
Factors affecting the normality of
channel outputs of channelized model
observers: an investigation using
realistic myocardial perfusion SPECT
images

Fatma E. A. Elshahaby
Michael Ghaly
Abhinav K. Jha
Eric C. Frey



Factors affecting the normality of channel outputs
of channelized model observers: an investigation
using realistic myocardial perfusion SPECT images

Fatma E. A. Elshahaby,a,b,* Michael Ghaly,b Abhinav K. Jha,b and Eric C. Freyb

aJohns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, 3400 North Charles street,
Baltimore, Maryland 21218, United States
bJohns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, 601 North Caroline street, Baltimore,
Maryland 21287, United States

Abstract. The channelized Hotelling observer (CHO) uses the first- and second-order statistics of channel out-
puts under both hypotheses to compute test statistics used in binary classification tasks. If these input data
deviate from a multivariate normal (MVN) distribution, the classification performance will be suboptimal com-
pared to an ideal observer operating on the same channel outputs. We conducted a comprehensive investigation
to rigorously study the validity of the MVN assumption under various kinds of background and signal variability in
a realistic population of phantoms. The study was performed in the context of myocardial perfusion SPECT
imaging; anatomical, uptake (intensity), and signal variability were simulated. Quantitative measures and graphi-
cal approaches applied to the outputs of each channel were used to investigate the amount and type of deviation
from normality. For some types of background and signal variations, the channel outputs, under both hypoth-
eses, were non-normal (i.e., skewed or multimodal). This indicates that, for realistic medical images in cases
where there is signal or background variability, the normality of the channel outputs should be evaluated before
applying a CHO. Finally, the different degrees of departure from normality of the various channels are explained
in terms of violations of the central limit theorem. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Objective evaluation of medical imaging systems and algo-
rithms is essential for progress in medical imaging. In this con-
text, classification tasks, and especially binary classification
(detection) tasks, are important and clinically relevant.1,2

Mathematical model observers have found an important
place in the objective evaluation of medical images since they
are better predictors of human observer performance than the
traditional measures of image quality such as image resolution,
variance, contrast, or mean square error.1 The ideal observer
(IO) and the Hotelling observer (HO) are examples of widely
used model observers. In a binary classification task, the IO
requires the full knowledge of the probability density functions
(PDFs) of the input data under both hypotheses. Determining
these PDFs is challenging when the input data are realistic medi-
cal images from a patient population. The HO is a linear clas-
sifier and can thus be used as an alternative to the IO, requiring
only the knowledge of the first- and second-order statistics of the
image data.1–7 It is the optimal linear discriminant and has per-
formance equal to the IO under certain conditions (see below).
Due to its simplicity, the HO has been extensively used in medi-
cal imaging to assess image quality.1–4 However, the HO tends to
outperform the human observer in the presence of correlated
noise.8 Thus, the channelized Hotelling observer (CHO) has

been proposed, where a frequency-selective channel mechanism
is often applied to more closely approximate the performance of
the IO9,10 or the human observer,11–14 depending on the choice of
the channel model. In addition, the use of a small number of
channels reduces the dimensionality of the observer.1 Several
studies have shown that the CHO, with an appropriate channel
model, can successfully predict human observer performance in
the case of signal known exactly and background known exactly
(SKE/BKE) detection task using simulated images11 and using
realistic single-photon emission computed tomography (SPECT)
images.14 Moreover, the CHO is a good predictor of the human
observer in the case of signal known exactly and background
known statistically (SKE/BKS) tasks.15,16 The signal known sta-
tistically and background known statistically (SKS/BKS) task
poses limits to the CHO methodology as discussed in Park
et al.9,16,17 An example of SKS tasks is presented in Ref. 1,
where Barrett and Myers discussed the effect of signal variabil-
ity on the HO performance and presented an example of signal
location variability, showing that the data from the defect-
present class can follow a non-normal distribution as well as
multimodal patterns. They have also proposed the concept of
model observers for a signal known exactly but variable
(SKEV) task to approximate performance in the SKS tasks. This
concept has been further discussed by Eckstein et al.18,19

For a binary classification task, the performance of the HO
is the same as that of the IO if the input data from both classes
have multivariate normal (MVN) PDFs with equal covariance
matrices.1,7 To provide a better understanding of the behavior
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of different observers, Park et al.9,16 studied the effect of image
statistics on the performance of the CHO and the human
observer as compared to the IO. Park et al.9 found that the CHO
was suboptimal (i.e., it gave a smaller area under the receiver
operating characteristics curve) compared to the IO if the images
were non-normally distributed. Park et al.16 found that, in the
case of an SKE task, the human efficiency (relative to the
IO) for normally distributed lumpy backgrounds (LBs) was
much higher than that for non-normally distributed LBs.

The CHO is the HO applied to the channel outputs. If the
channel outputs under both hypotheses do not follow MVN dis-
tributions, then the performance of the CHO will be suboptimal
compared to (i.e., not the same as) the IO applied to the channel
outputs. Since the channel outputs are the weighted sums of
multiple random variables (i.e., image pixel values), it is
often assumed that the channel outputs are MVN because of the
central limit theorem (CLT).1,20 The classical CLT states that the
arithmetic mean of a large number of independent and identi-
cally distributed random variables approaches a normal distribu-
tion. The basic assumptions of the CLT can be relaxed to various
degrees resulting in different versions of CLT with different
degrees of generality.21–23 The degree to which these assump-
tions are relaxed affects how well the mean of the random var-
iables approximates a normal distribution.20,24–26

The normality of channel outputs is commonly assumed in
the literature where, to the best of our knowledge, no formal
investigation has been conducted nor reported to quantify the
deviation from normality of the channel outputs for various
background and signal variabilities. Since data from clinical
studies of human populations include these variabilities, it is
desirable to be able to handle these variations in model observ-
ers, and thus to facilitate the use of model observers in the evalu-
ation and optimization of imaging systems and processing
methods for human patient populations. As demonstrated in this
paper, these kinds of variations challenge the MVN assumption,
indicating the need for caution when applying CHO methods
directly to image data with this kind of variation. Knowledge
of the factors affecting the distribution of the channel outputs
could help in the formulation of model observers and methods
in cases where such background and signal variability are
present, as will be discussed in Sec. 5.3.

