dataset, truly active channels must
be set. We performed one-sample t-tests for the measured sig-
nals for each channel, and those channels with t-values above a
given t-value threshold were defined as “truly active channels”
for the corresponding task. The t-value thresholds were set to
2.0, 2.5, 3.0, and 3.5. Using these obtained truly active channels
as a starting point (e.g., 2 channels for task 1, 9 for task 2, and 12
for task 3 at a t-value threshold of 3.0), we added additional
channels, derived the Meff , and calculated the number of active
channels. For each channel number, resampling was performed
1000 times (or for a theoretical maximum when the resampling
range was limited), and average values and standard deviations
were calculated. For comparison, the numbers of active channels
were also obtained for uncorrected data and for Bonferroni
correction.

3 Results

3.1 Selection of Active Channels as “Truly Active”

For each task, second-level group analyses using one-sample
t-tests against zero were performed. We defined these channels
as “truly active channels” for the resampling simulation. The
numbers of truly active channels are shown in Fig. 3. For exam-
ple, when the t-value threshold was 3.0, the number of truly
active channels was 2 for task 1 (OBT), 9 for task 2 (CFT),
and 12 for task 3 (NMT). These cases are presented in Fig. 1
for each task. The numbers and distributions of truly active
channels varied for each task. We confirmed that task 1 had
a right-lateralized focused activation pattern, task 2 had
a left-lateralized moderate activation pattern, and task 3 had
a bilateral diffuse activation pattern.

3.2 Evaluation of Meff

We plotted the average Meff values and SD for each number of
channels for each task (Fig. 2). The M values, used for correc-
tion in the Bonferroni method, were also plotted for comparison.
When the number of measurement channels was less than 10,
there was little difference between Meff and M for all tasks.
However, when the number of measurement channels exceeded
10, the value of Meff became gradually controlled, with tapered
response curves in all cases. Eventually at around m ¼ 44, Meff

converged at a range of approximately 10 to 15.

3.3 Evaluation of Detected Active Channels

For each task, significantly active channels for which p-values
were less than 0.05 were calculated for different numbers of
channels. The number of active channels was derived with
no correction, with Bonferroni correction, and with the Meff
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method. The number of active channels for each case is plotted
in Fig. 3.

As shown in Fig. 3, without correction, the number of active
channels increased linearly for each task. For a large number
(approximately 40) of channels, the number of detected active
channels did not inflate linearly but converged to a certain value,
which equaled the number of detected active channels with
the Meff method applied to the whole number of channels.
Irrespective of the total number of channels and truly active
channels initially given, the numbers of detected active channels

with Meff methods remained larger than or equal to those with
Bonferroni methods and smaller than or equal to those without
correction.

4 Discussion

4.1 Overview

The current study examined the relationship between the num-
ber of channels and detected active channels based on FWE
correction with the Meff approach. We conducted resampling
simulations applied to actual multichannel fNIRS data for differ-
ent cognitive tasks. Compared with the conventional Bonferroni
method, the Meff approach generally yielded sufficiently mod-
erate FWE corrections and increased statistical power.

Since the Bonferroni method regards each channel as inde-
pendent, its multiplicity linearly increased as the number of
channels increased. In contrast, the Meff approach limited the
inflation of Meff when there were, roughly, more than 10 chan-
nels. Accordingly, Meff converged to a certain value, which
was specific to task species. Considering these characteristics,
Meff can be considered an effective FWE correction method
for modern fNIRS measurement with a large number of
channels.

Meff methods are expected to have a high affinity to fNIRS
data. First, they do not require any assumptions about the spatial
configuration of channels, in contrast to RFT, which assumes
spatial smoothness and continuity in a good-lattice assumption.
Sparsely and irregularly distributed fNIRS channels can be
treated effectively using the Meff method. Second, the Meff

method deals with the spatial correlation structure of data holis-
tically, but is not adjusted by local variations of spatial correla-
tion. Thus, Meff is applicable to data from all channels without
local bias. Third, theMeff method is applicable to a wide variety
of data structures including both single- and multiple-subject
analyses and to multivariate analyses such as ANOVA.26,27

4.2 Interpretation of Results

Meff increased with the number of channels, but not in a linear
manner. The increase ratio went down and finally converged at
a range of 10 to 15. Average Meff and standard deviation at 20
channels were 12.2� 0.4, 8.8� 0.3, and 11.4� 0.5 for OBT,
CFT, and NMT, respectively. Since variability (SD) due to dif-
ferent channel selections was negligible, we suggest that the
Meff estimations in resampling simulations could well represent
actual channel number increases. Note that relatively small SD
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NMT 4.0
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thgiRtfeL
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(c)

Fig. 1 t -Value color maps for each task and channel. t -Values that
are greater than 3.5, 3.0, 2.5, and 2.0 are indicated by red, orange,
yellow, and green circles, respectively, and those lower than 2.0 by
white circles. (a) Task 1 is the visual-based oddball task (OBT) evok-
ing right-laterilized focused activation. (b) Task 2 is the verbal cat-
egory fluency task (CFT) evoking left-lateralized moderately
focused activation. (c) Task 3 is the naming task (NMT) evoking bilat-
eral diffused activation.
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are as indicated in Fig. 1.
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at around channel numbers 1 and 44 simply reflect the limited
number of channel selections.