We carried out this study in the context of myocardial per-
fusion SPECT (MPS) imaging, where the task is to detect the
presence of perfusion defects in SPECT images of the myocar-
dium. However, the analysis and principles developed in this
work are applicable to other imaging modalities and organs
of interest. Background variations are an important factor limit-
ing task performance in clinical studies for many medical im-
aging modalities and applications. These variations arise from
variability in patient anatomy and, in nuclear medicine, from
uptake in organs of interest. Thus, we investigated the effects of
background variations, including anatomical and organ uptake
variability, and signal variability, including variation in perfu-
sion defect extent (size), severity (contrast), and location. The
images used in this study were postprocessed using low-pass
filtering and, except where noted, nonlinear windowing, and dis-
cretization to mimic the procedures used in display of clinical
images.27–32

The MVN assumption was examined using a set of quanti-
tative and qualitative measures of normality applied to the out-
puts of each channel. In the discussion section, we address the
normality results in the context of the CLT in an effort to provide

insight into cases where one can expect the channel outputs to be
non-MVN. We studied how well the data satisfied the main
requirements of the CLT and investigated how the relaxation of
these requirements affected the distribution of the channel
outputs.

2 Channelized Hotelling Observer
Methodology

A brief explanation of the CHO methodology is provided in this
section. A full explanation of the HO and CHO can be found in
Ref. 1. In a binary detection task with single defect detection, the
goal of the observer is to separate two classes of images: the
defect-absent class and the defect-present class. The images
consist of a background, with or without a signal, and are cor-
rupted by noise. In the context of this work, the signal is a
perfusion defect (i.e., a region with reduced uptake in the myo-
cardium) in an MPS scan; the background consists of the activ-
ity in the various tissues of the body (including the myocardium)
surrounding the defect. The shape, size, position, and uptake
(image intensity) of these background tissues can vary.

We denote the defect-absent and the defect-present hypoth-
eses as H1 and H2, respectively. Consider an imaging system
where the acquired image vector under the i’th hypothesis for
i ¼ 1, 2 is denoted by the N-dimensional vector gi ∈ ℝN×1. For
a binary detection task, the SNR is a common measure of class
separability for a certain observer. The SNR is defined by

EQ-TARGET;temp:intralink-;e001;326;464SNR ¼ t̄2 − t̄1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
σ21 þ 1

2
σ22

q ; (1)

where t̄i and σ2i are the ensemble mean and the variance of the
outputs of the observer for hypothesis i, respectively. The out-
puts of the observer are known as the test statistics. The HO is a
linear observer that uses the first and second moments of the
image data under both hypotheses and maximizes the SNR.
The Hotelling template wHO ∈ ℝN×1 is a linear operator applied
to the image data to produce the test statistic. The Hotelling tem-
plate is given by

EQ-TARGET;temp:intralink-;e002;326;324wHO ¼ S−1g ðḡ2 − ḡ1Þ; (2)

where ḡi ∈ ℝN×1 are the ensemble mean vectors of the image
data from the i’th class, and Sg is the N × N intraclass scatter
matrix defined as

EQ-TARGET;temp:intralink-;e003;326;258Sg ¼
1

2
ðK1 þK2Þ; (3)

where Ki are the N × N covariance matrices of the image data
from the i’th class. Under both hypotheses, the test statistic ti for
the HO is a scalar quantity, and it is given by

EQ-TARGET;temp:intralink-;e004;326;184ti ¼ wT
HOgi: (4)

The calculation of the Hotelling template requires the inversion
of Sg, which is computationally challenging due to its huge size
(in our work, Sg is a 642 × 642 matrix). Thus, a frequency-selec-
tive channel mechanism is often applied to reduce the dimen-
sionality of the observer, as well as to better model the
performance of human observer or IO. Let U ∈ ℝL×N be the
channel matrix in the spatial domain, where L is the number of
channels used (usually L ≪ N). By applying the channel model,
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we take the product of theN-element image vector and the chan-
nel matrix in the spatial domain.27 This is equivalent to taking
the dot product of gi and each of the L spatial domain channels.
This results in an L-element feature vector (i.e., channel output)
under each hypothesis denoted by vi ∈ ℝL×1. Then, for each
class of images, we have

EQ-TARGET;temp:intralink-;e005;63;686vi ¼ Ugi: (5)

The CHO is the HO applied to the channelized data. Thus,
the CHO is the linear observer that maximizes the SNR
computed using the channel outputs. The CHO template
wCHO ∈ ℝL×1 is given by

EQ-TARGET;temp:intralink-;e006;63;611wCHO ¼ S−1v ðv̄2 − v̄1Þ; (6)

where vi ∈ ℝL×1 are the ensemble mean vectors of the channel
outputs of the i’th class, and Sv is the L × L intraclass scatter
matrix computed from the channel outputs. Under both hypoth-
eses, the test statistic t̂i for the CHO is given by

EQ-TARGET;temp:intralink-;e007;63;536̂ti ¼ wT
CHOvi: (7)

From Eq. (6), the template for the CHO is calculated using
the mean vector and the intraclass covariance matrix of the
channelized data. If the channel outputs are not MVN, the per-
formance of the CHO will be suboptimal as compared to IO
applied to the same channel outputs.

3 Methods

3.1 Phantom Population and Projection Data

The phantom population used in this study has been previously
described in Ghaly et al.33 The following is a brief overview.
Projection data of the three-dimensional (3-D) extended
cardiac-torso (XCAT) phantom34,35 were generated using an
analytical projector that modeled attenuation, scatter, full colli-
mator detector response including septal penetration and scatter,
and Pb x-ray generation of a GE low-energy and high-
resolution collimator, a 9.5-mm-thick NaI(Tl) crystal with an
energy resolution of 9% and a 4-mm full-width at half-maxi-
mum intrinsic spatial resolution. Projection images were gener-
ated in a 128 × 114 matrix with a pixel size of 0.442 cm and
simulated at 60 equally spaced angles over a 180-deg acquisition
arc extending from 45 deg right anterior oblique to 45 deg left
posterior oblique. We modeled 10 mCi of Tc-99m labeled
agents. The data were generated to model MPS imaging using
a conventional SPECT system. The population included 54 ana-
tomical variations corresponding to two genders and three var-
iations (small, medium, and large) each of body size, heart size,
and subcutaneous adipose tissue thickness. The range of sizes
used was based on the distribution of sizes in a sample of clinical
images. The uptake variability in organs was based on quanti-
tative analysis of clinical studies and was modeled by sampling
from truncated normal distributions for the relevant organs as
shown in Fig. 1.33 In the dataset used here, separate projection
datasets were generated for the heart, liver, and remainder of the
body organs. The individual projections were scaled based on
these sampled activity values to account for uptake variability.

In MPS imaging, signal variability results from variations in
location, severity, and extent. To this end, we simulated defects
at two different locations in the myocardial wall. Both defects
were midventricular: one was in the anterolateral wall and the

other in the inferior wall. For each location, we generated
defects with three severities: 10%, 25%, and 50%. In MPS im-
aging, defect severity is defined as the percentage reduction in
tracer uptake (activity concentration) in the defect relative to the
normal myocardium. The severities investigated are clinically
significant and range from mild to moderate, and thus provide
a range of difficulty in defect detection. Finally, for each loca-
tion and severity we studied two defect extents: 5% and 25%.
The defect’s extent is defined as the percentage of myocardial
volume occupied by the perfusion defect. These extents re-
present small and large perfusion defect sizes, respectively.

3.2 Image Reconstruction and Postreconstruction
Processing

SPECT images were reconstructed from the simulated projec-
tions using filtered backprojection (FBP). The reconstructed
images had cubic voxels with a side length of 0.442 cm. The
reconstructed images were postprocessed to generate short-
axis images analogous to those viewed clinically as described
in Refs. 27, 32, and 36. This postprocessing includes low-
pass filtering, reorientation to short axis (involving interpola-
tion), intensity windowing, and discretization. First, the recon-
structed transaxial images were filtered with a 3-D Butterworth
filter with order eight and cutoff frequencies 0.08, 0.16, or
0.24 cycles∕pixel to provide various levels of noise control.
These cutoff frequencies spanned a range that included optimal
frequencies for MPS images reconstructed using iterative
reconstruction methods.13,27,32 Next, the filtered images were
reoriented into a short-axis orientation, where the images were
sliced perpendicular to the long axis of the left ventricle. Next, a
64 × 64 image centered on the position of the small defect for
the defect-present class or the corresponding defect location for
the defect-absent class was extracted and windowed. The win-
dowing and discretization steps are nonlinear steps as they
include truncation, scaling, and rounding.27–32 In the truncation
step, negative values were mapped to zero. Next, in the scaling
step, any pixel value that was larger than or equal to the maxi-
mum pixel value in the heart was mapped to 255 and values
between zero and the maximum were mapped to the range
[0, 255]. Finally, the resulting floating-point values were
rounded to integer values. These nonlinear steps mimic the pro-
cedures used in display of clinical images.27–32 A sample of the

Fig. 1 Sixty-four bin histogram plots of the reconstructed counts per
unit volume (counts/cm3) in the different organs.
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resulting images for different phantom anatomies and defects is
shown in Fig. 2.

3.3 Application of the Frequency-Selective Channel
Model

We used six rotationally symmetric frequency channels (RSC)
denoted by Al ðqÞ, which are octave-wide, bandpass filters with

a square profile, as described in Ref. 11 and given mathemati-
cally by

EQ-TARGET;temp:intralink-;e008;326;425AlðqÞ ¼
�

1 2l−1qc < q < 2lqc;
0; elsewhere;

(8)

where l ¼ 1;2; : : : ; 6 and qc is the starting frequency of the first
channel.

Fig. 2 The images are noise-free short-axis postprocessed images for different defects and phantoms.
The arrows indicate the defects’ position, which were generated with a severity of 100% to aid visuali-
zation. The images shown in (a)–(d) are from the male phantom with the smallest value for all three
anatomical parameters. Images (a) and (b) show anterolateral defects with extents of 25% and 5%,
respectively. Images (c) and (d) show inferior defects with extents of 25% and 5%, respectively. The
images shown in (e) and (f) have an anterolateral defect with an extent of 25%, where (e) is from
the male phantom with the largest value for all three anatomical parameters and (f) is from the female
phantom with the smallest value for all three anatomical parameters. The images shown in (g) and
(h) have an inferior defect with an extent of 25%, where (g) is from the male phantom with the largest
value for all three anatomical parameters and (h) is from the female phantom with the smallest value for
all three anatomical parameters.