For each task, Meff reached 80% of maximum values at
20 channels. This observation suggests that a substantial Meff

increase beyond 44 channels is not likely to occur and that
Meff converges to a certain level for each task.

As shown in Fig. 3, the lack of FWE correction resulted in an
increased number of false positive detected-active channels.
This suggests the necessity for Type I error corrections.

Although application of the Bonferroni method maintained a
number of active channels similar to the number of truly active
channels with a small number of channels, the number of
detected active channels tended to drop below that of truly active
channels as the total number of channels increased. Hence, we
suggest that the current resampling simulations represent the

over-correction of FWE, the so-called “Valley of Bonferroni,”
often encountered in actual multichannel fNIRS measurements
well.

On the other hand, the Meff approach yielded a number of
detected active channels similar to that of truly active channels
at a t-value threshold of 3.0 even when the overall number of
channels increased. This clearly demonstrates that the Meff

approach can reduce Type II errors compared with the conven-
tional Bonferroni method, while maintaining control over Type I
errors compared with uncorrected states.

In other words, consideration of spatial correlation among
channels and analysis of their eigenvalue can lead to Meff

estimations that are similar to actual multiplicity for FWE cor-
rection. Accordingly, the Meff approach can provide a simple,
data-driven FWE correction method that maintains statistical
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power for multichannel fNIRS and its increasing number of
channels.

4.3 Consideration of Task Species

To explore the applicability of the Meff approach, we selected
three different experimental tasks from previously published
studies with the same numbers of channels. This was in
order to cover a wide range of activation patterns from a focused
and lateralized activation pattern evoked by an OBT in healthy
children,29 to a moderately focused and lateralized activation
pattern evoked by a CFT in healthy adults,30 and to a broad
and less lateralized activation pattern evoked by an NMT in
healthy adults.31 Our first expectation was to detect changes
in Meff associated with degrees of focus. However, we did
not find any tendency between focus size (the number of
truly active channels) and Meff . Thus, we tentatively suggest
that Meff is affected by task species, but not by focus size.
However, further exploration is essential to draw discrete con-
clusions. First, the current samples were from different groups
and included both adults and children. The true effect may have
been buried by sample heterogeneity. In order to explore the
factors determining Meff , we have to examine the effects of
focus size and task species using the same group of subjects.
Despite this, however, Meff did not vary much among different
tasks and subject groups, with values ranging from 10 to 15 out
of 44 channels. This leads us to expect that Meff is robust to
different tasks when similar experimental conditions are
adopted. In this sense, the Meff approach could be regarded
as a practical option that can be readily adapted to many
fNIRS studies.

4.4 Technical Considerations

For the current analyses, we selected Galwey’s method28 from
among several different Meff methods used in the realm of
genetics.26,27 As represented in Eq. (5) root-mean-square values,
Galwey’s method puts weight on large spatial correlations
with eigenvalues over 1. Selection of an appropriate multiplier
(currently 2) in Galwey’s equation would require further
examination.

One inherent merit of the Meff approach is its wide appli-
cability. Since its core idea lies in determination of Meff in a
data-driven way, it can be combined with other methods such
as the FDR method. The combination of Meff and FDR has
been adopted in genetic studies.27 Indeed, the current study itself
may be rather interpreted as a comparison of two Bonferroni
correction methods with or without data-driven Meff . Thus,
how the combination of FDR and Meff affects the statistical
power would be an interesting topic to explore.

Another aspect of the applicability of Meff is its extension to
various experimental designs beyond one-sample t-tests. Thus
far, two methods with less lenient statistical thresholds than
Bonferroni correction have been adopted for fNIRS studies.
The first is the D/AP alpha boundary22–25 for adjusting the
spatial correlation among channels which confers effective M
values to each fNIRS channel.23 However, this method has
two major limitations: One is that M values differ among chan-
nels so that no unified criterion can be realized for multichannel
measurements, and the other is that it is limited to a one-sample
t-test scheme. Similarly, Singh and Dan explored a resampling-
based approach based on the Max-T method,17,21 but this was
also limited to a one-sample t-test scheme.

On the other hand, the Meff approach can be adopted for a
wide range of experimental designs categorized into a GLM
including two-sample t-tests, ANOVA, and regression analysis.
The former two designs are important for group studies and
the latter is essential for individual studies dealing with temporal
as well as spatial correlations.

In addition, although the current study limited its focus to
channel-wise analyses, the Meff approach may be applicable
to pixel- or voxel-based methods, namely continuous images
created by interpolation, image reconstruction, and DOT. Since
these continuous images are constructed from channel-wise
data, comparison between the two approaches as to how they
affect Meff would be an intriguing topic to investigate.

In this sense, we would expect the current study to be
regarded as a primer with the goal of inspiring a wide range
of applications forMeff in order to take fNIRS studies in various
directions.
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