Fig. 3 The six channels used in this work. The leftmost column represents the lowest frequency channel
(channel 1). The channel’s start frequency and width increase from left to right. The rows are (a) the
frequency domain channels, (b) the spatial domain channels, and (c) the horizontal profiles through
the origin of the spatial channels as indicated by the line in the leftmost image in (b), where the horizontal
axis is the pixel number and the vertical axis is the pixel value.
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Fig. 4 Histogram plots of the channel outputs when neither signal nor anatomical variability was
included. The horizontal axis is the channel output intensity and the vertical axis is the frequency of
occurrence. The columns represent the outputs from the six channels as defined in Fig. 3. The rows
are (a) without uptake variability and (b) with uptake variability. Sixty-four histogram bins were used.

Fig. 5 Q–Q plots comparing the distributions of standardized channel outputs and the theoretical stan-
dard normal distribution when neither signal nor anatomical variability was included. The horizontal axis
represents the quantiles of standard normal distribution; the vertical axis is the quantiles of the stand-
ardized channel outputs. The columns represent the outputs from the six channels defined in Fig. 3.
Rows (a) and (b) are without uptake variability, where plots in (a) represent defect-absent and
(b) defect-present data. Rows (c) and (d) are with uptake variability, where plots in (c) represent
defect-absent and (d) defect-present data.
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The first channel had a starting frequency and width both
equal to ð1=128Þ cycles∕pixel. Subsequent channels were adja-
cent, nonoverlapping, and had double the width of the previous
channel. The frequency channels and corresponding spatial
domain channels are shown in Fig. 3. Similar channel models
have commonly been used in the evaluation and optimization of
nuclear medicine instrumentation design, acquisition parame-
ters, and reconstruction parameters.12,27,37 Also, they have
been used for analysis of myocardial perfusion images and
have resulted in good predictions of the rankings of human
observers.12 The two-dimensional (2-D) frequency domain
channels were transformed analytically to the spatial domain
and then sampled. To mimic the human visual system, the
DC component was explicitly set to zero by subtracting the
mean of the spatial channel. The channels were applied to
the postprocessed images described earlier by taking the dot
product of the image and each of the spatial domain channels
as discussed in Sec. 2. This process resulted in a six-element
channel output (feature) vector for each input image.

3.4 Assessment of the Multivariate Normality
Assumption of the Channel Outputs

The MVN of a distribution may be tested using an MVN test
such as the Henze test.38,39 This tests the hypothesis that all
the channel outputs are MVN. However, this does not provide

much insight into the source of the MVN violation. Another way
of MVN testing is to use a set of univariate normality (UVN)
tests with the null hypothesis that the individual channel outputs
are normally distributed as suggested in Refs. 40–42. The nor-
mality of each channel is a necessary, but not sufficient, condi-
tion for the data to be MVN.40,42 The one-sample Kolmogorov–
Smirnov (K–S)43 or Pearson’s Chi-square44 are common UVN
tests.

However, one problem with hypothesis testing is that it does
not communicate the type and size of departure from normality.
Thus, to evaluate quantitatively the degree of departure from
normality, we computed the correlation coefficient ρ between
the quantiles of the individual channel outputs and the quantiles
of a standard normal distribution:45 the closer the correlation
coefficient is to 1, the stronger the linear relation between the
two distributions. Other measures of the deviation from normal-
ity were the skewness and kurtosis.42 We calculated these quan-
tities for the individual channel outputs and compared them to
those expected for a normal distribution, which has a skewness
of zero and kurtosis of 3.

Nevertheless, the aforementioned quantitative measures
often do not detect the presence of a multimodal distribution.
Thus, we used a qualitative (graphical) approach to provide vis-
ual confirmation of the degree of non-normality of the individ-
ual channel outputs and to detect the presence of multimodal

Table 2 As Table 1, for the case of uptake variability, without anatomical or signal variability.

Channel number

1 2 3 4 5 6

ρ Defect absent 0.98 1.00 1.00 0.99 0.99 0.93

Defect present 0.97 1.00 1.00 1.00 1.00 0.95

Kurtosis Defect absent 5.04 3.05 3.31 3.66 3.61 5.79

Defect present 5.01 3.35 3.36 3.65 3.66 7.69

Skewness Defect absent 0.93 −0.24 −0.24 −0.50 −0.42 −1.57

Defect present 1.00 −0.12 −0.20 −0.29 0.00 −1.38

Table 1 Results of correlation coefficienta (ρ), skewness, and kurtosis values for the channel outputs without uptake, anatomical or signal
variability.

Channel number

1 2 3 4 5 6

ρ Defect absent 1.00 1.00 1.00 1.00 0.99 0.93

Defect present 1.00 1.00 1.00 1.00 1.00 0.97

Kurtosis Defect absent 2.79 2.83 2.98 2.91 2.59 4.68

Defect present 2.91 2.94 3.09 2.69 2.99 6.72

Skewness Defect absent 0.07 0.02 −0.08 0.07 −0.24 −1.38

Defect present 0.22 0.21 0.02 −0.09 0.21 −1.02

aThe values have been rounded to two decimal places.
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distributions. We used plots of both the histograms and the
quantile–quantile (Q–Q) plots42,46 for this purpose. The histo-
grams are easy to understand, but the shape of the histogram
depends on the number of bins used. Thus, we also used Q–
Q plots, which are more robust to factors such as the number
of bins. In a Q–Q plot, the quantiles of the standardized distri-
bution (obtained by subtracting the mean from the data and then
dividing by the standard deviation) of the outputs from each
channel are plotted against the quantiles of the standard normal
distribution. If the points on this plot are not close to the 45 deg
line, this indicates a departure from normality.

4 Results
The following presents the results of a set of numerical experi-
ments investigating the distribution of the channel outputs when
different types and combinations of background and signal var-
iations were present. In this work, the signal was known to the
observer in the sense that the center of the spatial domain chan-
nels was the same as the center of the defect for the defect-
present images or the corresponding location for the defect-
absent images. However, the extent and the severity varied,
in some cases, from one image to another. Unless noted, a cutoff
frequency of 0.16 cycles∕pixel was used. Also, channels were
numbered from 1 to 6 in order of increasing start frequency, i.e.,
from left to right as shown in Fig. 3.

4.1 No Signal Variability and No Anatomical
Variability

We started with the case when neither signal variability nor ana-
tomical variability was present using the male phantom with
small heart size, body size, and subcutaneous adipose tissue

thickness and the anterolateral defect with extent and severity
both equal to 25%. We investigated the case of with and without
organ uptake varaiblity. We generated 2000 pairs of defect-
absent and defect-present images. The histograms and the Q–
Q plots of channel outputs with and without uptake variability
are shown in Figs. 4 and 5, respectively. When uptake variability
was modeled, the widths of the histograms were wider than
when uptake variability was not modeled. The results, shown
in Fig. 4, indicate that, for both classes, the widths (standard
deviations) increased by a factor of almost 2 for the first three
channels and almost 1.2 for the fourth and fifth channels. For the
sixth channel, this factor was ∼1 and ~1.3 for the defect-absent
and the defect-present classes, respectively. Thus, this factor was
not uniform across the channels. This increase in the widths of
the histograms is expected because uptake variability results in a
varying number of counts in the different organs individually
and the image as a whole, thus producing a larger range of out-
puts for each channel.

Tables 1 and 2 report the correlation coefficient, ρ, and skew-
ness, and kurtosis values calculated from each individual chan-
nel outputs without and with uptake variability, respectively.
From Fig. 5 and Tables 1 and 2 observe that uptake variability
affected the degree of non-normality of the channel outputs. For
example, with uptake variability the output from channel 1 was
more positively skewed (e.g., for the defect-absent class, the
skewness values were 0.07 and 0.93 without and with uptake
variability, respectively). This observation was true for both
the defect-absent and defect-present classes. Furthermore,
the histogram of channel 6 was more skewed toward the left
and more peaked for both classes when uptake variability was
included. This is consistent with observations from the Q–Q
plots.

Fig. 6 Histogram plots of the channel outputs with anatomical variability and without signal variability.
The axes are as described in Fig. 4. The columns represent the outputs from the six channels defined in
Fig. 3. The rows are histogram plots for the cases of (a) the two male phantoms with different sizes,
(b) two different genders, and (c) all 54 phantoms. The histograms in rows (a) and (b) used 16 bins
while those in row (c) used 64 due to the larger number of feature vectors.
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4.2 Anatomical Variability and No Signal Variability

This experiment evaluated the addition of different levels of ana-
tomical variability in the presence of uptake variability without sig-
nal variability. The same defect was used as in Sec. 4.1.

4.2.1 Mixture of two phantoms

First, we investigated two different anatomies. For each phan-
tom, we generated 100 uptake realizations of noisy projection
data for each class, resulting in 200 pairs of defect-absent and
defect-present images. In the first experiment, we considered the
case of two male phantoms with different sizes. In particular, we
used phantoms having the smallest and largest values of all three
anatomical parameters (see Fig. 2). In the second experiment,
we investigated the effect of gender variation using the phan-
toms for each gender having the smallest values of the three ana-
tomical parameters (see Fig. 2). For both experiments, when the
channel outputs from the two phantoms were pooled, the distri-
bution of the channel outputs was bimodal for some of the chan-
nels for both classes as indicated in Figs. 6(a), 6(b), and 7.

4.2.2 Mixture of all 54 phantoms

For each of the 54 phantom anatomies, we generated 37 uptake
realizations of noisy projection data for each class, resulting in

1998 pairs of defect-absent and defect-present images. When the
channel outputs from all 54 different phantoms were pooled, the
histograms of the channel outputs were unimodal as shown in
Figs. 6(c) and 8. By comparing Figs. 4(b) and 6(c), we observed
that the widths of the histograms were wider in the case of 54
anatomical variations than when no anatomical variation was
present. The correlation coefficient values, skewness, and kur-
tosis are reported in Table 3.

4.3 Signal Variability and No Anatomical Variability

In this experiment, different types of signal variations were stud-
ied for a single phantom (male with the smallest value for all
three anatomical parameters) with uptake variability. We inves-
tigated the individual effects of variability in location, extent,
and severity.

4.3.1 Variation of defect location

In this experiment, we used both the anterolateral and inferior
defect locations with extents and severities both equal to
25%. For each defect location 1000 noisy images were gener-
ated, resulting in 2000 pairs of defect-absent and defect-present
images. Figures 9(a) and 9(b) show the histogram plots of the
channel outputs for the individual defect location; Fig. 9(c)

Fig. 7 Q–Q plots comparing the distributions of standardized channel outputs with the theoretical stan-
dard normal distribution with anatomical variability and without signal variability. The axes are as
described in Fig. 5. The columns represent the outputs from the six channels defined in Fig. 3.
Rows (a) and (b) are for the case of the two male phantoms with different sizes, where plots in (a) re-
present defect-absent and (b) defect-present data. Rows (c) and (d) are for the case of the two phantoms
with different genders, where plots in (c) represent defect-absent and (d) defect-present data.
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shows the histogram when channel outputs for both locations
were pooled. In Fig. 9(c) observe that the distributions of the
channel outputs were bimodal for channels 1, 2, and 4 for
both the defect-absent and defect-present classes.

4.3.2 Variation in defect severity

For this experiment, we investigated the effect of varying the
defect severity for a fixed location (anterolateral) and extent
(25%). We studied two combinations of defect severities: [10%,
25%] and [25%, 50%], respectively. For each defect severity,
1000 images were generated, resulting in 2000 pairs of defect-
absent and defect-present images. We observed that the histo-
grams of the channel outputs for pooled data were bimodal for
some channels for the defect-present class, as shown in Figs. 10
and 11. For example, the two modes of the histogram from chan-
nel 4 were more separated for the combination of the 25% and
50% severity defects. The histograms of the channel outputs for
the defect-absent class were unimodal for all channels.

4.3.3 Variation in defect extent

Finally, we investigated the case of variations in defect extent for
the anterolateral defect. We combined defects with extents of
5% and 25% for both 25% and 50% severities. For each severity,

we generated 1000 images for each defect extent, resulting in
2000 pairs of defect-absent and defect-present images. As
shown in Figs. 12 and 13, the distributions of the channel out-
puts were unimodal for the defect-absent class. However, for the
defect-present class, the distribution was bimodal for channel 4
and the separation between the two modes increased with defect
severity.

5 Discussion
The data presented in the aforementioned experiments demon-
strated that, for the set of realistic medical images used, the
MVN assumption of the channel outputs did not hold when
some kinds of background and signal variability were present.
For the simple case—when neither uptake nor anatomical nor
signal variability was present and the only source of randomness
was due to quantum noise—the distributions of individual chan-
nel outputs were close to normal, except for the highest fre-
quency channel. When uptake variability was introduced, the
distribution of individual channel outputs started to deviate
from normality.

In the case of a limited number of background or signal var-
iations, the distribution of the channel outputs was bimodal for
some channels and unimodal for others. One explanation is that
each channel captures data from a different spatial extent. Recall
that the defect was centered in the image. Thus, if there is large

Table 3 As Table 1, for the case of anatomical variability (54 phantoms) without signal variability.

Channel number

1 2 3 4 5 6

ρ Defect absent 1.00 0.95 0.99 0.99 1.00 0.97

Defect present 1.00 0.95 0.99 1.00 1.00 0.94

Kurtosis Defect absent 2.51 4.98 4.18 4.69 3.28 5.78

Defect present 2.89 5.51 3.81 3.92 3.87 11.69

Skewness Defect absent −0.07 −1.35 0.19 0.07 −0.33 −0.53

Defect present 0.05 −1.39 0.17 0.16 −0.18 −0.38

Fig. 8 As Fig. 7 for the case of 54 phantoms, where plots in (a) represent defect-absent and (b) defect-
present data.
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variability in pixels near the center of the defect for defect-
present class (or the corresponding location for defect-absent
class), this would be reflected in the distribution of the channel
outputs with the possibility of having multimodal outputs from
the higher frequency channels (i.e., narrower spatial domain
channels). Similarly, if there are large variations in pixels farther
from the center of the defect for defect-present class (or the cor-
responding location for defect-absent class), this would result in

the possibility of having multimodal outputs from the lower fre-
quency channels (i.e., wider spatial domain channels). As an
example, consider the case of two male phantoms with different
sizes [see Fig. 6(a)]. The gallbladder was present only in the
image from the phantom with the smallest value for all three
anatomical parameters as shown in Figs. 2(a) and 2(e). This rep-
resented large variability in the pixels relatively far from the
center of the defect and thus had a great impact on the output

Fig. 10 Histogram plots of the channel outputs with signal severity variability and without anatomical
variability. The extent of the defects was 25% and they were located in the anterolateral wall. The
axes are as described in Fig. 4. The columns represent the outputs from the six channels defined in
Fig. 3. The rows are from (a) the mixture of defect severities of 10% and 25% and (b) 25% and
50%. Sixty-four histogram bins were used.

Fig. 9 Histogram plots of the channel outputs with signal location variability and without anatomical vari-
ability. The extent and severity of the defects were both equal to 25%. The axes are as described in Fig. 4.
The columns represent the outputs from the six channels defined in Fig. 3. The rows are from (a) the
anterolateral, (b) inferior, and (c) the mixture of anterolateral and inferior defects. Sixty-four histogram
bins were used.
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of the lower frequency channels; consistent with the argument
above, the distribution of the channel outputs was bimodal in
this case. This observation was true for both defect-absent
and defect-present classes.

When all 54 phantoms were pooled, the distributions of the
channel outputs were unimodal but they still deviate from a nor-
mal distribution, as shown in Figs. 6(c) and 8. One explanation
for this is that the distribution of the channel outputs for each of
the 54 phantoms was different, and the combined distribution
thus was a continuous blending of a large number of the indi-
vidual distributions with different centers and widths in contrast
to the case of two phantoms. One way to think about this is as a
Gaussian mixture model. The degree to which the resulting dis-
tribution is continuous depends on the width and distribution of
centers of the individual Gaussians. For instance, consider the
case of mixing two unimodal distributions. If the absolute value
of the difference in their means (denoted by jmdiff j) is much larger

than the sum of their standard deviations (denoted by ssum), we
expect the combined distribution to be bimodal.47 Figure 14 is a
schematic showing the mixture of two Gaussians. When mixing
more than two unimodal distributions, the number of modes in
the resulting distribution depends on the extent to which the dis-
tributions overlap. This is based on the means and the standard
deviations of the constituent distributions. It is not immediately
evident how the number of phantoms affects the shape of the dis-
tribution for a particular channel outputs as this depends on the
anatomical parameters of the phantoms as well as the channel
used. It would thus appear prudent to check for normality and
multimodality before applying model observers.

Furthermore, from the values of the correlation coefficient,
skewness, and kurtosis reported in Tables 1–3, we observed
that the degree of non-normality of the channel outputs changed
from one channel to another. From Figs. 4–13, we observed that
the shapes of the distributions from the two classes were

Fig. 12 Histogram plots of the channel outputs with signal extent variability and without anatomical vari-
ability. The defects’ extents were 5% and 25%. They were located at the anterolateral wall. The axes are
as described in Fig. 4. The columns represent the outputs from the six channels defined in Fig. 3. The
rows represent the (a) 25% and (b) 50% severity cases. Sixty-four histogram bins were used.

Fig. 11 Q–Q plots comparing the distributions of standardized channel outputs with the theoretical stan-
dard normal distribution with signal severity variability and without anatomical variabilities. The extent of
the defects was 25% and they were located in the anterolateral wall. The axes are as described in Fig. 5.
The columns represent the outputs from the six channels defined in Fig. 3. The rows are for defect-
present data, having a mixture of defect severities of (a) 10% and 25% and (b) 25% and 50%.
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different, indicating that the distribution for one class was not
simply a shifted version of that for the other class. For example,
variation in defect severity (see Fig. 10) produced a bimodal
distribution for the defect-present class, while the defect-absent
class had a unimodal distribution.

5.1 Central Limit Theorem

Since the channel outputs are the weighted sum of multiple ran-
dom variables, it is often assumed that the channel outputs are
MVN because of the CLT. However, the results presented above
showed that this is not the case for the types of variations inves-
tigated. In this section, we provide more detailed discussions of

reasons that the channel outputs had different degrees of depar-
ture from normality.

The simplest form of the CLT states that the arithmetic mean
of a large number of independent and identically distributed ran-
dom variables approaches a normal distribution under certain
conditions.1,20,24 The basic assumptions of the CLT can be
relaxed to various degrees resulting in different versions of
the CLT with different degrees of generality.21–23 The degree
of violation of the conditions of the CLT determines how
well the mean of the random variables approximates a normal
distribution.20,24–26 The details of these versions of the CLT are
beyond the scope of this discussion. The key assumptions for the
CLT that we will discuss are the (1) arithmetic mean of random
variables, (2) large number of random variables, (3) identical

Fig. 14 A schematic illustrating the mixture of two unimodal distributions. The rows are from the case of:
(a) jmdiffj > ssum: the resulting distribution is thus bimodal and (b) jmdiffj < ssum: the resulting distribution is
thus unimodal.

Fig. 13 Q–Q plots comparing the distributions of standardized channel outputs with the theoretical stan-
dard normal distribution with signal extent variability and without anatomical variability. The defects’
extents were 5% and 25%. They were located at the anterolateral wall. The axes are as described
in Fig. 5. The columns represent the outputs from the six channels defined in Fig. 3. The rows are
for the defect-present data having severities of (a) 25% and (b) 50%.
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distribution of random variables, and (4) independence of ran-
dom variables. As discussed in the following, all the assump-
tions were violated simultaneously.

The first and second requirements are that a large number of
pixels be summed with equal weights. The degree to which these
requirements are satisfied depends on the details of the channel
model. For the RSC used, the weights are very unequal and have
different signs. The highest channel numbers tend to have very
compact channels in the spatial domain, and approach delta
functions, as shown in Fig. 3. Thus it is not surprising that
the output of the sixth channel often deviated from normality.
Furthermore, the different channels represent sets of weights
with different degrees of nonuniformity, as shown in Fig. 3.
It is clear from the results that the degree of non-normality
of the channel outputs varies from one channel to another
and sometimes produces bimodality, indicating that the CLT
does not always hold (i.e., the channel outputs cannot always
be approximated by a normal distribution).

Regarding requirement (3), the random variables are not
identically distributed (i.e., they have different means and var-
iances) because they represent pixels with different activities
from various organs. If a linear reconstruction method such
as FBP is used, the reconstructed images will be MVN when
neither background nor signal variability is present (i.e.,
MVN with different means and variances). When variability
is present, the distribution of the pixels may no longer be
MVN depending on the type of variability (i.e., possibly
non-MVN with different means and variances). Due to their
nonlinear nature, windowing and discretization will distort
the distribution of the pixels (resulting in not only different
means and variances but also different distribution shapes).

To study requirement (3), we plotted the histograms of pixel val-
ues from four different positions in the image before and after
windowing. The four positions were the anterolateral wall of the
myocardium, the lung, the liver, and the gallbladder, respec-
tively, with uptake variation without anatomical or signal vari-
ability (see Fig. 15). It is clear that the histograms are random
variables with different means, standard deviations, and shapes.
Before windowing, the shape of the distribution from different
pixels was close to normal. After windowing and due to high
activity in the gallbladder, its pixels are saturated to a gray
level of 255 in the postprocessed MPS image; thus, the resulting
histogram was a delta function as shown in Fig. 15(b).

For many realistic medical images, requirement (4) is not sat-
isfied because the pixels of the reconstructed images are corre-
lated.48 Thus, the random variables that are combined are not
independent. The postreconstruction low-pass filtering introdu-
ces additional correlations. Thus, the fourth requirement of the
CLT was also violated. This does not necessarily mean that the
channel outputs will be non-MVN. However, the various com-
binations of assumptions that are violated led, in many cases in
this work, to deviation from normality. Figures 16 and 17 show
the histograms and the Q–Q plots of the channel outputs with
uptake variability for filter cutoffs 0.08 and 0.24 cycles∕pixel.
These figures show the combined effects of the violation of all
the CLT requirements on the degree of deviation from normality.

5.2 Rotationally Symmetric Frequency Channels
Versus an Equally Weighted Channel

To illustrate the impact of using RSC, which had unequal
weights, on the distribution of channel outputs, we considered

Fig. 15 (a) A noise-free short-axis image of a male phantom with small body, heart, and subcutaneous
adipose thickness. The arrows indicate the four pixel locations used to compute the histograms. The four
histograms from locations 1 to 4 are shown from left to right. Plots in (b) and (c) represent the histograms
of the pixels (b) before windowing and (c) after windowing. The variations in pixel values are due to noise
and uptake variations.
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the case of a uniform channel with equal weights in the spatial
domain. The output from this channel represents the arithmetic
mean of the 64 × 64 images without and with uptake variability
for a single phantom anatomy (male with the smallest value of
all three anatomical parameters) as well as before and after the
windowing step. Figure 18 shows the Q–Q plots for the output
from this channel at cutoff frequencies of 0.08 and
0.24 cycles∕pixel. This figure shows how the uptake variability
and the filtering and windowing steps affected the distribution of
the arithmetic mean. First, for the case of no uptake variability,
the distribution of the mean was close to normal before and after
windowing for both cutoffs (first and second rows of Fig. 18).
Second, when uptake variability was present, the distribution of
the mean deviates from normality, especially before windowing
for both cutoffs (third row of Fig. 18). Finally, when uptake vari-
ability was present and the images were windowed, the distri-
bution of the mean was closer to normal for the small cutoff
(fourth row of Fig. 18). Thus, fulfilling requirements 1 and 2

of the CLT were not sufficient to ensure normality for some
cases.

5.3 Implications of Non-Normality of Channel
Outputs on CHO Performance

Understanding the distribution of the channel outputs could help
in the formulation of model observers and strategies for apply-
ing these observers in cases of background and signal variabil-
ity. The principles of this study can also be applied to the case of
efficient channels (i.e., channels used to approximate the IO) or
the case of anthropomorphic channels (i.e., the CHO used to
model human observer performance). The knowledge of the dis-
tribution of the channel outputs under various types of variabil-
ity and processing could help in explaining the behavior of the
CHO as compared to the IO and the human observer. For exam-
ple, the CHO is the HO applied to the channel outputs. Thus, if
channel outputs are not MVN, the performance of the HO will

Fig. 17 Q–Q plots comparing the distributions of standardized channel outputs with the theoretical stan-
dard normal distribution for different cutoffs. The axes are as described in Fig. 5. The columns represent
the outputs from the six channels defined in Fig. 3. The rows are for defect-present data with uptake
variability having cutoffs of (a) 0.08 and (b) 0.24 cycles∕pixel.

Fig. 16 Histogram plots of the channel outputs with uptake variability for different cutoffs. The axes are
as described in Fig. 4. The columns represent the outputs from the six channels defined in Fig. 3. The
rows are from cutoffs of (a) 0.08 and (b) 0.24 cycles∕pixel. Sixty-four histogram bins were used.
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not be the same as the IO when these observers are applied to
non-MVN channel outputs. In the following, we illustrate the
use of the results of this work to develop strategies to apply
CHOs to a population of realistic medical images.

For data such as the phantom population used here, the CHO
template is estimated with ensemble methods. Since there are a
finite number of images in the ensemble, the statistical precision
of the CHO and resulting test statistics are limited. To address
this, Wunderlich and Noo49–52 proposed an approach to estimate
the CHO based on the incorporation of the knowledge of the
channel outputs class means. The inclusion of this prior knowl-
edge can help to reduce the statistical variability in the estimates
of the CHO performance in case of a small number of images.
This approach assumes that the channel outputs from both
classes are MVN. However, as noted above, adding background
or signal variability could result in violations of the MVN
assumption.

The results of this work suggest that it may be desirable to
use near continuous distributions of object parameters (e.g., the
case of 54 phantoms) in order to avoid multimodal distributions
of channel outputs. In case of signal and/or anatomical variabil-
ity, the data indicate that the model observer study should be
conducted in subsets with limited variability. For example,
we can train and apply a set of observers to the channel outputs
from groups of objects having signals or anatomies that obey or

nearly obey the MVN assumption instead of training and apply-
ing a single observer to the channel outputs of all the objects.

6 Conclusions
The channel outputs used in CHOs are the weighted sums of
many random variables; hence, the CLT is often assumed to
imply that they will have MVN distribution. In this study,
our goal was to investigate the validity of the MVN assumption
of the channel outputs under both hypotheses for a binary clas-
sification task. This investigation was performed in the context
of realistically simulated and postprocessed MPS images with
different kinds of background and signal variations including
noise level, anatomical, and signal variability.

The results showed that when neither signal nor anatomical
variability was present, the distribution of individual channel
outputs was close to normal, except for the highest frequency
channel where the distribution was non-normal (negatively
skewed). We observed that, for some combinations of variabil-
ity, especially when the number of variations was small, the
distribution of some of the channel outputs was sometimes mul-
timodal. For example, in an image ensemble from two phantom
anatomies or two signal locations, bimodal distributions were
observed for both defect-absent and defect-present classes.
When the variations were sampled from a more continuous dis-
tribution, such as a mixture of a large number of phantoms, the
channel outputs were unimodal. However, even in these cases,
the channel outputs were not always close to a normal distribu-
tion. One likely reason for this is that channel outputs computed
using realistic medical images do not satisfy many of the
requirements of the CLT.

The results reported in this paper showed that the channel
outputs from both defect-absent and defect-present classes
could deviate from normality and were sometimes multimodal
depending on the type of variability. This suggests caution when
applying the CHO to realistic medical images. In particular, the
distribution of the channel outputs of both classes should be
examined. Lastly, the results have implications in terms of strat-
egies for applying the CHO to ensembles of images with back-
ground and signal variability.
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